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A P P R O A C H  T O  T H E  N U M E R I C A L  S O L U T I O N  O F  

B O U N D A R Y - V A L U E  P R O B L E M S  IN T H E  T H E O R Y  O F  S H E L L S  

IN C O O R D I N A T E S  O F  G E N E R A L  FORM* 

Ya. M. Grigorenko mid A. M. Timonin UDC 539.3 

In the general case, one is concerned with nonlinear boundary-value problems of the theory of compliant thin shelts 

having a complex three-dimensional shape with various cutouts and boundary contours with a nontrivial configuration, whose 

cenlroidal or coordinate surface is referred to a nonorthogonal, nonconjugate coordinate system [1, 3, 10]. Certain approaches 

to the calculation of shells of complex geometry are presented in [2, 7, 9]. 
In this article we construct a governing system of nonlinear partial differential equations from general tensor relations 

of the geometrically nonlinear theory of thin shells for the case of nonorthogonal parametrization of the centroidaI surface, aM 

we propose an approach to the solution of a nonlinear boundary-value problem, based on linearization, reduction of the two- 

dimensional problem to a one-dimensional problem, and numerical solution of the latter by the expansion of certain functions 
in discrete Fourier series. The approach has been used for the solution of certain problems in [5, 6]. 

We consider in invariant tensor form the stress-strain state of compliant thin shells, whose centroidat surface is 
parametrized by two curvilinear (Gaussian) coordinates ~1 and oL 2, where the coordinate lines c~ i = const coincide with the 

contours of the open shells at their boundary. 

We write the complete system of equations: 
geometrical relations 

equilibrium equations 

e ij 

2 eij = ¢i] + eji + ~)i tJj 

= -- V v - V v + bae + beei , 21;'ij i .t ] ~ i ]a j 

OW 
= V u. . - b j w ,  v = - Oa" + b ? u  ) '  

(I) 

VaTaJ - b~Q a + q~ = O, 

V Qa + b ~Ta~ + q3 = O, 

V a M  aj  - QJ - T i a r a  = 0 ;  

(2) 

elasticity relations 

Mi. /  = e h  3 + ( i  _ 

12(1 _~2) 
TiJ = siJ _ bJ M y i .  

? 

(3) 

*Taken from a paper presented at the First European Conference on Numerical Methods in Engineering, held in Brussels, 
Belgium, September, 1992. 
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In Eqs. (1)-(3) i, j = t, 2; summanon from 1 to 2 is implied by twice_-repeated indices o~,/3; a u denotes the 

contravariant components of the first metric tensor aij of the centroidal surface; bij and b j are the covariant and mixed 
components of the second metric tensor; V i is the symbol of covariant differentiation in metric aij; u i are the covariant 
components of the tangential displacement vector; w is the bending deflection of the centroidal surface of the shell; T ij and M ij 
are the contravariant components of the force and torque tensors, Sij are the components of the symmetric force tensor, Qi are 
the shearing forces; qJ and q3 are the components of the external surface load; E,/x, and h(oz 1, ot 2) are the elastic modulus, 

Poisson ratio, and thickness of the shell. 
At each point of the coordinate line c~ 1 = const we consider the right orthogonal coordinate system formed by the unit 

vectors along the tangential normal ~, the tangent ~, and the normal ~ to the centroidal surface. 
To evaluate the arbitrary constants in the system of equations (1)-(3), we specify four boundary conditions, one from 

each pair, on each contour of the shell c~ 1 = const: 

258 



Here u v = v~ui, u r = r~ui, v v = v~vi, 

( Q . , % ) ;  (Q . . ) ; ( Q , w ) ;  (:4 ,~,). 

i 0 M 

Qv. = T .~+ ~a2 2 Oct2 , 

vi~jT ij, = v i T = v v  T ij, T = T iQ , 
i i v r  v n  

M~. = v v M  . M ~  = vir jMiJ,  

a'2 ~222 
22 22 

vl  = ~ v2 a12 TI ~.2 1 

22 2 ~ 

(4) 

(5) 

%, u~, and w are the physical components of the displacement vector along the ~, ~', and r~ axes, respectively; v v is the angle 

of rotation of the normal to the centroidal surface of the shell about the ~ axis; Q~, Qvr, Q~n, and M~ are generalized forces 

corresponding to the generalized displacements u~, u r, w, and v~, respectively; ~ and k~r are the normal curvature and geodesic 

torsion of the centroidal surface in the direction P; ~i, ri, vi, and r i are the covariant and contravariant components of the unit 

vectors ~ and ~. A series of cumbersome transformations reduces the basic system of equations (t)-(3) to a governing system 

of partial differential equations in the functions (4), which has the form 

(6) 

where ~T____ {Q~, Q,r, Q~n, M,~, u v, u r, w, v~}, Z = {Zi} (i = ~,,..,~ 8) is a vector of resolvent kernels, and G = {gi} is the 

vector right-hand side, which is a nonlinear vector function of Z. Expressions for the right-hand side in the linear problem are 
given in [5]. 

Linearization reduces the nonlinear boundary-value problem for the system of equations (6) with the boundary 

conditions (4) to a sequence of linear two-dimensional boundary-value problems for the system of equations 

Oa ~ -- O ( a 2 ) k  O ( a 2 ) k )  (k=0,- '4;  s = 0 , 1  . . . .  ),  

F = G  ( a l , a  2, OkZ('O " OkZ( ' )  . - t) Z(S) 

( a l , a z  0kZ  \ 
7 = { / , } ( ;=~) ;  j ,  ,o(~,21k: 

(7) 

is the Jacobian matrix of the right-hand side of the system (7). The boundary conditions are linearized analogously. The solution 

of the linear problem for some approximate solution can be adopted as the initial approximation in a number of cases. To solve 

the resulting linear boundary-value problem in each approximation, .we use a method based on the discrete Fourier series 

expansion of the functions on the right-hand side of the system (7) [4]. We then seek a solution of the boundary-value problem 
for the system of equations (7) with the corresponding boundary conditions by means of the expansions 

N N 
X ( a t ' a 2 )  =.=o ~ X"(at)c°sna2' Y(at 'a2)  =~=~,¥. (cr~)s innaz '  (8) 
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where 

x = { z l , 4 } ,  Y = { z , L }  ( J = l , 3 , 4 , s , 7 , 8 ;  j = 2 , 6 ) .  

Substituting the expansions (8) into the system of equations (7) and doing likewise for the boundary conditions, after 

appropriate transformations we arrive at a coupled system of ordinary differential equations of  order 6 + 8N, which has the 

form 

d Z  (s+ l) 
~.o _ = /  ( a l ; z ( S ) ; z ( S + l ) ; z ( S ) . z ( S + l ) )  ; 

dal i,o j ,O  ] ,0  l , m  ~ l , m  

d a  I = fk.~ (al;Z(s);z(s+l)'Z(s);Z(s+l))':,o /.o ' l.~ t.~ ' 

( i , j = 1 , 3 , 4 , 5 , 7 , 8 ;  k, l=l~,  ; n , m = l - - ~ ; s = O , 1  . . . .  ).  

(9) 

The linear boundary-value problem is solved in each iteration for the system (7) by a stable numerical method of 

discrete orthogonalization. 

We give the results of  solving problems for certain shell elements on the basis of the proposed approach. 

We first consider the linearly formulated problem of the stressed state of  a toroidal shell element having a variable 

elliptical cross section (Fig. i). The shell is subjected to an internal pressure q = const, and the edges of  the shell s t = 0 and 

c~ 1 = ~r/2 are rigidly fixed. The expressions for the Cartesian coordinates of  points of  the centroidal surface have the form 

x = I R + a ( ctl )cosa 2 ]cosct 1, 

y = [ R  + a ( a l ) c o s a 2 l s i n a l ,  z = b ( a l ) s i n a  2, 

a ( a l ) = r  + 2 ( A - r ) a l / z c ,  b ( a l ) = r  + 2 ( B - r ) a l / ~ .  

+ at the edges of  the element. The solid curves are associated Figure 1 shows the distributions of  the stresses a~- v and a,~ 

with the edge c~ t = ~r/2, and the dashed curves with the edge c~ 1 = 0. The problem is solved for R = 500, r -- 100, A = 

I00, B = 200, h = 5 (mm), and N = 8. 

The results of  solving two problems are given below in the geometrically nonlinear formulation. In one of  them we 

consider the deformation of  a conical shell of  elliptical cross section, whose centroidal surface is formed by moving a radial 

line segment PN passing through a point P on the z axis and through a point N around an elliptical path with semiaxes A and 

B (Fig. 2). The small base of  the cone is also an ellipse with semiaxes a = XA and b = XB, where X = c/(1 + c), c = PO, 

and 1 = OQ. The expressions for the Cartesian coordinates of  points of  the centroidat surface of  the shell have the form 

a I + c 2 a l  + c cz 2 a l  a2  
X = A ~ s i n a  ; y  = B ~ c o s  ; z = a l ;  (0  ~ ~ l; 0 ~ ~< 2~r).  

The shell is loaded by an internal pressure q = 1.5 MPa. The edges of  the shell are rigidly fixed. The problem is 

solved for E = 70 GPa, /z  = 0.3, A = 450, B = 275, c = 500, 1 = 600, h = 2.5 (ram), and N = 6. 

Table 1 gives the values of  the normal stresses o~,~ for three approximations s for o~ 2 = 0 and c~ 2 = 7r/2. The values 

of the stresses on the outer surface are indicated in the numerator position of each entry in the table, and their values on the 

inner surface are shown in the denominator position. It is evident from the table how the nonlinear solution (s = 3) differs from 

the linear solution (s = 1). 

In the second problem we consider the geometrically nonlinear deformation of  a cylindricai tank with an ellipsoidal 

bottom fitted with an off-axis (nonpolar) branch pipe (Fig. 3). 

The structure consists of  four shell elements: 

1) an axisymmetric cylindrical shell 

x = A s i n a 2 ;  y = A c o s a 2 ;  

z = c t l -  L; 

0 6 a I ~< L; 0 ~< a 2 ~ 2:r; 
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TABLE 1 

2 

0 
2~ 
7 

s = l  
-10,404 

6,t20 

-0,372 

Small base of cone 

~,~,. t0 -2, MPa 

i 4,-3~ l 
/ 8,614 / 

s = 3  
-7,4t1 / 
4,898 
8,544 
-1,183 

Large base of cone 

~,~. 10 -2  MPa 

s = l  I s = 2  s = 3  
-%293""~ I ' ---7,u~,9 - - - ' - = Z - g ~ - - -  
~ _  ~ _ _  8,706 
4,4) 4 t ~,v/~ -~.ga~g ........ 

................. 2,385 [ t,987 1,995 

z l  

i 
Fig. 3 

2) an ellipsoidal shell of  revolution 

x = A cos a l  s in  a 2 ;  

y=Acosalcosa2; z = B s i n a t ;  

0 ~ ct t ~ arcos(a/A); 

0 <~ a 2 <~ 2 x ;  

3) an ellipsoidat shell with an off-axis opening, where the projection of this element onto the plane perpendicular to 

the axis of  the structure forms a region bounded by two nonconcentric circles, 

x = l a  + a t ( b  - a ) l s i n a 2 ;  y = [ a  + a I ( b  - a ) l c o s a  2 + ald; 

z=B,/A2 x 2 , ~ z ;  0 -< a i ~ 1; 0 ~ a 2 -< 23; 

4) a cylindrical shell, one edge of  which is the line of  intersection of an ellipsoid with a cylinder 

x=bsina2; y=d+bcosa2; z = ( l - a ! ) B ~ + a l H ;  

0 ~< a I ~< t ;  0 ~< a 2 ~< 2s~; 
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TABLE 2 

Point 
s = |  

4,t41 
P -3,491 

1,0~ 
Q -1366 

s = 2  

-3,055 
-0,977 

s = 3  s = l  
~,~ ~,~4o l 

-3,036 -1,248 
1,1~ 2,250 

-0,945 1,.533 

% 

s = 2  s = 3  

~ , l O l  ~,IN4 
-- 1,069 - 1,076 
1,878 1,856 
1,383 1,382 

s = l  

4,207 

3,418 

s = 2  

3,269 

2,674 

s = 3  

3,196 

2,614 

Linear solution 

.t,_ 

/ 
^_  
%~= -&,4gt 

Nonlinear solution 

%~s, ss8 

~̂ = 1,165 / 

+ I \l; 
%=-3,o30 

Fig. 4 

Here A and B are the semiaxes of  the ellipsoid of revolution, L is the length of  the cylindrical part, a is the radius of  the 

dividing parallel between regions 2 and 3, b is the radius of  the cylindrical branch pipe, d is the eccentricity, and H is the 

distance from the edge of  the branch pipe. 

The ta1~k is loaded by an internal pressure q, and the edge of  the cylindrical part is rigidly fixed: up = u T = w = v~ = 

0. Applied to the edge of  the branch pipe is a uniformly distributed axial force of  intensity 

Qo = q b / 2 - - Q  =Qo; U = w = v  =O. 

Calculations are carried out for the initial data A = 500, B = 300, L = 400, a = 450, b = 100, d = 200, H = 500, 

h = 2.5 (mm); E = 100 GPa, ~ = 0.3, q = 2.5 MPa, and N = 4. 

Table 2 shows how the values of  the dimensionless stresses &w and 6rT normal to the respective lines a 1 = const and 

a 2 = const and the dimensionless bending deflection "# change with the order of  approximation s. Here 

b,, = ~ / ~ o ,  % = % / %  " = ~ / ' o ,  

qA 
a° = h ' wo = (1 /~ 

The values in the table are given for bottom points P and Q situated in the symmetry plane of  the structure (see Fig. 

3). The stresses on the outer surface are given in the numerator position of  each entry, and the stresses on the inner surface 
are given in the denominator position. 
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Figure 4 shows the distribution, along the bottom generatrices situated in the symmetry plane, of the dimensionless 

stresses %+ obtained from the solution of the problem in the linear and geometrically nonlinear formulations. The superscripted 
minus sign corresponds to the inner surface of the bottom (dashed curves), and the superscripted plus sign corresponds to the 

outer surface (solid curves). 
The results demonstrate the efficiency of the proposed approach for the calculation of shells of complex geometry in 

linear and geometrically nonlinear settings. 
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