New modification of 3ZnO.Nb₂O₅

OSAMU YAMAGUCHI, NOBORU MARUYAMA, KEN HIROTA *Department of Applied Chemistry, Faculty of Engineering, Doshisha University, Kyoto 602, Japan*

Phase relations in the binary system $ZnO-Nb₂O₅$ were studied by Pollard [1] and by Dayal [2, 3]. The existence of the compounds $3ZnO-Nb₂O₅$, α - and β -ZnO.Nb₂O₅, and 2ZnO.17Nb₂O₅ was established. The compounds $3ZnO\cdot Nb_2O_5$ and β -ZnO. $Nb₂O₅$ were found to melt congruently at 1312 and 1405 °C, respectively, whereas $2ZnO·17Nb₂O₅$ melted incongruently to yield liquid plus $H-Nb₂O₅$ at 1415 °C. The $\alpha = \beta$ phase transformation in $ZnO-Nb₂O₅$ was observed at 1350 °C. The formation of the compounds by solid-state reaction has been reported by various workers [1-8]. Another compound $7ZnO-Nb₂O₅$ having a spinel structure was prepared by Harrison and Delgrosso [4]; pellets containing ZnO and $Nb₂O₅$ in a molar ratio 7 : 1, when heated slowly from 1400 to 2200 °F $(760-1200 \degree C)$ in a relatively still air atmosphere, gave the spinel $7ZnO-Nb₂O₅$, whereas rapid heating to 2200 °C (1200 °C) did not lead to spinel formation. In our study on the formation of $3ZnO\cdot Nb_2O_5$ from an amorphous material prepared by the hydrolysis of zinc and niobium double alkoxides, a new modification of $3ZnO-Nb₂O₅$, being metastable, was formed at low temperatures. This letter deals with the formation and transformation of alkoxy-derived $3ZnO·Nb₂O₅$.

Niobium isopropoxide, $Nb(OC₃H₇)₅$ (99.999%) pure, Kōjundo Kagaku Kenkyūjo, Saitama, Japan), was used. Anhydrous zinc chloride, $ZnCl₂$ (99.99%) pure), was dissolved in ethanol.As-received sodium was cleaned by removing the superficial crust; a known weight was dissolved in 2-propanol. The mixed solution (in the molar ratio $\text{Zn}^{\hat{2}+}$: $\text{Nb}^{5+} = 3:2$) was added, with stirring, to the stoichiometric quantity of sodium isopropoxide containing 2-propanol. Under reflux, precipitates of zinc niobium alkoxide and sodium chloride were obtained. Zinc niobium alkoxide with sodium chloride was hydrolysed by adding aqueous ammonia (28 wt%) at room temperature. The temperature was slowly increased to 70 °C while the resultant suspension was stirred; sodium chloride was dissolved in water at this stage. The hydrolysis product was separated from the suspension by filtration, washed in hot water until chloride ions were no longer detectable, and dried at 120 °C under reduced pressure. The powder thus obtained is termed the "starting powder". X-ray diffraction (XRD) analysis using CuK_{α} radiation) showed that the starting powder was amorphous. The average particle size of the starting powder, determined by electron microscopy, was about 70 nm.

Thermogravimetry (TG) and differential thermal analysis (DTA) were conducted in air at a rate of

10 °Cmin⁻¹; α -alumina was used as the reference for the DTA. TG examination showed a weight decrease of 19.6% to 420°C, attributed to the release of ammonia, organic residues from the parent alcohol, absorbed water and hydrated water [9]. The DTA curve above 420 °C reveals two exothermic peaks at 620-660 °C and 700-750 °C (Fig. 1). As will be described, the first sharp exothermic peak was found to result from the crystallization of the new modification of 3ZnO. $Nb₂O₅$ and the second exothermic peak to the new modification transforming to the known phase. No peak was detected in cooling.

Specimens heated at a rate of 10° Cmin⁻¹ were examined by high-temperature XRD using Nifiltered Cu K_{α} radiation. The starting powder, being amorphous, did not exhibit any significant change in structure up to the temperature of the first exothermic peak. The specimen heated at 660 °C after the first exothermic peak gave an XRD pattern resulting from a hitherto undescribed modification of $3ZnO\cdot Nb_2O_5$. The known $3ZnO\cdot Nb_2O_5$ phase was observed in the specimen heated at temperatures above the second exothermic peak. No zinc niobium oxides other than $3ZnO\cdot Nb_2O_5$ and no other species were recognized throughout the heating process. During cooling, the known phase did not transform to the new modification. Clearly, the new modification must be metastable. Table I shows

Figure 1 DTA curve for the starting powder.

TABLE I XRD data for the new modification of $3ZnO-Nb₂O₅$

d_{obs} (nm)	d_{calc} (nm)	hkl	I/I_0	
0.575	0.576	111	25	
0.435	0.438	011	5	
0.419	0.420	201	20	
0.393	0.393	102	25	
0.376	0.378	201	45	
0.358	0.358	102	10	
0.326	0.326	211	10	
0.322	0.322	012	15	
0.303	0.303	300	35	
0.2961	0.2962	301	100	
0.2946	0.2947	112	95	
0.2878	0.2878	202	50	
0.2742	0.2742	003	60	
0.2735	0.2735	301	80	
0.2615	0.2614	310	60	
0.2540	0.2540	103	25	
0.2469	0.2469	021	35	
0.2407	0.2407	113	25	
0.2360	0.2360	121	10	
0.2320	0.2320	312	10	
0.2280	0.2280	113	10	
0.2229	0.2229	203	15	
0.2203	0.2203	221	20	
0.2190	0.2190	022	5	
0.2107	0.2107	312	15	
0.2100	0.2100	402	10	
0.2098	0.2098	122	10	
0.2047	0.2047	213	5	
0.2026	0.2026	222	5	
0.2001	0.2001	313	5	
0.1924	0.1924	222	10	
0.1915	0.1915	114	15	
0.1892	0.1892	402	10	
0.1838	0.1838	214	15	

Monoclinic: $a = 0.9153$ nm, $b = 0.5176$ nm, $c = 0.8288$ nm and $\beta = 97.06^{\circ}$.

the X-ray data for the new modification at room temperature. Interplanar spacings were measured with the aid of an internal standard of low-temperature quartz, and unit-cell values were determined by a least-squares refinement. The diffraction lines were indexed as a monoclinic unit cell with $a = 0.9153$ nm, $b = 0.5176$ nm, $c = 0.8288$ nm and β = 97.06°. The X-ray data for the known phase at **room temperature are presented in Table II and compared with those previously reported. According to the data of Harrison and Delgrosso [4],** $3ZnO-Nb₂O₅$ is classified to be a tetragonal system with $a = 1.223$ nm and $c = 0.637$ nm. On the other **hand, Brusset** *et al.* **[8] described the crystal structure as having an orthorhombic symmetry with** $a = 0.5195$ nm, $b = 1.9005$ nm and $c = 0.5897$ nm. **The present data were in agreement with those of Brusset** *et al.* **[8], although the strongest line was different in two patterns. The lattice parameters were estimated as an orthorhombic unit cell with** $a = 0.5189$ nm, $b = 1.8987$ nm and $c = 0.5895$ nm.

References

- 1. A.J. POLLARD, J. *Amer. Ceram. Soc.* 44 (1961) 630.
- 2. R.R. DAYAL, *J. Less-Common Metals* 26 (1972) 381.
- *3. Idem. ibid.* 29 (1975) 1.
- 4. R. W. HARRISON and E. J. DELGROSSO, *J. Electrochem. Soc.* 110 (1963) 205.
- 5. J.J. BROWN and F.A. HUMMEL, *Trans. J. Brit. Ceram. Soc.* 64 (1965) 419.
- 6. J. L. WARING and R. S. ROTH, *J. Res. Natn. Bureau Stand. USA* 69A (1965) 119.
- $\overline{7}$ R. NORIN and B. DAHLEN, *Acta Chem. Scand.* 23 (1969) 1826.

^{*a*} Orthorhombic: $a = 0.1589$ nm, $b = 1.8987$ nm and $c = 0.5895$ nm.

 b Tetragonal: $a = 1.223$ nm and $c = 0.637$ nm.

c Orthorhombic: a = 0.5195 nm, b = 1.9005 **nm and** c = 0.5897.

- 8 H. BRUSSET, R. MAHE and U. A. KYI, *Mater. Res. Bull.* 7 (1972) 1061.
- 9 O. YAMAGUCHI, T. KANAZAWA and K. SHIMIZU, J. *Chem. Soc., Dalton Trans.* (1982) 1005.

Received 3 September and accepted 8 October 1990