
NONAXISYMMETRIC TEMPERATURE AND THERMOSTRESS 

IN ISOTROPIC AND CURVED ORTHOTROPIC LAYERED 

SHELLS OF REVOLUTION 

V. G. Savchenko UDC 539.374 

The use of composite materials in layered structural elements requires effective numerical methods of studying the 

temperature field and thermostress in these materials under thermal and mechanical loads. Methods of calculating the 

thermostress in bodies of revolution have been worked out quite extensively for inelastically deformable isotropic materials [1, 

7, 10] for both axisymmetric and nonaxisymmetric loads. Methods of studying the thermostress in curved orthotropic bodies 

of revolution have been considered in [6, 8, 9] for axisymmetric loads. In the present paper, we propose a method of calculating 
the temperature field and thennostress in isotropic and curved orthotropic bodies of revolution in the case of nonaxisymmetric 

thermal and mechmaical loads. The method is based on the so-called semi-analytical finite element method [5, 10] in which the 

displacement, temperature, and external loads are written as Fourier series in the azimuthal coordinate and the finite-element 

approximation is used to obtain the unknown displacement and temperature amplitudes in the radial section of the body. 

1. Statement of the Problem• We consider a layered (compound) body of revolution of arbitrary shape consisting of 

inelastically deformable isotropic at~d elastic curved orthotropic materials. We assume ideal thermal and mechanical contact on 

the surfaces between the layers. We use cylindrical coordinates (z, r, ~). 

The body is assumed to be in a natural state of stress when the temperature field is T0(z, r). The body is subjected to 

nonaxisymmetric time-dependent heating by a medium with temperature 0(z, r, 9o) and bulk K(K z, K r, K~) and surface"~n(tnz, 
• ~ o %o) over the remaining part of the surface. tnr, q~,) loads act over part 12 t of its surface• The displacement is gwen as u 0(Uz, Ur °, 

The tlaennal and mechanical properties of the body are assumed to be temperature dependent. In addition, one of the 

principal directions of the elastic and thermal conductivity tensors of the anisotropic layers is in the direction of the azimuthaI 

coordinate ~, while the other two mutually perpendicular directions lie in a radial section of the body. The angle between these 

directions, and the coordinate axes z and r is different for each layer and depends on its structure. 

The above problem reduces to solving the heat-conduction problem for the temperature of the body at a set of times and 

then calculating the resulting stress and deformation of the body. 

2. Determination of the Temperature Fields. The deterlnination of the thne-dependent temperature field in an 

anisotropic body of revolution under nonaxisylmnetric heating reduces to the integration of the differential equation 

OT cp---~ = - d iv~  (2.1) 

subject to the following initial and boundary conditions: 

T=T,(z,r) at  t = 0 ,  (2.2) 

"*'* (2.3) nq=a(T-O) on Y~, 

where ~(qz, %, %) = - A- grad T is the heat flux density vector in the body, A (Xij) is the themlal conductivity tensor, p is 

the density of the material, c is the specific heat, c~(z, r) is the heat transfer coefficient, and ~' is the outward normal to the 

surface of the body E. 
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For an isotropic material Xzz = )'~r = )'~,~, = X, ~ r  = )'z~, = )'~, = 0. For an orthotropic body the thermal 

conductivities are determined by the principal values ),~,a and X#~ of the thermal conductivity tensor with the help of the 

transformation equations between the coordinate system o~,/3 and z, r: 

2 =2~C0~2V + )~s in  2v, 

2,~ ='1,,  sin~v +'la~ c°s 2v' (2.4) 

1 =() ,  -1~p)s invcosv ,  2 =,,t = 0 ,  

where v(z, r) is the angle between the principal axis of anistropy c~ and the axis z of rotation symmetry of the body. 

Writing the thermal conductivities kij in the foma )'ij = Xij°( 1 - ~i7), where ),ij ° are the temperature-dependent parts 
of the thermal conductivities, the components of the heat flux density are 

" o OT ~.o 0 T ,  q = -  + q : ,  

- /~o ~ o OT, o q,= + +q, '  (2.5) 

where 

q , = _ , ~ o  1 0 T  a 

~_~.o cot aT +~.o o~ 07", 
q , -  ,, ,z OZ :, x~ Or 

~r "" Oz " ' ~ r  ' 
(2.6) 

= ~ l o  w r  1 aT 
q~ ~ ~ r Op" 

Assuming that the nonlinear terms qz °, qr a, and %0 are known for the preceding instant of thne or from the preceding order of 
approximation, the heat-conduction equation (2,1) can be solved by iteration. 

We multiply die heat-conduction equation (2.1) and the boundary conditions (2.3) by the temperature variation and 

integrate the first expression over the volmne of the body V and the second over the surface E. Adding the two results, using 

the Ostrogradskii-Gauss formula and (2.5), and assuming that a certain fixed instant of thne the quantities c, p, c~, 0, qz a, qr o, 

and %0 are known fUllCtiop, s of file coordinates, we obtain a variational equation for the three-dimensional heat-conduction 

problem in the case of a curved orthotropic body of revolution. 

The dilnensionality of the heat-conduction problem is lowered by assuming a solution ha the form of a trigonometric 

series in the azimuthal coordinate 

T ( z , r , ~ o , t ) =  ~ T , . ( z , r , t ) c c ~ m ~ o ~  % ( z , r , t ) s i n m ~ o .  (2.7) 
m ~ O  m = |  

The temperature 0 of the surrounding medimn and the additional terms qz a, q a, and q,a are alSo written as trigonometric series 

q~,q , ,  - {O ,q: ( ,,~, ( . . . .  
o o "~ ~ ~ ( 2 . 8 )  

whose coefficients can be found from the known relations of functional analysis [10]. 

Substituting (2.7) and (2.8) into the variational equation, assuming that the function 0T/0t is held fixed and that the heat 
transfer coefficient o~ does not depend on the azhnuthal Coordinate, and proceeding as in [9], we obtain the following equations 
for the temperature amplitudes: 

( 1 + 5 o , , ) x 5 I  = 0  ( m = 0 , 1  .... ), 

~ 7 - - 0  (m =1,2 .... ), 
(2.9) 
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where 

1 0 

F 

+ a ° o r  or  o r  o r  
,r OZ Or + c p - ~ T - q ~ C m )  Oz 

- q~'(~) Or + 

(2.10) 

and born is the Kronecker delta. The integration in (2.10) goes over the area F of a radial half section of the body and along its 
contour S. 

An expression for ]-m can be obtained from (2.10) by replacing Tin, 0ra , qz °(m), qr a(m), and q~,O(m) by the corresponding 

quantities with overbars and by replacing m by - m .  

The three-dimensional heat-conduction problem therefore reduces to a series of two-dimensional problems for each 

harmonic of the temperature field. In each approximation and in each time step, the problem reduces to a heat-conduction 

problem for a body of revolution whose thermal characteristics are independent of the azimuthal coordinate and which is 

subjected to an additional heat source whose intensity is determined by the functions *0ijTxij ° and by the temperature gradients 

obtained in the preceding approxflnation (or in the preceding time step). 

The finite element method is used to determine the unknown temperature amplitudes in (2.7). The finite elements are 

chosen to be triangles in the radial section of the body. The radial half section is split up into M triangular elements by N nodes. 

We assume that the expansion coefficients of the temperature in (2.7) vary linearly within each element. 

Replacing the integration over the area F and along the contour S of the radial half section by the sum of integrals over 

the triangular elements and along their sides, writing the derivative 0Tm/0t in terms of finite differences, and proceeding as in 

[4], we obtain relations for the unknown temperature amplitudes at the corners i, j, and k of a triangular element. Then solution 

of the problem by the explicit difference scheme gives recursion relations for the coefficients T m in (2.7) at time t + At in terms 

of the coefficient at time t if we assume that in each element oNy the side ij lies along the contour of the body: 

A t  ~ { ( ¢ ) 0 ( ¢ ) + B ( ¢ ) 0 ( ¢ ) _  r , ( t + a t ) = r , ( t ) -  ~, E A. . ,  , ,  . , ,  

E <cp > H (¢) ¢ffi~ q i 

(q) T t )  D (q~ + rn 2 (q) + B!q . ) lT  . ( t )  - -[Dl/)+m-2,.~r(q). +At  t ] mr( - 1  ,j N, 1 ,, =; 
(2.tt) 

--[D(e)'--,k +m2NC')-',k l T k ( t )  + L , t ¢ ) ( q ~ ) q +  

+ el q>(q?>,-,,,Rl,'<q°>, (i=1,2 ..... u).  

The calculation of the temperature field will be stable if the following condition holds on each node: 

M 

X (co>o'S" 
f - I  A t .  rain{ u } 

E .l°(+' +,~u~;'  + A I ? I _ , ,  
¢ - !  

( i = 1 , 2  . . . . .  N ) ( m = 0 , 1  . . . .  ). (2.12) 

Because the integration step size At of the heat-conduction differential equation (2.1) is small, the additional terms qz °, 

qr °, and %° averaged over each element can be calculated using the temperatures found in the preceding time step. 

Relations similar to (2.11) can be found for the coefficients T m. 
Once T m and Tm have been found for all harmonics, the temperature at t + At can be calculated using (2.7). 
3. Determination of the Stress and Deformation. The nonaxisymmetric stress and deformation of layered bodies of 

revolution will be calculated using the Lagrange variational equation 

f %6%dv-f ~ 6 ~ d V - f  r ~ d X = O .  (3.1) 
t 
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The equation of state for an inelastically deformable isotropic material will be described ha terms of defonuations of 

elements of the body along small-curvature trajectories [10]. The essence of this method is the assumption that the relations 

between the stresses and deformations in the l-th loading step are in the form of the generalized Hooke's law for an isotropic 

and homogeneous body with additional terms taking into account the departure of the material from an elastic body. 

In the case of a curved orthotropic material in which one of the principal axes of anisotropy is along the coordinate % 

and the other two axes lie in the z, r plane, the relations between the deformations and the stresses can be written in the form 

[21 

= a u ~ .  + a't2%, + at~%~+ at4 o~, + er 

2e = a i ,  u . + a ~ % , + a ~ % , + a ~ e  + 2 e r ,  (3.2) 

where eli z = cqjT(T -- T o) is the thermal deformation, and the coefficients, aij', c~iJ are expressed in terms of the mechanical 

characteristics of the material and the coefficients of themaal expansion along the principal directions of anisotropy c¢,/3, ,:, and 

the angle v. 

Solving (3.2) for the components of the stress and writing the coefficients in the form Aij = Ai3°(1 - wij), where A~j ° 

is the average value of the coefficient and Aij°%j determines the position dependence, the relations between the stresses and 

defornaations can be written as 

where 

_ A  ° ~ r g ~  13 ~zz 

o + o + 2  ° e  + Alzerr Al~e~v At~ zr - ~*~' 

+AO ~ + o + 2 A ~  

+ALe  + A ° ,  ,+ 2 A ° e  - a " ,  

~ __A o e + o +A~4%~ ' -o '~ ; ,  t4 , ,  A ~.4 er r + 2 A °44 e, , 
(3.3) 

o"*-..-At.°er..+A°t2er +AOer., ~,,+2A°4e~' +AOooff(e _ e r  

E T +A~2c°u(err- rr) +A~3cOt,(e,~-e;,) +2A~4co14(e -e ~ ) 
(3.4) 

• , ,  °~¢ °~°  , , ,  

Or** 0 2 0 

We assume relations between the stresses and deformations of the form (3.3) for both isotropic and curved orthotropic 

materials. For an elastically deformable isotropic material we dlen have [10] 

A~-- o _ O=2Go +2o A~=A~--A2~ A22_A, 3 , o =20, 

A°44--Ass° __A~_O _Go , A~ 4__A~o = A  o34=Aoat,=O, 
t (3.5) 

t~:~=2G ~ Ake(")+2Goe~le~t+(Ker+31oO~eo)~f ~ ,, t j 

Hence a single algoritl~n can be constructed to determine the thermostress in isotropic and curved orthotropic layered bodies 
of revolution. 

Substituting (3.3) into the variational equation (3.1) and holding that the additional stresses aij** are constant, we obtain 

the following variational equation for the stress and deformation of a compound body of revolution: 

I_(A o 2 o 2 +A~3e2 )+2(AO4e~r+AO 2 +Ae, e ~ )  + 
V 

+A°t2e e +A~3e~,%~+A°e ~ +  
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+ 2(A~4e . +  A ° , +  A~4%9)e,,+4A°sre, ge9 24 I~ 

• . _ . .  ; ;  - 
- -  grz t~zx O ~" - -  (7 e - -  20"  ~zr 2 0 " *  e - -  

r r  r r  ~ 9 9  z ~  z 9  

(3.6) 
- 2a; '9~ ,91rdzdrdT '  - J ( K u  + K u + K % ) r d z d r d T ,  - 

V 

- f  (t u +t u +tgu,)rdsd~o}=O. 
I t 

This variational equation is usually solved by the method of successive approximations, in which the additional terms aij** are 
calculated using the results of the preceding approximation or preceding load step. 

As in the case of the heat-conduction problem, the solution of (3.6) will be constructed in terms of trigonometric Fourier 

series. The unknowns are taken to be the displacements and they are written as trigonometric series in the azimuthal coordinate 

u ( z , r ,~o , t )=~ u(=)(z ,r , t )cosmlo+~ u(/"(z,r,t)sinm~o, (z,r) ,  
m = 0  m = l  

(3.7) 

u~ (z ' r '9 ' ' t )= ~ u( ' ) (z ' r ' t )s inmg'  + u('~)(z'r't)c°srn~°'9 
/ ' n= l  m ~ 0  

whose coefficients will be determined using the finite element method. 
To obtain the solution of the variational equation (3.6) in the series form (3.7), the components of the surface tai and 

tile volume K i forces, and also the function aij** are represented in series form analogous to (2.8). Then, substituting these 
series, (3.7), and the expressions for the components of the deformation obtained from (3.7) using the Cauchy relations into the 

variational equation (3.6), we obtain the following equatiom for the displacement amplitudes: 

(I + c~o.) Jrc5 E,~ = O, 

(l+C~om)~rc~ =0 (m=O,l .... ), 
(3.8) 

where 

E,~:f[ l (Aoe(=~z, l  ,, +A° e~,~)2+A°e;:'2) 33 

+2(A~4e~7)2+AOsae(,,)z + , ,  A66ergo (,~)2)+. 

+ A ~ , ( 7 ' , ( ' )  + A~,e ' "e (" '  + A~3,)7) ,  '°'' + rr  ~ 9  950 

+ 2(A~4e(") + A:4e(7) + A°e(,'~))e ( ' ,  + 4A ° e,-,,e(=) _ 
~2 z r  56 z ~  r ~  

_ (o."('a)e(m) + o"( '~)e( ' )  + o"(")e( '~))  + 2cr;~('~)e (") + 
" Z z  ZZ z z  r r  9 9  ~@ Z r  

+ 2a"( '~)e (m) + 2c r " (=)e ( ' ) ) ] rdzdr  - 
z ~  ~9  r ~  r ~  

- -  f ( g { m ) u  ( m )  + g ( r m ) u [  m )  + g ( ' ) u ( = ) ) r d z d r  - 
z • • 9 

F 

- f (t(=)u (=) + t(=)u (=) + t("lu(m))rds; 
- stz z r t l9  9 

$ 

OU (m) OU (rn) 
e ( " ) -  ' ~ ( " ) =  " , ~ ( = ) = l  ( .  (") + m u ( ' ~ ) ) ,  

z z  ~ Z  ~ r r  O Z  @9 F " u r  V 

OU(rn) 
e ( , , )= l  Ou(=) Ou(") 1 m ) ( , _ . : , )  

• , g " + - G U  ' , ,  0 z  r ' 

(,~) 1 ~) U ( " )  
e'9 = i (  0;  - m u ( " + l u ( m ) \ r ,  2 , ] ( m = 0 , 1  ... .  ). 

(3.9) 

(3.1 o) 

The E m can be obtained from (3.9) and (3.10) by replacing the quantities without overbars by quantities with overbars, and by 
replacing m by - m .  

Therefore, linearizing the constitutive relations of thermoplasticity for an isotropic material and representing the relations 
between the stresses and deformations in the form (3.3), the solution of the nonaxisymmetric problem for the stress and 
deformation reduces to the calculation in each approximation of the extremum values of the functional (3.9) with respect to 
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~14Pa 
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O, O25 e 

Fig. 1 

coefficients of  the series (3.7), which vary only in the radial section of the body of revolution. The variational equation for E o 

describes the axisymmetric stress without torsion, while the equation for Eo describes the stress with torsion. 

The finite element method was used to find the unknown deformation mnplitudes. As in the solution of the heat- 

conduction problem, the finite element in the (z, r) plane is chosen to be a triangle in which the coefficients of the series (3.7) 

vary linearly. 

Application of  the finite element reduces the variational equations (3.8) and (3.9) in each approximation to a system of 

3N linear algebraic equations for the coefficients of  the series (3.7) at the comers of  the triangular elements: 

M 

X BZi(q} u 
q=l 

M 

E ari(q) u Be ~c=Dri ' 
q=t (3.11) 
M 

X B~,i(q)u #c ~c = D~l 

( / = 1 , 2  . . . . .  N; fl=z,r,~o; c = i , ] , k ) ,  

where the series are summed over the repeating indices/3 and c over the values indicated in the parentheses. 

The coefficients of  (3.11) are not written out explicitly because of their complexity. They can be obtained in analogy 

with [5, 101. 

Solving the system of equations (3.11) for the coefficients u~c, ~5~c (~3 = z, r, ~,; c = i, j, k) for each harmonic m, (3.7) 

and (3.10) are used to calculate the deformations and displacements at all nodes of different radical sections of the body of 

revolution. Knowing the components of the deformation and the functions aij** obtained in the preceding approximation, the 
stresses (3.3) can be calculated. 

4. Example.  As an example, we determine the time~ependent temperature field and stress in a bilayered cylinder whose 

radial half-section is shown in Fig. 1. We assume convective heat exchange with the surrounding medium. The inner layer of 

the cylinder is isotropic and the outer layer is orthotropic in cylindrical coordinates. At t = 0, the cylinder has temperature T o = 

20°C. It is then subjected to convective heat exchange with a medium of temperature 0 = 500(1 + 0.1 cos ~)°C through the 

cylindrical surface and with a medium of constant temperature 0 = 300°C through the end of the cylinder at z = 10 cm. The 

end z = 0 is thermally insulated. The heat transfer coefficient o~ between the surrounding medium and the material of the 

cylinder is assumed constant and equal to 0.1 W/cm2-K. 

The thermal characteristics of the isotropic material are Xzz = Xrr = X~,~ = 0.02 W/cm-K, co = 2J/(cm3"K), X~z r = 

Xrr r = X~,~, T = t.1 " 10-5°C -1. Stress-s t rain diagrams are shown in Fig. 1 for two values of the temperature (T = 20 ° for 

curve 1 and 500°C for curve 2). The Poisson coefficient is assumed to be independent of temperature and equal to 0.32. The 
thermal and mechanical characteristics of the orthotropic layer are 
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Z~O 

~, MPa 

/5 

J 

- 15  
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Z,5 r, em 2 z~ z, cm 

Fig. 2 Fig. 3 

i==0,233 W/cm.K, J l  =0,133 W/cm.K, 2 =0,333 W/era.K, 

cp = 4,41 J / (  cm 3 . K), v z r = 0,22, v=, = v r '  = 0,022, 

E = E  =1,4"104 MPa , E =7 .104  MPa, a = 0 3 . 1 0 4  MPa, 

G = G  =1,5.10 4 MPa, a r~=a  rr,=l,1.10-51/°C, a r¢~=2,2.10-51/°C. 

The calculated temperature and stress fields are shown in Figs. 2 and 3. 

Figure 2 shows the radial dependence of the temperature near the insulated end of the cylinder and in the section z = 

8.5 cm for 30 and 150 seconds of heating and for two values of the azimuthal coordinate: ~ = 0 (solid curves) and ¢ = ~r 

(dashed curves). To test the metbod of solving the heat-conduction problem, two additional calculations were carried out: first, 

the thermal conductivities kij ° of the anisotropic layer were assumed to be the same in all directions and equal to the average 

value, while the direction dependence was taken into account by the functions wijTkij°; second, the kij ° were assumed to be equal 

to the largest of the kij °. In all three cases, the calculated temperatures were the same to within 1-2 degrees. 

The radial dependence of the stress for 150 sec of heating is shown in Fig. 3 for ~ = 0 and z = 8.5 cm for the elastic 

solution (solid curves) and the solution taking into account the inelastic deformation of the inner layer of the cylinder (dashed 

curves). The calculations show that the nonaxisymmetric temperature distribution leads to stress variations of 5-7% in the outer 

layer. The maximum values occur at ,¢ = 0. Calculations using the average values of the thermal and mechanical characteristics 

of the outer layer predict stresses that are much too low. 
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