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E F F E C T  O F  I N I T I A L  S T R A I N S  O N  T H E  P R O P A G A T I O N  O F  

W A V E S  IN AN I N C O M P R E S S I B L E  C Y L I N D E R  L O C A T E D  

IN AN I D E A L  F L U I D  

A. M. Bagno, A. N. Guz', and V. I. Efremov UDC 539.3 

As is known, real materials invariably contain initial stresses that are capable of significantly altering the wave 

properties of hydroelastic systems. Thus, in the study of the laws governing the propagation of waves in solid cylinders located 
in a fluid, it is necessary to use models that more fully account for the behavior of the actual elastic medium. The model of 

a prestressed body is one such model. 
Three-dimensional linearized problems of aerohydroelasticity for arbitrary bodies with initial stresses were formulated 

in general form in [1] and a method of solution was presented. This study also presented general solutions to coupled problems 
for an elastic body with initial stresses and a fluid, and it examined the propagation of torsion waves in a preloaded solid 

circular cylinder placed in a viscous compressible fluid. 
In our investigation, we use the model referred to above to examine the propagation of axisymmetric longitudinal waves 

in a prestressed incompressible solid cylinder located in an ideal compressible fluid. 
§1. We will examine an infinitely long incompressible solid circular cylinder of radius R located in an infinite ideal 

compressible fluid and subjected to uniform initial strains. The cylinder will be examined in a cylindrical coordinate system 
(r, 0, z 3) introduced in the initial strain state. We will consider the case when the cylinder is tensioned along the Oz_, 3 axis. 

With allowance for the incompressibility of the cylinder and the chosen load, we will have 

S ° = S  ° =0;  S ° # 0 ,  ).1'3.2'J.3=1; ~1=)~2~),3; ql=q2~q3, 
II 22  33 

(1.1) 

S O represents the magnitudes of the initial stresses along Oz i (i = where k i represents elongation factors along the Oz i axes; 

1', ~3"). 
We will use representations of general solutions for prestressed incompressible bodies [1, 3, 4] and a fluid [5] in the 

form 
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tzr: -.B-~Z3Z ; Uo=-0 ; u3 = k, l q ~.31q3 I AtZ, Vr- ~r ,  a =-~r2 + 7 o-- 7, (1.2)  

where the potentials X and ~ are determined from the following equations [1, 5]: 
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(~ 1,= =p [,=,; Q ]~=R=o; Prr=pO~t. (1.6) 
3 

The kinematic and dynamic boundary conditions on the surface of the cylinder have the form 
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Fig. 1 

In Eqs. (1,2)-(1.6), p is the density of the cylinder, o0 is the density of the fluid, c o is sonic velocity in the fluid, and V r and 

Prr are components of the velocity vector and stress tensor in the fluid, respectively. 

The components of  the stresses in the cylinder at r = const will be represented in the form [1, 3, 4] 

03 ).2a 0z - 
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Equations (1.3)-(1.4), together with boundary conditions (1.5)-(1.6), describe a hydroelastic problem for an 

incompressible infinite solid circular cylinder in an ideal compressible fluid. 

§2. We will seek the solutions of Eqs. (1.3)-(1.4) in the class of travelling waves. We represent the potentials x and 

in the form 

X ( r , z 3 , t )  = X ( r ) e x p [ i ( k z  3 - ~ot)]; (2. i) 

~o ( r , z 3 , t  ) = ~ ( r ) e x p l  i ( k z 3 - 0)t ) l, (2.2) 

where k is the wave number and ~0 is the frequency. 

Inserting Eqs. (2.1)-(2.2) into (1,3) and (1.4), we obtain ordinary differential equations retative to the functions X(r) 

and ~(r) 
d 2 ! d -  

( A t 2 + b A  + c ) X = O ;  A T E - -  
d r  ~ + r d r '  (2.3) 
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(2.5) 

Since the function X(r) is bounded at r = 0, the general solution of differential equation (2.3) can be represented in 
the form 
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X(r) = CZo O, r ) + C2 Zo 0,2 r),  (2.6) 

2 b+~/ ,b~ = q-~yi~; r ~ , 2 = - - i  - ~ )  -~; r~ 

[-'o(J,'),? <o, 
Zo 0 ' / ' )  = ~ . 2 (2.7) 

[Io(4,j. ~ >o. i=~ .  o , , < R .  

With the condition that ¢(r)  --, 0, r --, oo, we represent the general solution of Eq. (2.4) in the form 

*( , )=AX(~ , ) .  (2.8) 

In Eqs. (2.7-2.8), J0(yir), I0(33, r), and Ko(o~r) are cylindrical Bessel functions. 

Inserting solutions (2.6) and (2.8) into boundary conditions (1.5)-(1.6) and performing several transformations, we 

obtain a system of linear homogeneous algebraic equations in the unknowns C 1 and C 2. Proceeding on the basis of the condition 

for the existence of a nontrivial solution, we derive the dispersion equation for the given system 

det l ld~} l=  0; i , j - - ~ ,  
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(2.9) 

(2.10) 

§3. Dispersion equation (2.9) was solved numerically on a computer, The elastic properties of the cylinder material 

were described by a Treloar potential [2]. Here, the elastic body and the fluid were characterized by the following parameters 

=1200k~g~;m-* #--1,2.10 6 Pa; v=0,5; Po =1260 k"~g-; c =1927m ' P 
m ~ 0 sec 

where/z is the shear modulus; v is the Poisson's ratio. 

The results of the computation are shown in Figs. 1-3. The dimensionless quantities e and & in the figures were 

introduced as follows 
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where c = a~/k is phase velocity; Cs 2 = ix/O is the velocity of the shear wave. 

Figure 1 shows the dependence of dimensionless phase velocity ~ on frequency ~ for the given system (incompressible 

cylinder and fluid). The figure shows the dispersion curves corresponding to the first three modes. The results were obtained 

for X 3 = 0.8 (dot-dash lines), k 3 = 1.5 (dashed lines), and X 3 = 1 (solid lines). The case X 3 = 0.8 corresponds to initial 

compression, k 3 = 1.5 corresponds to tension, and X 3 = 1 corresponds to the absence of initial strains. An analysis of the 

results in Fig. 1 shows that initial strains have a significant effect on the frequencies at which the modes appear. Compression 

leads to an increase in the critical frequencies, while tension leads to their decrease. 

Figures 2 and 3 show the dependence of phase velocity e on elongation X 3 for a cylinder in a vacuum (dashed lines) 

and for a cylinder interacting with a fluid (solid lines). The curves in Fig. 2 were obtained for waves propagating with a 

frequency equal to 1. Figure 3 shows the function e = f(X3) for & = 8. It follows from the graphs shown in these figures that 

phase velocity increases with either initial compression (X 3 < 1) or initial tension (X 3 > 1) of the incompressible cylinder for 

waves with a frequency close to the critical frequency (curves 3 in Figs. 2 and 3). The pattern of change of phase velocity as 

a function of preliminary strain is different for modes propagating with frequencies that differ greatly from ~Le critical values. 

These modes are characterized by a decrease in velocity in compression and an increase in velocity in tension (curves 1 and 

2 in Fig. 3). It is also apparent that the phase velocities of the modes are somewhat lower when the cylinder interacts with the 

fluid than when it is located in a vacuum. 
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