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Abstract. Identification of hypoperfused areas in myo- 
cardial perfusion single-photon emission tomography 
studies can be aided by bull's-eye representation of raw 
counts, lesion extent and lesion severity, the latter two 
being produced by comparison of the raw bull's-eye data 
with a normal data base. An artificial intelligence tech- 
nique which is presently becoming widely popular and 
which is particularly suitable for pattern recognition is 
that of artificial neural network. We have studied the 
ability of feed forward neural networks to extract 
patterns from bull's-eye data by assessing their 
capability to predict lesion presence without direct 
comparison with a normal data base. Studies were 
undertaken on both simulation data and on real stress- 
rest data obtained from 410 male patients undergoing 
routine thallium-201 myocardial perfusion scintigraphy. 
The ability of trained neural networks to predict lesion 
presence was quantified by calculating the areas under 
receiver operating characteristic curves. Figures as high 
as 0.96 for non-preclassified patient data were obtained, 
corresponding to an accuracy of 92%. The results 
demonstrate that neural networks can accurately classify 
patterns from bull's-eye myocardial perfusion images 
and detect the presence of hypoperfused areas without 
the need for comparison with a normal data base. 
Preliminary work suggests that this technique could be 
used to study perfusion patterns in the myocardium and 
their correlation with clinical parameters. 
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I n t r o d u c t i o n  

Bull's-eye representation of single-photon emission to- 
mographic (SPET) reconstructions and subsequent corn- 
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parison with a normal data base is a commonly used 
method for aiding in the identification of hypoperfused 
areas in myocardial perfusion studies [1, 2] and has been 
shown to increase the diagnostic accuracy of the investi- 
gation significantly [3]. The technique involves the pro- 
duction of three parametric images comprising a map of 
the "raw" myocardial perfusion count distribution to- 
gether with "extent" and "severity" maps of any detected 
lesions. 

Another analysis technique which is presently be- 
coming widely popular, and which is particularly suit- 
able for the pattern classification necessary in work such 
as this, is that involving artificial neural networks 
(ANNs). These form a branch of artificial intelligence 
which dates back to 1949. Development of neural com- 
puting techniques since the middle 1980s has been ex- 
tremely rapid [4, 5], with the current decade witnessing 
an explosive revival of research [6, 7] due in large part to 
the availability of low-cost, high-speed digital computers 
on which to simulate ANNs [6]. Most of today's re- 
search into ANN applications is undertaken on conven- 
tional computers using software simulations with hard- 
ware accelerator boards [8]. 

ANNs are systems which are trained to recognise 
similarities in patterns. They learn by example. Contrib- 
uting to their popularity is the possibility that, because 
the pattern need not be defined, they may provide more 
information than existing techniques. 

There are numerous types of ANN structures and 
learning strategies. One of the more straightforward de- 
signs is the feed forward neural network (FFNN). This is 
a network of neural nodes arranged in input, hidden and 
output layers which are fully connected, as illustrated in 
Fig. 1. Their operation is such that a data pattern, ap- 
plied at the nodes of the input layer, will produce a pat- 
tern at the nodes of the output layer, determined by the 
weights of the connection functions. They can be trained 
by the application of a number of input-output pairs, 
constituting a training group, and the adjustment of the 
connection weights in accordance with learning rules 
until a required output pattern is achieved. The applica- 
tion of a complete training group constitutes an epoch. 
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Fig. 1. A three-layer ANN showing the nodes as ellipses and the 
connecting weights as lines. The input, hidden and output layers 
are shown from left to right, the number of nodes in the hidden 
layer being defined as the geometric mean of the input and output 
nodes 

During learning the training group is applied repetitive- 
ly, the example inputs are presented to the network and 
the resultant and desired outputs are compared. An error 
term is then calculated which is used to alter network 
weights. Training continues until the network error is re- 
duced below an output threshold, typically 0.1, termed 
convergence [8]. 

Four learning rules were available for this study, com- 
prising: standard back projection, stochastic back projec- 
tion, weigend weight eliminator and quick prop. The 
standard back projection assesses the gradient descent of 
an error surface. The errors are summed for every pat- 
tern in an epoch and then the weight changes are made 
based on this sum. Stochastic back propagation imple- 
ments the weight changes after each pattern presenta- 
tion. The weigend weight eliminator is similar to sto- 
chastic back propagation but also attempts to decrease 
the values of less important weights during training. 
Quick prop starts by using standard back propagation 
but then attempts to calculate the position of the error 
function minimum and jump straight to it. 

The accuracy of the trained ANNs can be tested using 
new input patterns, constituting a testing group, and 
comparing the expected output pattern with that pro- 
duced (guessed) by the ANN. One of the features of 
ANNs is their ability to generalise. This ability to learn 
and to generalise means that neural networks have the 
potential for solving image processing problems which 
are not readily tractable using rule-based conventional 
classifiers [7]. 

A number of articles have been written describing the 
application of ANNs in the medical field [7-14]. Specif- 
ic examples in the analysis of non-imaging data have 
been discussed [15-21]. Those described in the imaging 
field sometimes rely on preclassification of the image 
pattern into numbers or symbols for input into the neural 
network, either by human interpretation [22-27] or by 
computer [28-30]. Thus neural network applications are 

starting to appear in the radiology literature and have 
even been used instead of conventional computer pro- 
grams to reconstruct SPET images [31]. Few successful 
examples where the image is treated as an input to the 
network exist, however. One reason is the large volume 
of data in such images. Specific examples in imaging 
where preclassification is not undertaken tend to have re- 
stricted input data, either by using a very limited amount 
of information in a small coarse matrix [10, 32] or by 
human prelocalisation of a simulated lesion on SPET 
[33, 34]. Nuclear images, however (especially SPET), 
provide a good basis for testing the concept [35] and 
work of this nature is now starting to appear [36]. 

In terms of nuclear cardiology, a recent article re- 
viewed ANN application to thallium-201 planar data. 
Best performance yielded an overall accuracy, compared 
to visual interpretation, of 88.7% on stress data. The best 
results were obtained for predicting the presence or ab- 
sence of a defect, giving a sensitivity of 93% and a spec- 
ificity of 83%. The same network trained by comparison 
with angiography gave only a 67% agreement, reflecting 
the fact that the input data are derived from a physiologi- 
cal variable and the output data are derived from an ana- 
tomical variable [37]. 

In terms of SPET bull's-eye myocardial perfusion im- 
ages, of particular interest to the studies presented here, 
recent work has described image interpretation using le- 
sion "extent" images as input to the ANN and compari- 
son with angiographic lesion localisation to within the 
three main coronary arterial territories. This work gave 
an overall performance of 77% compared with human 
interpretation [35]. A sensitivity of 84% was achieved 
by comparing the ANN interpretation of clinical myo- 
cardial perfusion investigations with angiography [38]. 
Identification of abnormal vessels in single-vessel dis- 
ease resulted in 100% accuracy, whereas in multiple- 
vessel disease the accuracy dropped to 80% [37]. 

We have previously presented "work in progress" [39, 
40] which demonstrated the ability of FFNNs to discrim- 
inate ischaemia and infarction in the coronary vessel re- 
gions of the LAD, RCA and LCx with both a sensitivity 
and a specificity of 84% for mixed multivessel disease. 
When this "extents" FFNN was cascaded with our pre- 
liminary 93% accuracy detection FFNN, we obtained an 
overall "extents" accuracy of 91%. 

Currently there are few theories governing the best 
way of constructing a network for a given problem and 
networks must be designed by trial and error. Careful 
pre-processing of the input data can dramatically reduce 
the number of input nodes, and so reduce the network 
size. Conversely, poor pre-processing can remove infor- 
mation required by the network to converge and so in- 
crease the training overhead. Increasing the number of 
input neurons may make the network learning task easi- 
er, but will also increase the number of network weights 
which must be set. An optimum training set is thought to 
be one containing many more examples than the number 
of network weights, and so coding strategies must not 
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increase the n u m b e r  of weights s ignif icant ly  if  they are 
to be effective. Once the input  and output  layers have 
been defined, the n u m b e r  and size of the h idden layers 
must  also be specified. Too few hidden nodes  will  inhibi t  
learning,  too many  will  allow the network to learn each 
t raining pattern individual ly  and no general isat ion will  
take place. Again,  no real theories exist as to the n u m b e r  
of nodes most  suited to a p rob lem of any given complex-  
ity [7]. Similarly,  the total error al lowed or tolerated in 
the t ra ining phase affects the performance  of  the net-  
work. The network can also be overtrained by the speci- 
f ication of a small  total error in the t ra ining phase [36]. 

This report describes a series of studies under taken  to 
evaluate the feasibi l i ty of us ing FFNNs  to aid in the in- 
terpretation of  SPET myocardia l  perfus ion images,  us ing  
"raw" bul l ' s -eye  images without  direct compar ison  to 
normal  data. This  has been  done using raw count  data as 
input  and a de terminat ion  of normal i ty  as output  deter- 
mined  by compar i son  with the normal  data base. The lat- 
ter thus provides a consis tent  pattern with which to com- 
pare the behaviour  of the neural  network, which was 
studied by  varying the learning rule, te rminat ion  error, 
architecture, number  of inputs and number  of data sets in 
the t raining group. 

Materials and methods 

The ANNs were simulated on a digital computer using a commer- 
cial package (NcuralDesk, supplied by Neural Computer Scienc- 
es) comprising software running under Microsoft Windows on a 
486DX platform and incorporating an accelerator card (Neu- 
Sprint). 

Fig. 2. The matrix imposed on the bull's-eye representation of 
myocardial perfusion scintigraphic data. Shown arc the 24 input 
segments used in this study arranged anti-clockwise and concen- 
trically from the apex, in the middle, to the base, at the periphery 

The input data to the FFNN comprised raw counts from bull's- 
eye images produced by nuclear medicine acquisition and analysis 
software on a matrix of 15x40 pixels. This matrix was coarsened 
to 3×8 pixels as shown in Fig. 2 by summing counts over 5x5 pix- 
el squares. It was felt that 24 values, rather than 600, would be the 
maximum that could practically be used to represent each bull's- 
eye image in this particular study. A subset of these 24 segments 
was also considered, comprising the eight segments of the middle 
circle. The input layer of the FFNN was designed so that each 
node would represent one pixel of the coarse matrix. The output 
layer consisted of a single node with a value coded as 0.99 for an 
abnormal state (lesion present anywhere in the myocardium) or 
coded as 0.01 for a normal state (no lesion present). Unless spe- 
cifically determined otherwise, the architecture of the network 
was designed automatically by the software, which defined the 
number of nodes in the hidden layer as 5 when 24 input nodes 
were used and as 4 when eight input nodes were used. 

The presence or absence of a lesion in a particular segment 
was defined using consistent criteria by coding as abnormal any 
segment that contained a raw count which was below 2.5 standard 
deviations (SD) of the expected mean count, obtained from a nor- 
mal data base. This is the criterion used by Emory University [3] 
and was implemented with the normal data base supplied by IGE 
on their Star family of nuclear medicine computers. This data base 
is supplied on a matrix of 15×40 pixels and was coarsened for this 
study to a matrix of 3x8 to be consistent with the experimental da- 
ta. As is recommended for ROC studies [41], equal numbers of 
abnormal and normal data sets were always used in each training 
group to avoid learning bias. 

Both simulation and patient studies were undertaken to evalu- 
ate the ability of FFNNs to determine whether any segments in the 
myocardial perfusion image were below the threshold of normali- 
ty. 

Simulation studies. Simulation studies were undertaken in order to 
evaluate the behaviour of the FFNNs under different conditions us- 
ing data that could be well controlled. The normal data base for 
stress studies was used as the basis for these simulation studies. 
These data are available as mean counts and standard deviation 
values and these were used to generate simulated patient data sets 
by combination with a set of normally distributed random num- 
bers. Abnormally low counts in single segments were imposed on 
alternate data sets, thus producing alternate normal and abnormal 
data sets. The criterion of an abnormal segment count was one that 
fulfilled the Emory criteria of being more than 2.5 SD below the 
mean count value. These abnormally low segment counts were cal- 
culated by combining the mean count and standard deviation val- 
ues from the normal data base with a set of random numbers uni- 
formly distributed between 2.5 and 5.0. A population of data sets 
was constructed in this way, each set comprising 24 segments, with 
segment number 14 set low in both the training and testing groups. 
Segment 14 was chosen to be consistent with patient data present- 
ed later. 

The following studies were undertaken using: the four learning 
rules of standard back projection, stochastic back projection, we- 
igend weight eliminator and quick prop; terminating conditions of 
both a maximum error of 0.1 and an average error of 0.1; and 100 
testing data sets. The FFNN parameters are summarised in Table 
1. In study 1 the variation in the number of training sets, from 60 
down to 10, was considered, to evaluate the required number for 
optimal training. In study 2 the value of the maximum error used 
as the terminating condition was varied from 0.05 to 0.4. In study 
3 the number of nodes in the hidden layer was varied from 3 to 
12, including a consideration of two and three hidden layers of 
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Table 1. FFNN parameters used in the 
simulation study Study Training sets Threshold Hidden nodes Bad segment 

training/testing 

1 10-60 0.1 5 14/14 
2 60 0.05-0.4 5 14/14 
3 60 0.1 3-12, 5x5, 5x5x5 14/14 
4 60 0.1 5 14/17 
5 60 0.1 5 14, 17/17 
6 60 0.1 5 14, 17114, 17 

five nodes each. In study 4 the testing group was altered so that a 
different segment, number 17, was set low in each abnormal data 
set. In study 5 one segment, number 17, was set low in each ab- 
normal data set in the testing group. In study 6 two segments, 
numbers 14 and 17, were set low in each abnormal data set in the 
testing group. 

Patient studies. The data sets in this part of the study were con- 
structed using images obtained from 410 male patients who under- 
went routine stress and rest 2°1T1 SPET myocardial perfusion in- 
vestigations. Male patients only were used because they formed the 
majority of referrals in the ratio of approximately 8:1. Male and fe- 
male data were not mixed because the normal data bases for each 
are different and additional variability would have been introduced 
into the technique. Currently, we do not have enough data available 
from female patients to undertake a study for that group alone. The 
data were acquired using a step and shoot SPET acquisition proto- 
col of 32 40-s flames on a 64x64 matrix, without zoom, over a cir- 
cular orbit. The stress study was acquired in the morning and the 
rest study 4 h later. Reconstruction was undertaken using a Hann- 
ing prefilter with critical frequency of 0.82 cm -1 and a ramp back- 
projection filter. There was no correction for attenuation. Bull's- 
eye images were constructed according to the technique used by 
Emory University [3]. 

Each image segment was determined as being normal or ab- 
normal by comparing the raw data counts with the counts calcu- 
lated from the normal data base at the same matrix size. The nor- 
mal data were normalised to the maximum count in each patient 
data set and abnormal segments were determined as those seg- 
ments where the counts fell below 2.5 SD of the normal data 
mean count. As well as data groups comprising 24 input values, a 
subset was also considered comprising the eight segments from 
the middle circle shown in Fig. 2. 

The first study involved data sets from both stress and rest data 
in which only one segment was low in each abnormal data set. 
The most numerous segment of this type was number 14 in the 
24-segment group corresponding to number 6 in the 8-segment 
group. The networks were trained using all four learning rules and 
terminating conditions of both 0.1 maximum error and 0.1 aver- 
age error. A jack-knife method was used to allocate the data sets 
between the training and testing groups [22]; that is, two-thirds of 
the data sets in each study population, selected randomly, were 
used for training, while the remaining one-third were used for 
testing. The numbers are shown in Table 2. 

It was not possible to study the behaviour of specific multiple 
lesions in each abnormal data set, such as only two segments con- 
taining low counts, because sufficient relevant data were not avail- 
able. Instead, for the second study, the non-preclassified raw data 
were considered. One hundred data sets were randomly allocated 
to the testing group. For the 24-input study, there was a maximum 
of 250 data sets in the training group for stress and 300 for delay. 
For the 8-input study, there was a maximum of 300 data sets in the 

Table 2. The number of data sets used in the training and testing 
sets in the following combinations. In each set, equal numbers of 
abnormal and normal data sets were incorporated 

Data type Number of input segments Number of data sets 

Training Testing 
group group 

Stress 24 28 12 
8 32 16 

Rest 24 14 8 
8 30 14 

training group for the stress study and 240 for the rest study. A da- 
ta set was regarded as being abnormal if at least one segment was 
below 2.5 SD of the mean count. 

Comparison of the above methods was made on the basis of 
receiver operating characteristics (ROC) analyses [42], in which 
the area under the ROC curve was used as the figure of merit [30, 
43, 44]. The ROC curves were constructed by determining pairs 
of true-positive-ratio (TPR) and false-positive-ratio (FPR) values 
at different output thresholds on a scale of 0-1 [30]. Because 
many threshold values were available for the neural network per- 
formance, a non-parametric evaluation of the ROC area was used. 
Evaluating the threshold values of 0.1, 0.3, 0.5, 0.7, 0.9, 0.95 and 
0.99 provided a good range of TPR and FPR values for plotting an 
ROC curve. The ROC curve for each trained network was con- 
structed by calculating the sensitivity and specificity points, ob- 
tained from the output values of the tested network, for each value 
of the above thresholds in turn. 

The area under this non-parametric ROC curve was estimated 
using the trapezoid rule [33]. The optimal parameters for the cur- 
rent neural network were determined by selecting those yielding 
the highest area under the ROC curves [22]. This varies from 0.5 
when the ROC curve is based on guesswork to 1.0 when the deci- 
sion process is totally accurate. 

Results 

Simulation studies 

T h e  first  s tudy  i n v o l v e d  da ta  in  w h i c h  o n l y  o n e  s e g m e n t  

c o n t a i n e d  a l o w  c o u n t  and en t a i l ed  v a r y i n g  the  n u m b e r  
o f  t r a in ing  sets fo r  the  l e a rn ing  ru les  o f  s t andard  b a c k  

p ro j ec t i on ,  s tochas t i c  b a c k  p r o j e c t i o n ,  w e i g e n d  w e i g h t  

e l i m i n a t o r  and  q u i c k  prop .  A l l  n e t w o r k s  c o n v e r g e d  in 
less  than  600  e p o c h s  and  s h o w e d  areas  u n d e r  the  R O C  
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Fig. 3 a-d. The variation in area under the ROC curve (ordinate) 
for various numbers of data sets in the training group (abscissa). 
The figures show values for the four learning rules of: W = wei- 
gend weight eliminator, So = stochastic back projection, Sd = stan- 

1 oo  150 200 250 

dard back projection and Q = quick prop. All used a terminating 
condition of a maximum error of 0.1. 24 input segments: a stress 
data, b rest data; 8 input segments: c stress data, d rest data 

curves over 0.95. W h e n  more  than 40 data sets were 
used in the t ra ining group, the areas were over 0.97. In 
the case of the three learning rules of  standard back pro- 
ject ion,  stochastic back project ion and weigend weight  
e l iminator  the areas started to decl ine when less than 40 
data sets were used in  the t ra ining group. The quick prop 

learning rule, however, main ta ined  its performance  down 
to ten data sets in the t raining group. Its performance 
was slightly better for the terminat ing condi t ion  of maxi-  
m u m  error compared to the average error. 

The results of  the second study, which investigated 
the various terminat ing condit ions showed areas under  
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the ROC curves of at least 0.99 in all cases. The number 
of training epochs required for convergence increased 
steadily from 120 to 2450, but there was very little 
change in areas under the ROC curves for the different 
terminating conditions. The results of the third study, in- 
vestigating the effects of different network architectures 
defined by the number of hidden nodes, showed areas 
under the ROC curves of at least 0.99 in all cases. There 
was no significant change in the areas under the ROC 
curves, although the multiple layers did require fewer 
epochs to train, 160 for the 5x5 network compared to a 
minimum of 580 for the single hidden layer network. 

In study 4, the network trained in 370 epochs using 
the standard back projection learning rule and when test- 
ed on data with segment 17 set low in each abnormal da- 
ta set showed extremely poor results; the. areaunder the 
ROC curve was 0.5. In study 5, the network trained in 
1920 epochs using the stochastic back projection learn- 
ing rule on data with both segments 14 and 17 set low in 
each abnormal data set. When tested on data with only 
segment 17 set low in each abnormal data set, it showed 
reasonably good results, with an area of 0.94. In study 6, 
the same network tested on data with both segments 14 
and 17 set low in the same abnormal data set showed 
good results, with an area of 0.98. 

Patient studies 

The first patient study was undertaken on data in which 
only a single segment was low in each abnormal data set 
and was carried out for both stress and delay data and 
for 24 and 8 input segments. All of the four studies in 
this category trained well in between 140 and 7480 ep- 
ochs and resulted in areas under the ROC curves of be- 
tween 0.97 and 1.00 in the stress study and between 0.44 
and 0.66 in the rest study for the 24 input segments, and 
of 0.98 in the stress study and 1.00 in the rest study for 
the 8 input segments. 

The second patient study was undertaken on non-pre- 
classified data for both 24 and 8 input segments. The 
training of these networks required various numbers of 
epochs, from less than 1000 to over 200 000, to con- 
verge. The results are shown in Fig. 3. These graphs 
show that, generally, accuracy improved in all studies as 
the number of data sets in the training group increased. 
Good accuracy was obtained for both stress and rest data 
with 24 input segments reaching a maximum of 0.88 for 
stress and 0.85 for delay. Improved accuracy was ob- 
tained, however, when 8 input segments were consid- 
ered, reaching a maximum of 0.96 for stress data and 
0.94 for rest data. In these cases, the figures translate to 
accuracies of 92% for stress and 93% for rest. It is evi- 
dent that, with increasing numbers of data sets in the 
training groups, the FFNNs experienced more difficulty 
in converging and hence some data points in the graphs 
of Fig. 3 are absent, particularly at high numbers of data 
sets in the training groups. 

Discussion 

The simulation studies show that FFNNs can detect low 
count segments in well-controlled data very accurately. 
Networks trained on single lesions gave good results 
when over 40 data sets were included in the training 
group. One learning rule, quick prop, performed well 
down to ten data sets in the training group. A hidden lay- 
er comprising five nodes and a terminating condition of 
a maximum error of 0.1 gave the best results. Under- 
standably, when the network was trained on data sets 
with a low count in one segment and tested on data sets 
with the low count in other segments the results were 
poor. However, accurate results were obtained when the 
number of low count segments in each abnormal data set 
was extended from one to two in each data set. 

With patient data, except for the combination of rest 
data and 24 input segments, accurate results were again 
obtained when the training and testing groups com- 
prised abnormal data sets containing a single lesion 
only. This was true for both 24 and 8 input segment 
groups. The poor accuracy of the 24 input segments rest 
data group was to be expected because the training 
group in this case comprised only 14 data sets whereas 
those of the other combinations contained between 28 
and 32 data sets. For non-preclassified patient data 
which contained numerous different patterns of multiple 
low count segments, good accuracy was obtained for 
both stress and rest in the 24 segments but better accu- 
racy was obtained when only 8 segments from the mid- 
dle circle were considered, giving a maximum area un- 
der the ROC curve of 0.96. This accuracy was obtained 
without any processing of the data to exclude difficult 
cases or to make a more homogeneous group. This find- 
ing indicates that the FFNNs can consistently detect low 
count segments without the aid of a normal data base 
and suggests that an algorithm including more than one 
network working in concert might be useful [39, 40, 
45]. 

The output used in these studies was based, effective- 
ly, on the "extent" images generated for each study. It 
was used to demonstrate the feasibility of the technique 
and cannot pretend to be using the method to its full po- 
tential. Out of necessity, a very coarse matrix was used. 
This has the effect of smoothing the observed perfusion 
pattern over the myocardium and subtle variations which 
might be represented on the fine matrix of 600 pixels are 
likely to be lost on this coarse matrix of 24 pixels. Re- 
sults, although good, might well improve when facilities 
for handling larger amounts of data become more widely 
available. Our results confirm that the performance of an 
ANN is highly dependent on the composition of the data 
on which it is trained since the ability of a network to 
identify a pattern is directly related to the representation 
of that pattern in the data used to train the network [37, 
45] and that a major problem is limitations in defect 
sampling. For the FFNN to generalise well to new cases, 
the data used in training must be representative of the 
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full population of data likely to be sampled, because 
each possible defect location, plus all the possible com- 
binations of locations, must be included [37]. This was 
shown to be unlikely to happen when the number of pos- 
itive cases of each type is less than 50. This is the main 
disadvantage of FFNNs, and implies that a very large pa- 
tient population is required to provide a full set of  le- 
sions for training. Also, a network which is accurate in 
some cases could fail on data which are not represented 
by the training data. 

The results demonstrate clearly that FFNNs can be 
trained to indicate, consistently, the clinical state of  the 
myocardial perfusion using only "raw" bull 's-eye images 
and without requiring individual direct comparison to 
normal data. The method, however, requires the use of a 
normal data base for both training and testing and is 
therefore not independent of  the data. It has been used 
only to provide a comparison with conventional data 
base techniques to determine whether the FFNN per- 
forms equally well. It would be preferable to assess the 
performance of  the FFNN by comparison with indepen- 
dent criteria. However, no such criteria are currently eas- 
ily available. 

Though neural network training is strictly a "super- 
vised learning" process, the learning is essentially by ex- 
ample, with no guidance from the user as to the criteria 
to employ. The network is allowed to learn what it "be- 
lieves" to be the most important discriminating features, 
and to weigh those features appropriately for best classi- 
fication performance [30]. Thus, one of the features of 
FFNNs is that they extract any linking pattern between 
input and output codes themselves without requiring a 
separate pattern definition; the pattern need not be 
known other than by the FFNN. 

A development with possibly great potential would be 
the extraction of patterns from the bull's-eye images 
without the constraint imposed by prior comparison with 
normal data. This could have important implications in 
that normal comparison has a constraining effect on the 
pattern extraction process and the FFNN technique al- 
lows this limiting factor to be removed. Since it is be- 
coming apparent that a positive 2°1T1 and a negative an- 
giogram put patients into an "at risk" group [46-48], 
such correlations should be instructive in evaluating 
myocardial perfusion abnormalities at an early stage in 
their development. They could also include the investi- 
gation of links between the global myocardial perfusion 
pattern and a variety of  distant clinical outcomes for 
which linking pattern definition would be difficult, e.g. 
the suitability of the heart for percutaneous transluminal 
coronary angioplasty/coronary artery bypass graft or the 
prediction of  future coronary artery stenosis. This would 
be instead of restricting the analysis to the identification 
of  hypoperfusion and comparison with angiography. 
This technique is especially powerful since, unlike the 
human brain, neurals can be cleared (randomised) of 
previous experiences and trained from scratch [37] to 
find new linking patterns. 

Conclusion 

The ability of FFNNs to extract patterns from bull's-eye 
data by assessing their capability to predict lesion pres- 
ence without direct comparison with a normal data base 
were investigated. Studies were undertaken on both sim- 
ulation data and on real stress-rest data obtained from 
410 male patients undergoing routine 201T1 myocardial 
perfusion scintigraphy. The ability of trained neural net- 
works to predict lesion presence was quantified by cal- 
culating the areas under ROC curves. Figures as high as 
0.96 for non-preclassified patient data were obtained. 
This translates, in this case, to an accuracy of 92%. The 
results demonstrate that neural networks can accurately 
extract patterns from bull 's-eye myocardial perfusion 
images and detect the presence of  hypoperfused areas 
without the need for comparison with a normal data 
base. It is postulated that this technique could be used to 
study perfusion patterns in the myocardium and their 
correlation with clinical parameters. 
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