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Abstract 

We have developed direct methods for recovering the motion of an observer in a static environment in the 
case of pure rotation, pure translation, and arbitrary motion when the rotation is known. Some of these 
methods are based on the minimization of the difference between the observed time derivative of bright- 
ness and that predicted from the spatial brightness gradient, given the estimated motion. We minimize 
the square of the integral of this difference taken over the image region of interest. Other methods presen- 
ted here exploit the fact that surfaces have to be in front of the observer in order to be seen. 

We do not establish point correspondences, nor do we estimate the optical flow. We use only first-order 
derivatives of the image brightness, and we do not assume an analytic form for the surface. We show that 
the field of view should be large to accurately recover the components of motion in the direction toward 
the image region. We also demonstrate the importance of points where the time derivative of brightness is 
small and discuss difficulties resulting from very large depth ranges. We emphasize the need for adequate 
filtering of the image data before sampling to avoid aliasing, in both the spatial and temporal 
dimensions. 

1 Introduction 

In this paper we consider the problem of deter- 
mining the motion of a monocular observer mov- 
ing with respect to a rigid, unknown world. We 
use a least-squares, as opposed to a discrete, 
method of solving for the motion parameters; our 
method uses all of the points in a two-image se- 
quence and does not attempt to establish corres- 
pondence between the images. Hence the method 
is relatively robust to quantization error, noise, il- 
lumination gradients, and other effects. 

So far, we can determine the observer motion in 
two special cases: 
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• when the motion is pure rotation, 
* when the motion is pure translation or when 

the rotational component of the motion is 
known. 

At this writing we have not developed a direct 
method that is applicable to arbitrary motion. 

1.1 Earlier Work 

In the continuous or least-squares approach to 
motion vision, motion parameters are found that 
are consistent with the observed motion of the en- 
tire image. Bruss and Horn [1] use this approach 
to calculate motion parameters assuming that the 
optical flow is known at each point. Adiv [2] uses 
the approach of Bruss and Horn to segment the 
scene into independently moving planar objects; 
he shows that given the optical flow, segmenta- 
tion can be performed and the motion calculated. 
Nagahdaripour and Horn [3] eschew the use of 
optical flow and calculate the observer's motion 
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directly from the spatial and temporal derivatives 
of the image brightness, assuming a planar world. 
The advantage of this direct approach, which we 
also use here, is that certain computational dif- 
ficulties inherent in the calculation of optical flow 
are avoided. In particular, it is not necessary to 
make the usual assumption that the optical flow 
field is smooth; an assumption that is violated 
near object boundaries, necessitating flow 
segmentation. 

Waxman and Ullman [41 and Waxman and 
Wohn [5] also avoid the discrete approach to mo- 
tion vision; their techniques make use of first and 
second derivatives of the optical flow to compute 
both the motion parameters and the structure of 
the imaged world. In the interests of developing 
methods that can be implemented, the techniques 
presented in this paper avoid the use of second- 
and higher-order derivatives. 

1.2 Summary of the Paper 

One of our approaches to the motion vision prob- 
lem can be summarized as follows: Given the ob- 
server motion and the spatial brightness function 
of the image one can predict the time derivative of 
brightness at each point in the image. We find the 
motion that minimizes the integral of the square 
of the difference between this predicted value and 
the observed time derivative. The integral is taken 
over the image region of interest, which, in the 
discussion here, is usually taken to be the 
whole image. 

We use auxiliary vectors derived from the 
derivatives of brightness and the image position 
that occur in the basic brightness change con- 
straint equation. Study of the distribution of the 
directions of these vectors on the unit sphere sug- 
gests specific algorithms and also helps uncover 
relationships between accuracy and parameters 
of the imaging situation. 

We have developed a simple robust algorithm 
for recovering the angular velocity vector in the 
case of pure rotation. This algorithm involves 
solving three linear equations in the three un- 
known components of the rotation vector. The 
coefficients of the equations are moments of com- 
ponents of one of the axuiliary vectors over the 

given image region. We show that the accuracy of 
the recovered component of rotation about the 
direction toward the image region is poor relative 
to the other components, unless the image region 
subtends a substantial solid angle. 

We have developed several algorithms for 
recovering the translational velocity in the case of 
pure translation. These algorithms exploit the 
constraint that objects have to be in front of the 
camera in order to be imaged. This constraint 
leads to a nonlinear constrained optimization 
problem. The performance of these algorithms 
depends on a number of factors including: 

• the angle subtended by the image, i.e., the field 
of view, 

• the direction of motion relative to the optical 
axis, 

• the depth range, 
• the distribution of brightness gradients, 
• the noise in the estimated time derivative of 

brightness, 
• the noise in the estimated spatial gradient of 

brightness, and 
• the number of  picture cells considered. 

We have not yet been able to select a "best" 
algorithm from the set developed, since one may 
be more accurate under one set of circumstances 
while another is better in a different situation. 
Als0, the better algorithms tend to require more 
computation, and some do not lend themselves to 
parallel implementation. Further study using real 
image data will be needed to determine the range 
of applicability of each algorithm. 

We found a strong dependence of the accuracy 
of recovery of certain components of the motion 
on the size of the field of view. This is in concert 
with other reports describing difficulties with 
small fields of view, such as references [2] and 
[51. 

1.3 Comments on Sampling, Filtering, and Aliasing 

Work with real image data has demonstrated the 
need to take care in filtering and sampling. The 
estimates of spatial gradient and time derivatives 
are sensitive to aliasing effects resulting from in- 
adequate low-pass filtering before sampling. This 
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is easily overlooked, particularly in the time 
direction. It is usually a mistake, for example, to 
simply pick every nth frame out of an image se- 
quence. At the.very least, n consecutive frames 
should be averaged before sampling in order to 
reduce the high-frequency components. One may 
object to the "smearing" introduced by this tech- 
nique, but a series of widely separated snapshots 
typically do not obey the conditions of the sam- 
pling theorem, and as a result the estimates of the 
derivatives may contain large errors. 

This, of course, is nothing new, since the same 
considerations apply when one tries to estimate 
the optical flow using first derivatives of image 
brightness (Horn and Schunck [6]). It is impor- 
tant to remember that the filtering must be ap- 
plied before sampling--once the data has been 
sampled, the damage has been done. 

2 The Brightness-Change Constraint Equation 

Following Longuet-Higgins and Prazdny [7] and 
Bruss and Horn [1] we use a viewer-based coor- 
dinate system. Figure 1 depicts the system under 
consideration. A world point 

R = (X ,Y ,Z )  T (1) 

is imaged at 

r = (x,y,1) r (2) 

~j/W ~ ~ ~.magm 

,¢ 

) 

l~ la . ' aa  

Fig. 1. The viewer-centered coordinate system. The trans- 
lational velocity of the camera is t = (U, KW)  r, while the 
rotational component  is co = (A,B,C) r. 

That is, the image plane has equation Z = 1. The 
origin is at the projection center and the Z-axis 
runs along the optical axis. The X- and Y-axes are 
parllel to the x- and y-axes of the image plane. 
Image coordinates are measured relative to the 
principal point, the point (0,0,1) r where the opti- 
cal axis pierces the image plane. The points r and 
R are related by the perspective projection 
equation 

r = (x,y,1)r = ( X Y Z )  r R 
Z ' Z ' Z  ~ R-~. (3) 

with 

Z = R. ~ (4) 

and where 2 denotes the unit vector in the Z 
direction. 

Suppose the observer moves with instan- 
taneous translational velocity t = (U, V,W) r and 
instantaneous rotational velocity o~ = (A,B,C) r 
relative to a fixed environment, then the time 
derivative of the vector R can be written as 

R,=  - t - c o X R  (5) 

The motion of the world point R results in motion 
of the corresponding image point; the value of 
this motion field is given by 

r, dt dt 

R,CR. ~) - (R, .  ~)R 
= - -  (R. 2) z (6) 

This can also be expressed as 

~. X (R, X r)  (7) 
r, = R.  

since a × (h X c) = (c. a)h - (a. b)c. Substituting 
equation (5) into othis result gives (see Negah- 
daripour and Horn [3]): 

In component form this can be expressed as 
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Z 

= V + y W  
Z 

\ 
+ Axy - n(x 2 + 1) + C y ~  

) Bxy + A ( y  2 + 1) - Cx 

0 

(9) 

a result first obtained by Longuet-Higgins and 
Prazdny [7]. 

This shows how, given the world motion, the 
motion field can be calculated for every image 
point. If we assume that the brightness of a small 
surface patch is not changed by motion, then ex- 
pansion of the total derivative of  brightness E 
leads to 

dE dx dE dy + dE 
+ Oy V i -  = o (1 o) 

(The applicability of the constant brightness 
assumption is discussed in Appendix A.) Denot- 
ing the vector (OE/Ox, OE/Oy,O) r by E, and aE/Ot by 
Et, permits us to express this result more compact- 
ly in the form 

E r • r, + E, = 0 (11) 

Substituting equation (8) into this result and 
rearranging gives 

E,-{[(ErX~)Xr I Xr}.o) 

+ [(E, x 9̀ ) x r] .  t = 0 (12) 
R.~, 

To simplify this expression we let 

s = (E, X 9,) X r (13) 

and 

v = - s  X r (14) 

so equation (12) reduces to the brightness change 
constraint equation of Negahdaripour and Horn 
[3], namely 

s ' t  
v . c o +  R ~  ~ - -  Et (15) 

The vectors s and v can be expressed in compo- 
nent form as 

-Ex I 
s = -Ey and 

xE x + yEy 

I 
-~-Ey .~L y(xEx + yEy)~ 

v = -Ex - x(xEx + y E y ) J  (16) 
! 

yEx - xEy / 

Note that s . r  = 0, v . r  = 0 and s .v  = 0. These 
three vectors thus form an orthogonal triad. The 
vectors s and v are inherent properties of the 
image. Note that the projection ofs  into the image 
plane is just the (negative) gradient of the image. 
Also, the quantity s indicates the directions in 
which translation of a given magnitude will con- 
tribute maximally to the temporal brightness 
change of a given picture cell. The quantity v 
plays a similar role for rotation. 

3 Solving the Brightness Change 
Constraint Equation 

Equation (15) relates observer motion (t,09, the 
depth of the world R.  ~, = Z(x,y) and certain 
measurable quantities of the image (s,v). In 
general, it is not possible to solve for the first two 
of these given the last. Some interesting special 
cases are addressed in this paper and in Negah- 
daripour and Horn [3]; these are: 1 

i. Known depth: In section 3.1 we show that 
given Z, s, and v, the quantities, t and 0~ can be 
calculated in closed form using a least- 
squares method. 

ii. Pure rotation (l l t l l  = 0): In section 3.2 we 
show that given v, the rotation vector co can be 
calculated in closed form. 

iii. Pure translation or known rotation: In sec- 
tion 3.3 we present a least-squares method for 
determining t. Once t is known, the brightness 
change constraint equation can be used to 

1We do not discuss here related methods  using optical flow, 
such as those o f  Bruss and  Horn  [1]. 
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find the depth at each picture cell: 

s . t  
z = R .  = ( 1 7 )  

E~ + v.¢0 

iv. Planar world: Negahdaripour and Horn [3] 
present a closed-form solution for t, ~o, and the 
normal n of the world plane. 

v. Quadratic patches: Negahdaripour [8] gives a 
closed-form solution in the case that a portion 
of the world can be represented as a quadratic 
form. 

In this paper we consider various integrals over 
an image region thought to correspond to a single 
rigid object in motion relative to the viewer. In the 
simplest case, the observer is moving relative to a 
static environment and the whole image can be 
used. The size of the field of view has a strong ef- 
fect on the accuracy of the determination of the 
components of motion along the optical axis. 
When we need to estimate this accuracy, we will, 
for convenience, assume a circular image of 
radius ro. This corresponds to a conical field of 
viewwith half angle 0o, where ro = tan 0o, since we 
have assumed that the focal length equals one. 
(We assume that 0 < 0o < rr/2). 

We will show that the field of view should be 
large. Although orthographic projection usually 
simplifies machine vision problems, this is one 
case in which we welcome the effects of perspec- 
tive "distortion"! 

3.1 Depth Known 

When depth is known, it is straightforward to 
recover the motion. (Depth may have been ob- 
tained using a binocular stereo system or some 
kind of range finder.) We cannot, in general, find 
a motion to satisfy the brightness change con- 
straint equation at every picture cell, because of 
noise in the measurements. Instead we minimize 

ff[E t + v 'm  + ( 1 / Z ) s ' t l 2 d x d y  (18) 

Differentiating with respect to co and t and setting 
the results equal to zero leads to the pair of 
vector equations: 

[ ff (1/Z)2ss r dxdy]t 

+ [ ff(1/Z)sv  dxdy]o  
= -fjE,(l/Z)s dxdy 

I fj(1/Z)vs~ dxdy]t 

+ dxdy] o 

= -ffe,v dxdy 

(19) 

This is a set of six linear equations in six un- 
knowns with a symmetric coefficient matrix. (The 
equations can be solved by partitioning in order 
to reduce the computational effort.) The coef- 
ficients are all integrals of products of com- 
ponents of (1/Z)s and v. It may be useful to 
note that 

trace(sv r) = trace(vs r) = s . v  = 0 (20) 

We could have obtained slightly different equa- 
tions for co and t if we had chosen to weight the in- 
tegrand in equation (18) differently. We study the 
special case in which [[tl[ = 0 and the special case 
in which [[0)[[ = 0 later. 

One application of the above result is to 
"dynamic stereo." A binocular stereo system can 
provide disparity estimates from which 1/Z can 
be calculated. The above equations can then be 
used to solve for the motion, provided estimates of 
the derivatives of image brightness are also sup- 
plied. The correspondence problem of binocular 
stereo has, unfortunately, been found to be a dif- 
ficult one. It would represents the major com- 
putational burden in a dynamic stereo system. 
We hope that motion vision research will even- 
tually lead to simpler methods for recovering 
depth than those used for binocular stereo-- 
although they are likely to be relatively inaccurate 
when based only on instantaneous translational 
and rotational velocity estimates. 
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Fig. 2. Shown here are the (a) 10th, (b) 20th, (c) 30th, and (d) 
40th image out of a 40-image sequence obtained when a CCD 
camera mounted on a tripod was (manually) rotated about its 
vertical axis. After the initial acceleration, the image motion in 

the center is between 7 and 8 picture cells between successive 
frames. Image motion between frames is slightly larger in the 
corners of the image. 

32 Pure Rotation 

When Iltll = 0, the brightness change constraint 
equation reduces to 

Et + v .  0~ = 0 (21 )  

We wish to find the value of  0~ that minimizes the 
sum of  the squares of  the errors in the time deriva- 
tive of  brightness, that  is, we want to minimize 

f f  le, + , .  (D] 2 d x d y  (22) 

Differentiating with respect to co and  setting the 
result equal to zero gives us 

2 f f  [E, + v. colv axdy = o (23) 

Since (v. co)v = v(v. co) = (wV)co, we can write this 
in the form 

[ ff .r dx dy] o) = -frEt, dx dy (24) 

which is just a special case of  equation (19). This 
is a set of  three linear equations in the three un- 



Direct Methods for Recovering Motion 57 

known components of co, namely, A,B, and C. The 
coefficient matrix is symmetric and only the 
right-hand side depends on the time derivative 
of brightness. 

One can, by the way, tell whether one is dealing 
with a case of pure rotation or not. In the presence 
of a translational component, equation (21) will 
not be a good approximation and so the integral 
in formula (22) will not be small. Experiments 
show that this simple method of determining 
rotation is robust and easy to implement. Slight 
variations are possible by weighting the in- 
tergrand differently. This method is reminiscent 
of the optical flow based method of Bruss and 

Horn [1] and very similar to a method developed 
by Aloimonos and Brown [9], to which our atten- 
tion was drawn after we wrote this paper. 

Shown in figure 2 is every tenth frame out of a 
40-frame sequence taken with a tripod-mounted 
CCD camera rotated manually about its vertical 
axis. The vertical component of the computed 
rotational velocity is shown in figure 3 as a func- 
tion of the frame number. The units along the ver- 
tical axis are picture cells per time step in the cen- 
ter of the image (rather than say radians/second). 
After the initial acceleration, image components 
near the center of the image move by about 7 to 8 
picture cells between successive frames. Three 
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curves are given for varying amounts of image 
low-pass filtering and subsampling. The lowest 
curve (A) corresponds to the raw image data, and 
shows that for this particular scene at least, a mo- 
tion of 7 to 8 picture cells is too much for accurate 
recovery of the angular velocity. The computed 
velocity appears to "saturate" at around 4 picture 
cells per time step. The next higher curve (B) cor- 
responds to image compression by low-pass 
filtering and subsampling by a factor of two in 
each direction. In the compressed image sequen- 
ce, the motion is in effect only about 3 to 4 picture 
cells per time step. The top curve (C) was obtained 
using images that were low-pass filtered and sub- 
sampled a second time to reduce them by a total 
of  a factor of  four in each direction. In this doubly 
compressed sequence, motion in the center of the 

image amounts to only about 1.5 to 2 picture cells 
per time step, and the angular velocity is accurate- 
ly recovered. Further filtering and subsampling 
leads to velocity estimates that are essentially the 
same as the ones obtained with this sequence. 

3.2.1 Distribution of the Directions oft. To under- 
stand the properties of the algorithm for recover- 
ing the instantaneous rotational velocity, one 
needs to study the matrix obtained by integrating 
w r. We can think of the direction ofv as identify: 
ing a point on the unit sphere and of Ilvll as the 
mass of a particle placed there. The collection of 
vectors corresponding to an image region then 
can be thought of as a set of particles on the unit 
sphere. The integral of  w r is the symmetric 3 X 3 
matrix whose elements are integrals of  the nine 
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pair-wise products of components  of v. This ma- 
trix is related to the inertia matrix of this set of  
particles. If  the particles were spread uniformly 
over the surface of  the sphere, this matrix would 
be the total mass times the identity matrix. As we 
show next, the particles are confined to a band,  so 
this matrix, while diagonal on average, is not a 
multiple of the identity matrix. 

We know that v. r = 0 and  that the possible 
directions of  r lie within a cone defined by the 
field of  view. For a particular value of t ,  the equa- 
tion v. r = 0 defines a plane that cuts the unit  
sphere in a great circle (see figure 4). The vector v 
must point in a direction corresponding to a point 
on this great circle. Since r lies inside a cone of 
directions with half-angle 0o, these great circles 
have axes that  lie in this cone also. The collection 

of  great circles lies in a band  around the unit  
sphere of width equal to the total width of  the 
visual field. 

We can obtain the same result algebraically as 
follows: Let L 0, and  ~ be unit  vectors in the direc- 
tions r, v, and  s. Then, since r, s, and v are mutually 
orthogonal, 

( i .  ~)2 + (~.0)2 + (~. ~)2 = 1 (25) 

while 

(~ .0 )  2 + (~.0)  2 + (~ .0)  2 = 1 (26) 

where Y,, y, and  i are unit  vectors in the X, Y, and 
Z directions. Subtracting the two equalities we 
obtain 

( i . 0 )  2 + (~.0)  2 = (~. ~)2 + (~.  ~)2 (27) 
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Fig. 3. Recovered vertical component of the angular velocity 
vector as a function of the frame number. The angular velocity 
is given in picture cells of image displacement at the center of 
the image per time step. Curve A was obtained using the raw 
image data, curve B from a low-pass filtered and subsampled 
image sequence, and curve C from an image sequence that 
was low-pass filtered and subsampled twice. Further low-pass 
filtering and subsampling produces essentially the same 
curve. 

w h i c h ,  s ince  

(~. ~)2 > cos  2 0~ and 
tel ls  us tha t  

(~. ,)2 + (8. ,~)2 > cos 20o 

( ~ .  ~)2 > 0 (28) 

(29) 

Amaqe plane 

. . / o  

Fig. 4. A cross-section through the v-sphere defined by the 
image point r. 

T h u s  the  d i r ec t ions  o f  v l ie  w i t h i n  a n  ang le  0o o f  

the  "equa to r "  o f  the  un i t  sphere .  W e  ca l l  th is  b a n d  
( s h o w n  in f igure 5) the  permissible band. 

3.2.2 Estimate o f  the Condition Number.  It  is im-  
p o r t a n t  to d e t e r m i n e  u n d e r  w h a t  c i r c u m s t a n c e s  

the  recovery  o f  the  r o t a t i o n a l  ve loc i ty  is ill- 
c o n d i t i o n e d ,  a n d  w h e t h e r  the  d i f fe ren t  corn-  

- . o r  o o ,  ~ , , e  . . . .  ~."~k': • .'..'.'.'~, . "" "'" ",- ". : . ¢ "  
• ~.._. t . . . . .  .~" . : ' . ' 4 . . . "  3 "':'.~4"°V¢. 

. . . .  - : . ,  " . ' .  " , .  , . . :  ~ , . . .  L° . , ,  " " . "  • ; ' j .  
~¢ ,  .. " .  , ' ' *  . " "  " . ' ¢ ' . ' "  " , r  .~;.. ° : ~  

• ~ ~ t .  ~ o°  o~ ' .  . • .  • ° .  • • o ° 
; , B *  " "  " ~ "  " . . . .  . ' , : ' "  " " " :"  " 

• , "  . ~  . . .  : : ~  , 
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Fig. 5. The permissible band on the v-sphere (front and rear views). 



Direct Methods for Recovering Motion 61 

ponents of the rotation vector are equally affected 
by noise in the data. To study these issues, one 
needs to estimate some of the properties of the 
coefficient matrix of the equations. We can get a 
rough idea of what the integral o f w  r looks like by 
assuming that the particles corresponding to v are 
spread uniformly within the permissible band. In 
Appendix B we show that the area of this band 
is 

K = 4r~ sin 0v (30) 

The mixed inertia terms (such as the integral of 
the product ofx andy) are all zero because of the 
symmetry of the band. The resulting 3X3 matrix 
is thus diagonal. Furthermore, if we letl~,Iyy, and 
Izz be the diagonal terms then it can be shown (in 
Appendix B) that 

/~x = I,y = (K/3)[1 + (1/2) cos2 0v] (31) 

while 

/~z = (K/3) sin 2 00 (32) 

Thus I S K  and IyJK vary little with 0v, while Iz,/K 
changes dramatically. The (L 2) condition number 
of this matrix--the ratio of the largest to the 
smallest eigenvalue--is just 

Ix~ _ 1 + (1/2) cos200 
/zz sin: 0~ 

3/2 1 
sin 2 00 2 (33) 

This is very large when the field of view is small. 
When the condition number is very large, small 
errors in the right-hand sides of the equations, or 
in the coefficients of the matrix itself, can lead to 
large errors in the solution. 

In fact, the particles are not spread uniformly 
within the permissible band and do not have 
mass independent of position, so the above is 
only an estimate. We obtain the exact result in 
section 3.2.4. 

3.2.3 Stability of the Solution Method. The numeri- 
cal stability of the solution for co is reduced when 
the condition number is large. In practice, the ele- 
ments of the matrix of equation (24) will be cor- 
rupted by noise in the measurements, as will the 
right-hand side vector in this equation. The es- 
timate of the third component ofm will be affected 

more by these perturbations than the other two. 
Experiments confirm that the component of rota- 
tion about the optical axis is distributed more by 
noise than the others. The ratio of the errors grows 
roughly as the inverse of the size of the field of 
view. This is not a peculiarity of our method, but 
applies in general. 

It is intuitively obvious why this should be. 
Rotations about the x- and y-axes produce mo- 
tion fields that vary but little over the image. A 
small field of view can be used to estimate these 
components with almost the same accuracy as 
can a large field of view (provided the same num- 
ber of picture cells are used.) Rotation about the 
z-axis, on the other hand, produces a motion field 
that varies directly with distance from the prin- 
cipal point. Thus the maximum velocity depends 
on the size of the field of view. With a small field 
of view, the maximum velocity in the image will 
be small and relative errors in measurements cor- 
respondingly larger. 

If an image region is used that is smaller than 
the whole field of view and perhaps offcenter, the 
analysis becomes more complex. In this case, the 
component of rotation about the direction toward 
the center of the region is less accurately known; 
the accuracy again decreasing with the size of the 
image region. This shows the futility of ap- 
proaches based on data from small image 
patches, or higher derivatives of brightness at one 
point in the image. When working with very small 
image regions, the best one can do is to estimate 
the optical flow--there is no point in trying to 
recover the "rotation" about the center of the 
region. 

3.2.4 Ensemble Average of the Integral of w r. The 
integral of w v varies from image to image. It has 
already been suggested, however, that it will be 
approximately diagonal. We can obtain a more 
precise answer by averaging over an ensemble of 
images with all possible directions for the bright- 
ness gradient at each image point. We assume 
that different directions for the brightness gradi- 
ent are equally likely. The result so obtained can 
be viewed in another way: it is the integral ob- 
tained in the limit from a textured image as the 
scale of the texture is made smaller and smaller. 
In this case we can arrange for every direction of 
the brightness gradient to be found in any small 
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patch of the image. By suitable choice of the tex- 
ture we can arrange that no direction of the 
brightness gradient is favoured--all directions 
occur with equal frequency. 

If  we take into account the distribution of direc- 
tions ofv and the weights [Iv[[, we find (in Appen- 
dix B) that 

f vv  T dx dy 

1 + r2/2 + r4/6 

= ko 0 

0 

0 

1 + r212 + r416 

0 r2v/2 

(34)  

where r. is the diameter of the image and the con- 
stant k. depends on the size of the field of view as 
well as the distribution of magnitudes of the 
brightness gradient. In practice we can easily find 
ko since 

trace( ff dx dy ) = ff trace(vv ) dx dy 

= f~v. v dxdy (35) 

SO 

2ko(1 + 3r2/4 + r4/6) = f l y .  v dxdy (36) 

Note that the condition number is 

2 1 + r2/2 + r~/6 2 ro 
- 2 + 1 + ( 3 7 )  r~/2 r~ 3 

It attains a minimum of 1 + 2 V / ~  = 2.633 . . .  
when ro = V / ~  = 1.565 . . . .  Thus the component 
of rotation about the optical axis is not recovered 
as accurately as the other two components, no 
matter how large the field of view. Also, as far as 
rotation is concerned, there is little advantage to 
making the field of view wider than a half-angle 
0 v = t a n  -1 V/~¢/"~ = 57.42...degrees, since the 
condition number reaches its minimum there. 

Some simplifications of the method for re- 
covering the rotational velocity based on the 
above analysis are discussed by us in reference 
[101. 

3.2.6 The v-Bar Projection. We know that the 
directions of the vectors v lie in the permissible 
band. But what about the vectors 

= - E #  (38) 

occurring in the integral on the right-hand side of 
Eq. (24)? We know that in the case of pure rotation 
E, = - v .  o~, so ~ = (v. ~0)v. We conclude that 

~. co = (v.0o) 2 > 0 (39) 

Thus the directions of the vectors ~ are confined to 
a hemisphere with co at its pole or"navel." We call 
this the compatible hemisphere for the case of 
pure rotation. 

If the vectors ~ covered this hemisphere uni- 
formly, we could easily estimate o~ by finding the 
center of mass of the particles on the unit sphere 
corresponding to the values of ~. The center of 
mass of a hemisphere of uniform density is at a 
point midway between the center of the sphere 
and the navelof the hemisphere, so we could use 
the formula 

2 ffTaxay 
co (40) 

fll lldxdy 

Unfortunately, the vectors ~ do not cover the 
whole compatible hemisphere, since they are 
confined to the permissible band, just as are the 
vectors v. In fact, the vectors ~ lie in the intersec- 
tion of the permissible band and the compatible 
hemisphere, as shown in figure 6. 

We can now see in another way why a small 
field of view reduces the accuracy with which we 
can estimate the component of rotation about the 
optical axis. If the field of view is small, the per- 
missible band will be narrow, a mere ring. Our 
task is to guess which hemisphere cut the ring in 
half. This is easy when we are dealing with a band 
that covers almost the whole sphere--when it is 
very narrow, however, there is some uncertainty. 
A hemisphere claimed to provide a solution can 
easily be rotated about the line connecting the 
ends of the cut ring without significantly chang- 
ing the intersection of the hemisphere and the 
ring as illustrated in figure 7. Thus the z- 
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Fig. 6. The v-sphere showing the intersection of the permiss- 
ible band and the compatible hemisphere, in the case when 
the field of view is wide (front and rear views). 

S 

"~\\ \ 

Fig. 7. The intersection of the permissible band with three 
different compatible hemispheres when the field of view is 
narrow. 
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component of the direction to the navel of the 
hemisphere is uncertain in the presence of noise, 
or, when measurements from only a small num- 
ber of  picture cells are available. 

We could use the geometric insight that the vec- 
tors v all lie in the intersection of the permissible 
band and the compatible hemisphere to con- 
struct algorithms for recovering the direction of 
the vector co. Some other method would then have 
to be found to estimate the magnitude of (0. 
However, we do not need to approach the prob- 
lem in this way, in light of the least-squares solu- 
tion presented above. This geometric approach, 
however, will be fruitful in the case of pure tran- 
slation where we find a similar geometric con- 
straint and have no need to find the magnitude of 
the motion vector. 

If  there is a translational component to the mo- 
tion, by the way, the points ~ will not be confined 
to a hemisphere. This provides a convenient test 
to see whether the method presented above can be 
applied or not. 

3.3 Rotation Known or Pure Translation 

If the rotation is known, perhaps measured by 
some other instrument, but depth is not, then the 
general problem reduces to the problem of pure 
translation. We can write 

E ; +  (1 /Z)s .  t = 0 (41) 

where 

E; = Et + v. co (42) 

In the remainder of this section we do not dis- 
tinguish between E1 and E~. 

Note that equation (41) is not altered if we 
replace Z by kZ and t b y  kt. Thus we can recover 
motion and depth only up to a scale factor. In the 
sequel we will set Iltll-- 1 when convenient. 

First of  all, note that, unlike the case in which 
depth is known (section 3.1), we cannot obtain a 
useful result by simply minimizing 

flier + (1 /Z)s .  t]2 dxdy (43) 

since the integrand can be trivially made equal to 
zero at each point by the choice 

s . t  
Z - (44) 

E, 

(This may, however, produce negative values for 
Z, a fact that we exploit later.) Given the correct 
value of t, the above equation provides a means 
for recovering depth, as already mentioned. 

Equation (44) and the fact that depth must be 
positive, by the way, lead to a simple upper bound 
on the depth at a particular point even when the 
direction of translational velocity is not known. 
Since Z > 0, we can write 

Is "tl Z = [ Z [ -  (45) 

and so 

Ilslllltll (46) 
z < IE, I 

The right-hand side here is the depth computed 
on the assumption that s is parallel to t. Of course 
this is only an upper bound, since Z will be much 
smaller if s happens to be nearly orthogonal to t. 
The bound is particularly poor, as a result, where 
r is nearly parallel to t, that is, near the focus of ex- 
pansion (or the focus of compression) in the 
image. 

3.3.1 Depth Known--The Case of Pure Translation. 
If we know the depth, as earlier, we can minimize 
the total error in the time derivative of bright- 
ness: 

ff lE, + ( 1 / z ) s .  t]2 dxdy (47) 

by differentiating with respect to t. Setting the 
result equal to zero gives 

[ ff (1/ Z)2ssr] t dx dy = - f f  (1/ z)e,s dx dy 

(48) 

which is just equation (19) with lie011 = o. This is a 
set of three linear equations in the three com- 
ponents o f t  (U, V, and 140. The coefficient matrix 
is symmetric and only the right-hand side 
depends on the time derivative of brightness. 
Note that in equation (48) we attach less weight to 
information from points where Z is large. 

The method is accurate if the correct values of 
depth are given. If estimates are used, the quality 



of the result will depend on the quality of the es- 
timates. The accuracy of the result also depends 
on the size of  the field of view, as we show 
later. 

We get slightly different results if we weight the 
integrand in equation (47) differently. Multiply- 
ing by Z, for example, gives [ZEt + s. t] for the in- 
tegrand and 

[ffssr dxdy]t = - f f  zE,s dxdy (49) 

for the solution. Alternatively multiplying by Z/Et 
gives [Z + (1/Et)s" t] for the integrand and 

I ff(1/E~)2ssr dxdy]t 

= -f f(Z/E,)s dx dy (50) 

for the solution. In this case we are minimizing 
the error in depth, rather than the error in the time 
derivative of brightness, as in equation (48). 

The two alternate solutions given in equations 
(49) and (50) have the advantage that the depth Z 
does not appear in the integrals on the left-hand 
side. This means that they are particularly well 
suited for iterative schemes where Z is rees- 
timated on each cycle. The solution of equation 
(49) has the. further advantage that neither Z nor 
E, appear on the left-hand side. This makes it easy 
to compute an ensemble average for this integral. 

3.3.2 Distribution of the Directions of s. To under- 
stand the properties of the above algorithms for 
recovering t, we must examine the matrix ob- 
tained by integrating multiples ofss r. Once again, 
we can think of the direction of s as identifying a 
point on the unit sphere and of a multiple ofllsll as 
the mass of a particle placed there. The integral 
considered is related to the inertia matrix of the 
set of particles on the unit sphere. 

Now just as the directions ofv lay in a band of 
width equal to the width of the field of view, 
because v. r = 0, so do the directions of s, since 
s. r = 0. The distribution of points within the 
band is not quite the same, but we will ignore such 
details for now. First of all, assuming again a un- 
iform distribution within the permissible band, 
we get the same estimate of the condition number 
as in section 3.2.2, namely 
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1 + ( 1 / 2 )  cos 20v _ 3/2 1 
sin 2 0~ sin 2 0~ 2 

Accuracy in the determination of W, the Z com- 
ponent of t, will be reduced relative to that of the 
other two components when the field of view is 
small. Experiments confirm that for small fields 
of view, the estimate of the component of transla- 
tion along the optical axis is disturbed more by 
noise than the other two. Hence a wide field of 
view is called for. 

The integral of ss r varies from image to image. 
In order to better understand the matrix defined 
by ss r, we would like to examine a typical image. 
Since it is difficult to define such an image, in- 
stead, as in section 3.2.4, we can take an average 
over an ensemble of images containing all possi- 
ble directions for the brightness gradient at each 
image point. If we take into account the distribu- 
tion of directions ofs  and the weights ]]s]l, we find 
(in Appendix B) that 0) 

ffssr dxdy = k, 1 0 
o r~/2 

(51) 

where rv is the radius of the image and the con- 
stant k, depends on the size of the field of view as 
well as the distribution of magnitudes of the 
brightness gradient. In practice we can find ks by 
noting that 

tracet ss dx ) 
= ff trace (ss r) dxdy 

= f f s ' s d x d y  

SO 

(52) 

2ks(1 + r~/4) = ffs s dxdy (53) 

Note that the condition number is just min (r2v/2, 
2/r2~) which reaches a minimum of 1 when 
rv = V~. In the case of pure translation, the com- 
ponent of translation along the optical axis is 
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found with more accuracy than the other two 
when the field of view has a half-angle wider than 
Ou = tan -~ V ~ ' =  54.74..•  degrees, since r2,/2 then 
is larger than one. 

Some simplifications of the method for re- 
covering the translational velocity based on the 
above analysis are discussed by us in reference 
[lO]. 

3.4 Translation with Rotation Known 

In this section we deal with the problem of deter- 
mining the direction of translation and depth 
Z(x,y) given the rotation vector co. 

3.4.1 The Importance of a Wide Field of View. In 
the general case, the need for a wide field of view 
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Fig. 8. The intersection of  the permissible band on the s-shape pansion within field of view. (b) Focus of  expansion outside 
and the compatible hemisphere for two cases. (a) Focus of  ex- field of view. 
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is very clear. In a small image region near the cen- 
ter of the image, for example, rotation about they- 
axis looks the same as translation along the x- 
axis, while rotation about the x-axis looks the 
same as translation along the (negative)y-axis. As 
is well known in stereo-photogrammetry, a large 
field of view is needed to separate these com- 
ponents of the transformation between two 
camera positions [11, 12]. 

If we take note of this ambiguity, and the uncer- 
tainty with which the components of rotation and 
translation along the optical axis can be deter- 
mined, we see that locally, out of six parameters, 
only two combinations can be estimated. These 
two quantities are just the components of the mo- 
tion field. The same argument can be made for 
points at some distance from the principal point 
of the image. 

There is a difference between the case when the 
motion is predominantly along the optical axis 
and the case where it is predominantly parallel to 
the image plane. The transition between the two 
situations occurs when the direction of the vector 
t moves outside the cone of directions of the field 
of view, that is, when the focus of expansion (or 
compression) moves outside the image. When the 
focus of expansion is inside the image, then the 
great circle defined by s. t = 0 lies entirely inside 
the permissible band on the unit sphere (figure 
8a). The measured values of s then provide con- 
straint all the way around the greatcircle. Conver- 
sely, when the focus of expansion lies outside the 
image, the great circle cuts the permissible band 
(figure 8b). In this case the known values ofs pro- 
vide constraint only along two segments of the 
great circle. These segments get shorter and shor- 
ter as the vector t becomes more and more 
parallel to the image plane. It should be clear that 
in this case the direction of the vector t can be 
determined with somewhat lower accuracy than 
when the focus of expansion is near the prin- 
cipal point. 

3.4,2 The s-Bar Projection. The integrals on the 
right-hand side of the equations for t developed in 
section 3.3.1 contain positive multiples of the 
vector 

ff = - s ign  (E,)s (54) 

(Here we only care about the directions of the vec- 
tors, so we ignore scale factors.) Nowin the case of 
translation with known rotation, we have (from 
equation (41)) 

E, = - ( 1 / Z ) s .  t 

and 

g . t  = ( l /Z)  s i g n ( s . t ) s ,  t 

-- (1/Z)ls.tl>/0 (55) 
since Z > O, We are only interested at this point in 
the sign of~. t, so we can use any convenient posi- 
tive multiple of ~ such as 

-(1/E,)s ,  -s ign(E,)s ,  or - E , s  

in the discussion that follows. 
Equation (55) states that g can only lie in the 

hemisphere that has t as its navel. We call this the 
compatible hemisphere in the case of translation 
with known rotation. Since g is a multiple of s, it 
must also lie in the permissible band. Thus g can 
only lie in the intersection of the permissible 
band and the compatible hemisphere. We will ex- 
ploit this geometric insight shortly. 

Our task can be viewed as that of finding the 
hemisphere that contains all of the directions 
specified by the Vectors g derived from the image. 
Note that the solution may not be unique and that 
there may not be any solution. Later we will mod- 
ify the problem definition somewhat to deal with 
these possibilities. 

If there is a rotational component to the mo- 
tion, by the way, the points ~ will not be confined 
to a hemisphere. This provides a convenient test 
to see whether the methods presented here can be 
applied or not. 

3.4.3 Motion Determination as a Linear Program- 
ming Problem. We wish to find a vector t that 
makes g. t/> 0 at all image points. We can think of 
this as a gigantic linear programming problem. 2 
There are three unknowns and one inequality for 
every picture cell. (Actually, since we do not care 
about the magnitude of t, there are only two 
degrees of freedom.) 

2We do not wish to suggest, by the way, that linear program- 
ming algorithms could be fruitfully applied to this problem. 
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Fig. 9. The s-sphere showing great circles for many image 
points. Circles for critical points (emphasized) constrain loca- 
tion of t. 

Since we do not have a criterion function to be 
extremized, we will have an infinite number of 
solutions--if there are any solutions at all. All of 
these solutions will lie in a convex polygon on the 
unit sphere. The sides of this polygon are portions 
of great circles corresponding to constraints 
which we will call critical constraints (see figure 9). 
With data from a large number of cells we expect 
this solution polygon to be small. We may choose 
its center as the "best" solution. 

Typically, the solution polygon will have 
relatively few sides. Thus data from a small num- 
ber of  critical picture cells fully constrain the solu- 
tion. First of all, note that each side of this 
polygon corresponds to an equality of the form 
g" t = 0 for some picture cell. From the brightness 
change constraint equation we know that E~ = 0 
when ~. t = 0. Thus the critical constraints are 
provided by picture cells where E~ is small (and 
is not). This is an important observation, which 
can be used to reduce the size of the linear pro- 
gramming problem; we simply disregard the ine- 
qualities arising from picture cells where E, is 
large. 

(There is a class of points for which ~. t is arbit- 
rary, even though Et is small and ~ is not; these are 

image points for which Z is large. Such points 
provide false constraints on t. For a practical sys- 
tem, some means must be found for identifying 
these points. One way of doing this, for images 
with large depth range, is based on the following 
observation. In a real image, regions for which Z 
is large, that is, the background, tend to encom- 
pass a significant area with all points in the area 
having Et ~ 0. On the other hand, points with 
s. t = 0 and ~ large are usually isolated and sur- 
rounded by regions for which E, 4: 0. The above 
difficulty appears in all of the methods of deter- 
mining motion; it is harder to determine t when 
the depth range is large.) 

We observe in passing that the points most use- 
ful in constraining the translational motion vec- 
tor are the very same points where it is difficult to 
calculate depth accurately! One may also make 
the observation that a method for segmenting the 
scene into foreground and background regions 
would be very useful in the case of general mo- 
tion, since the background regions can then be 
used to recover the rotational component. The 
known rotational velocity can then, in turn, be 
used to recover the translational component from 
the foreground regions. 



The linear programming method of determin- 
ing t discussed above uses relatively little of the 
image data. In fact, only points at the edge of the 
compatible hemisphere influence the solution at 
all. While this is a sensible procedure if the data is 
trustworthy, it will be quite sensitive to noise. For 
noisy--that is, real images, it may be worthwhile 
to consider other points, such as those in a band 
for which E~ is less than small cutoff value. 

3.4.4 The Perceptron "Learning" Algorithm. One 
way of finding the solution of a large number of 
homogeneous inequalities is by means of the 
iterative perceptron "learning" algorithm (Min- 
sky and Papert [13]; Duda and Hart [14]). Given a 
set of vectors {ge }, this procedure is guaranteed to 
find a vector t that satisfies si" t/> 0, If such a vec- 
tor exists. It even does this in a finite number of 
steps, provided there exists some s such that ~i" t 
> s for all g~ in the given set (which almost always 
happens when the set is finite). 

The idea is to start with some nonzero vector t o 
and to test whether the inequalities are satisfied. 
(A reasonable choice for t o is one of the vectors si.) 
If the inequality is not satisfied for a particular 
vector in the set, then the smallest adjustment is 
made to make the dot-product zero. (Note that 
this may disturb inequalities that have passed the 
test already.) Suppose that the present estimate 
for the direction of the translation vector is the 
direction oft". We now test the dot-product gi" t n. 
If it is negative, we adjust our estimate of the vec- 
tor t according to the rule 

t "+~ = t" + St" (56 )  

where 

St" si" t" 
: - -  - - S  i (57) 

S i "  $ i  

Note that si" t"+~ = 0 and that the magnitude ofs~ 
does not matter. (Also, the test above can be 
replaced with a test that checks whether -s~-t" 
has the same sign as Et.) 

If the inequalities are inconsistent, that is, if the 
g~ are not confined to a hemisphere (or nearly so), 
as will happen in practice due to noise, the 
algorithm will not converge. Furthermore, there 
is no guarantee that the guess at any stage is par- 
ticularly good. We discuss several simple refine- 
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ments that can help in this case in reference 
[10]. 

The vector t" in the perceptron "learning" 
algorithm is obviously a linear combination of 
vectors drawn from the set {~z}. Vectors in this set 
have directions that correspond to points in the 
permissible band. Now suppose that this band is 
very narrow. Then, to build a vector with a signifi- 
cant z-component one has to add many of these 
vectors. In order to keep the x- andy-components 
small, these vectors must almost come in pairs 
from opposite ends of the narrow band. Not sur- 
prisingly, the algorithm performs rather poorly in 
this situation; it is much happier with vectors 
sprinkled uniformly in direction over a full 
hemisphere. 

It should also be noted that in a real-time ap- 
plication, we do not expect the velocity estimates 
to change rapidly. Thus the previous value of the 
velocity is likely to be an excellent first estimate 
for the current value oft. This means that very few 
iterations will be needed to get an acceptable new 
value. A considerable amount of computation 
can be saved this way, just as it can in the com- 
putation of the optical flow (Horn and Schunck 
[6]). We discuss a parallel perceptron algorithm 
in reference [10]. 

3.4.5 Minimizing the Integral of Z 2. In this section 
we assume that the depth range Zmax/Zmin is finite. 
This will generally be the case in robotic ap- 
plications. The method discussed in this section 
can also be applied to images in which the back- 
ground has very large Z, if, as discussed in section 
3.4.3, these regions are excised from the image 
before the motion vector is calculated. 

We have seen that we can compute depth when 
the motion t is known using equation (44) 

Z = - (1 /E t ) s .  t 

Now if we use the wrong value t' in this formula, 
we get the wrong depth value: 

Z' = - (1 /E t ) s .  t' = Z(s .  t ' ) / ( s ,  t) (58) 

We expect only positive values for Z, but this for- 
mula may give us negative values, since (s. t') 
may be negative where (s. t) is positive and vice 
versa. More interestingly, we may obtain very 
large values for Z (both positive and negative). 
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since (s. t) may be almost zero while (s. t') is not. 
That is, the magnitude of Z will often be verylarge 
near points where E, ~ 0. We may conclude that 
we could determine the correct value for t by 
minimizing the integral o f Z  2 over the image, that 
is by minimizing the quadratic form 

f f  (1/E32(s t )  2 dx dy 

= t [ff(1/E )ss dxdy]t (59)  

subject to the constraint Iltll = 1. The solution is 
the eigenvector of the real symmetric 3 × 3 matrix 

= f f (1 /e f ) s s  T dxdy (60) M 

associated with the smallest eigenvalue. We can 
prove this by minimizing the sum 

S = trMt  + L(1 - trt)  (61)  

where L is a Lagrangian multiplier. Then 

OS 
- 2Mt - 2kt = 0 (62) 

Ot 

which yields 

Mt = kt (63) 

Thus L is an eigenvalue of M, and t is the corres- 
ponding eigenvector. Substituting equation (63) 
into equation (61) gives the result S = L. Thus 
trMt is minimized by taking the smallest of the 
three eigenvalues of M for L. 

To minimize problems due to noise, we can 
add a small positive constant to E 2 commensurate 
with the expected noise in E~. That is, we take as 
our solution the eigenvector of 

M' = f f  1 E~ + n z ssr dxdy (64) 

associated with the smallest eigenvalue. 
Ife  is an eigenvector, so is - e .  But we want Z to 

be positive. Rather than test this condition at a 
single point, we compute an average like 

go = - f f (1 /E t ) s  dxdy or 

~f s dxdy (65) 
E, 

go = - E~ + n 2 

and check whether 

g0" t > 0 (66)  

If it is not, we simply change the sign of the solu- 
tion t. 

As before, we may choose to weight the integral 
of equation (59) according to some measure of 
how trustworthy are the data from each picture 
cell. 

The method presented in this section produces 
an estimate of the translation vector t in closed 
form and with high accuracy. Of course, a cubic 
must be solved to obtain the eigenvalues--but 
there is an analytic method for doing that. The 
corresponding eigenvectors can then be found by 
taking cross products of two rows of a 3X3 
matrix. 

The preceding method of calculating t has 
another justification that some readers might find 
more persuasive. From equation (41) we know 
that s. t ~ 0 for points with E t ~ 0 (again ignoring 
background points). Thus we are basically look- 
ing for a vector t that makes s- t ~ 0 wheneverEt 
0. The points where the time derivatives are small 
provide most constraint, as already discussed. We 
could try to minimize something like 

ffc(s" t) 2 (67) 

where C is the set of image points where E, ~ 0. 
Rather than use a strict cutoffon E,, we may con- 
sider a weighting scheme in an integral like 

f fw(s ,  t) 2 dxdy (68) 

over the whole image where the weighting func- 
tion w is chosen to emphasize points where Et ~ 0. 
A reasonable choice, w = 1/(E2t + n2), leads to in- 
tegral given in equation (64). The eigenvector cor- 
responding to the smallest eigenvalue is a normal 
of the plane that best fits the weighted set of points 
(see figure 10). 

If there is a rotational component of the mo- 
tion, by the way, the vectors g where E, is small will 
not lie near a great circle. In this case the smallest 
eigenvalue will not be small. This provides a con- 
venient test. We discuss a method that avoids the 
need to find eigenvalues and eigenvectors in 
reference [10]. Related methods for finding the 
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Fig. 10. The great circle corresponding to the motion t which best fits the points on the s-sphere for which E t ,,~ O. 

Fig. 11, Plot of several noisy estimates of the translation vector 
t on the s-sphere (200 pixels/estimate, 1% noise in bright- 
ness measurements). 
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focus of expansion are discussed in reference 
[15]. 

Figure 11 shows a scatter plot of positions on 
the unit sphere for t recovered from noisy syn- 
thetic data. Each estimate is based on brightness 
gradient at 200 picture cells with 1% noise in the 
derivatives of brightness. Note the elongation of 
the cluster of points in a direction parallel to the 
optical axis. When tens of thousands of picture 
cells are used, instead of  hundreds, the algorithm 
can tolerate considerably more noise. While 
further experimentation is called for, we found 
that this algorithm behaves at least as well, if not 
better, than the others we have investigated. 

4 Conclusions 

We have developed methods for recovering mo- 
tion directly from the first derivatives of bright- 
ness in an image region in the cases of pure rota- 
tion and pure translation (and general motion 
when the rotational component is known). We 
have tested these methods on synthetic image 
data and, to a limited extent, on some kinds of 
real-image sequences. In the case of pure rotation 
we give an exact simple solution to the obvious 
least-squares problem. In the case of pure transla- 
tion we give several methods with different trade- 
offs between accuracy, noise-sensitivity and com- 
putational expense. While we have preliminary 
ideas about the relative merits of these methods, 
detailed conclusions will have to await further 
careful experimentation with real images. Some 
further results on both synthetic and real-image 
data are reported in references [10] and [15]. 

We show that it is trivial to recover depth when 
the motion is known and that it is trivial to 
recover the motion when depth is known. We em- 
phasize the importance of a large field of view 
and point out difficulties arising in the pure tran- 
slation case when there is a very large depth 
range. We also note that image points where the 
brightness derivative is small provide most con- 
straint on the translation vector while the depth at 
these points is hard to recover. We show that it is 
difficult to recover the translational motion 
toward, and rotational motion about, the line 
connecting the projection center to the image 

region of interest, when that region is small. We 
emphasize the need for adequate low-pass filter- 
ing in both spatial and time dimension before 
sampling in order to ensure that estimates of 
derivatives are accurate. 

The discussion is facilitated by introduction of 
the auxiliary vectors s and v. The directions of 
these vectors have been shown to be constrained 
to lie in the intersection of a permissible band and a 
compatible hemisphere on the unit sphere. These 
geometric concepts help lend intuitive support to 
the algebraic results. 
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Appendix A: The Brightness Change 
Constraint Equation 

The brightness change constraint equation is 
based on the assumption that the brightness of 
the image of a patch on the surface does not 
change as the observer moves relative to the sur- 
face. Expansion of the total derivative in the 
equation dE/dt = 0 by means of the chain-rule 
leads to the constraint equation 

OE dy OE OE dx + + = 0 (A1) 
Ox dt Oy dt ~ -  

or 

uE~ + oEy + E, = 0 (A2) 

where Ex, Ey, and E~ are the partial derivatives of 
brightness with respect to x,y, and t, while u and o 
are the time derivatives of x and y, 

In practice, the brightness of a patch rarely 
remains exactly the same. The brightness change 
constraint equation fs nevertheless a useful ap- 
proximation, as long as the change in brightness 
at an image point due to the motion is much 
larger than the change in brightness due to other 
effects, such as change in viewing direction or il- 
lumination. This will be the case as long as there 
is good contrast at high spatial frequencies, as will 
be shown next. 

Suppose that the brightness of a patch does in 
fact change due to changes in viewing direction or 
changes in illumination. In most cases the rate of 
change of brightness will be relatively small. Let 
us say that dE/dr = ~, and so 

E, = -(uE~ + VEy) + ~ (A3) 

Consider now a simple grating pattern in the 
image that, at a particular time, is described by the 
equation 

E = E0[1 + sin (ax + by)] (A4) 

Then the components of the brightness gradi- 
ents are 

Ex = aEo cos (ax + by) 

Ey = bEo cos (ax + by) (A5) 

Consequently 

uEx + oEy = (au + bo)Eo cos (ax + by) 

(A6) 

It is clear that the error inE,, the rate of change of 
brightness at a point in the image, resulting from 
changes in the brightness of .the surface, is 
relatively small, as long as (au + bv)Eo is large 
compared to e. (This term, (au + bv)Eo, will be 
zero when the image motion happens to be 
parallel to the ridges of the grating. In practice, 
however, surface markings will contain many 
spatial frequency components and most of these 
will not be aligned in this special way.) We con- 
clude that the relative error in the rate of change 
of brightness with time is small, as long as there is 
significant contrast at the higher spatial fre- 
quencies. 

The approximation breaks down when the sur- 
face markings are weak and the changes of 
brightness due to changes in viewing direction or 
illumination are rapid. This happens, for exam- 
ple, in the rare situation where a specular surface 
momentarily lines up exactly to reflect the light 
from a point source toward the viewer. It also hap- 
pens when an object moving relative to a point 
source enters a cast shadow. 

A number of additional factors help keep the 
relative error in Et small. First of all, some sur- 
faces have the property that they appear equally 
bright from all viewing directions. A Lambertian 
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surface is a very special case of this, where the 
brightness varies as the cosine of the incident 
angle. The image brightness is not affected at all 
by the motion of the observer when a surface of 
this type is fixed relative to the light source. While 
most real surfaces do not appear equally bright 
from all viewing directions, brightness typically 
varies slowly with changes in observer position 
(slowly enough that we are usually not aware of 
any such changes). 

Brightness variations resulting from changes in 
surface orientation are most severe when there is 
a single point source. These variations are 
reduced when there are multiple sources or an ex- 
tended source. In the extreme case of a scene il- 
luminated from all sides, for example, image 
brightness does not depend on surface orienta- 
tion at all, even if the surface is specular! 

Similarly, a lens occupying a large solid angle, 
as seen from the object, will smooth out changes 
in brightness resulting from changes in viewer 
position. One can see this easily in the extreme 
case of a glossy reflection, which will be seen only 
over a small range of positions if a small lens of 
pin hole is used. A large entrance aperture on the 
other hand will smear out the highlight effect over 
a larger range of viewing positions. This is not a 
big help in many imaging situations, however, 
since objects are far from the sensor relative to 
the size of the sensor, except in the case of 
microscopy. 

To summarize: The brightness of the image of a 
patch may change somewhat as the observer 
moves relative to the surface. The brightness 
change constraint equation nevertheless provides 
a good way of estimating the rate of change of 
brightness with respect to time at a point in the 
image. The relative error in this estimate will be 
small when there is significant contrast in the sur- 
face markings at higher spatial frequencies. 
(There will be no error at all when the surface ap- 
pears equally bright from all viewing directions 
and the object does not move relative to the 
light source.) 

Appendix B: Ensemble Averages 

Some of the integrals that appear in this paper, 
while functions of the scene content, tend to lie 

close to average values when evaluated over suf- 
ficiently large textured regions. These average 
values can be useful in two different enterprises: 

• analyzing the relative stability of the com- 
ponents of the solution, and 

* developing simplified methods for recovering 
the solution (as shown in reference [10]). 

In order to compute these averages we have to 
make some assumptions about the probability 
distribution of brightness gradients. We assume 
here that this distribution is rotationally symmet- 
ric and independent of image position. That is, on 
average we see the same brightness gradients at 
every image point, and all directions of the bright- 
ness gradient are equally likely. The distribution 
of magnitude of this gradient is left arbitrary, 
however, since it does not directly affect the 
main results. 

B.I Moment Integrals for the Uniform Band 

Before we start, let us quickly obtain the equiva- 
lent results under the assumption that data points 
(s orv) are uniformly distributed over the permiss- 
ible band. Let q denote the latitude and { the lon- 
gitude on the unit sphere. We see that the area of 
the band is just 

K = cos~l d~l dE = 4n sin0o (B1) 
d--TI "/--0 o 

The Cartesian coordinates of a point on the unit 
sphere are given by p = (x,y,z) r where 

x = cos T1 COS 

y = COS q sin { (B2) 

z = sin r 1 

Let the integral of ppr be 

p p r d q d ~ =  Iy x Iyy I,z (B3) 
d - - l l d - - O  0 

Izx I~), I~z 

Then 

/~x = x a cos q dq d~ 
- n  - 8  v 

f/ f? = cos 2 ~ d{ cos 3 T1 d~l (B4) 
n % 
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that is, 

rT [3 sin0v + (1/3) sin 30v] Lx=  
4n . 

= ~-s ln0v[1  + (1/2) cos20o] (B5) 

while 

I~ = Z 2 COS rl dT1 d~ 
J-~,.,' -Or 

: 

that is, 

4n 
/~ = ~-- sin 3 0o (B6) 

Also, by symmetry, Iyy = Ix~ and the off-diagonal 
terms, Ly, I . ,  and I=, are all zero. We have 

/~x = (K/3)[1 + (1/2) cos 2 0o] =/~y (B7) 

and 

/~z = (K/3) sin 2 0~ (B8) 

so 

Ix~ + Iyy + I~ = K (B9) 

The moment matrix is diagonal and so Ix~,Iyy, and 
I~ are the three eigenvalues. The condition num- 
ber is the ratio of the largest to the smallest or 

1 + (1/2)cos  2 0o 
sin 2 0~ (B10) 

These results give us a quick estimate of the en- 
semble averages of the intergrals is ss r and w ~. To 
do better, we have to take into account the actual 
distribution of s and v in the permissible band. 

B.2 Ensemble Average of the Integral of ss r 

It is convenient to use polar coordinates in the 
case of a circular image. We have 

x = r c o s 0  - n < 0 < + r r  
( B l l )  

y = r s i n  0 0 < r < r o 

Similarly, we may use polar coordinates for the 
brightness gradient 

Ex = 9 c o s 0  - n < O < + n  
(B12) 

Ey -- P sin 0 0 < 9 

Let the probability of seeing a brightness gradient 
with magnitude lying between 9 and 9 + 89 be 
2r~gP(9)8 p. Now 

S = -Ey  

xEx + yEy (cos  I 
= p - s i n 0  (B13) 

r c o s  (0  - 0 )  

Consequently 

S "S = 9211 + r2 C O S 2 ( 0 -  0)] (B14) 

Consider first the integral of s. s: 

f_T forV (s " s)r dr (BI5) 

To obtain the desired ensemble average we in- 
tegrate over 9 and 0 as follows: 

f_~ff  t'(p)[f_~fo'°(s's)r dr dO]gdpdO 
(B16) 

This integral can be split into two parts: 

f0 f/ p3e(p) dp dO 

f0 o r dr dO 2 = 2~ P2r~ (B17) 

and 

fo=P3P(p) dg f_idO for°r3dr 

f _z 7,12 cos20 'd0 ' = ~ - P 2 r ~  (B18) 

where 0' = (0 - 0) and 

f/ P2 = 93P(0) dp (B19) 

We note in passing that P2 is a measure of the av- 
erage squared magnitude of the brightness gradi- 
ent. Combining the two parts above we find 
that 
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f s .  s dx dy = 2rt2P2r2o(1 + r~/4) (B20) 

Similarly we obtain 

Ixx= f"_.fo P,o) 
[f~jo "° p2cos2Or dr dO]p dp d*  

= f0 ~° p3p(p) dp 

= rr2p2 r2 (B21) 

and 

a - n a O  k a - r r a 0  

(0 - ¢Or dr dO] P dp d~ C O S  2 

f; f; = 93p(p) dp d(~ (B22) 
/1 

for°r3dr~cos20'dO ' 

= ~ e 2  r4 

while Iyy = 1=. 
The moment  matrix is diagonal, so I~x, Iyy, and 

Izz are the eigenvalues. The condit ion number  is 
the ratio of  the largest to the smallest or 

_ _  2 2 for ro<2 and 
2 

ro (B23) 
2 

_ _  2 rv for ro >/2 
2 

This result does not depend on P2, as stated 
earlier. 

F + E~ + y(xE:¢ + yEy)-q 

v= [ - E x  - x(xEx + yEy) J 

yEx - xEy 

[: in0+r2sin0c°s 0 
= O  c o s O - r  2cosOcos (O  O) 

r s i n  ( 0  - , )  

(B24) 
and 

v . v  = p2(1 + r2)[1 + r2cos2(0 - 0)] (B25) 

which follows from v = s × r, s .  r = 0, r .  r = 1 + 
r 2 and 

s ' s  = 9211 + r z cos z(0 - ~)] (B26) 

After some tedious manipulations,  similar to 
those in the last section, we find 

v . v d x d y  = ~P2r~ 1 + - - ~ - - + - -  

(B27) 
and 

I~x = rrzP2 r2 1 + -~  + = I,y (B28) 

and 

I~, = ~ 2 P  2 (B29) 

Again, the matrix is diagonal and soI~x,Iyy, and/=  
are the eigenvalues. The condit ion number  is 
just  

2 2 rv 
~ - +  1 + - -  (B30) 
ro 3 

which is independent  of  P2 once more. 

B.3 Ensemble Average of the Integral of re r 

Here we proceed much as in the previous 
section with 


