$$\psi = \frac{e^{ikR}}{R} \cdot \frac{ik}{2\pi} \int_{-\infty}^{+\infty} e^{i(xq_x + yq_y)} \left(1 - e^{-\frac{i}{2k} \int_{-\infty}^{+\infty} (-V) dz} \right) dxdy = \frac{e^{ikR}}{R} A(\mathbf{k}_f, \mathbf{k}_0), \tag{1}$$

 $q = k_0 - k_f$, k_f and k_0 being of magnitude k and having the directions respectively of scattering and of φ , R is the distance from the center of the sphere to the point of observation, $V = \hbar^2 U/2\mu$, U is the scattering potential, μ is the mass of a scattering particle; and \hbar is Planck's constant. Formula (1) is true for vibrations of electric type, but these coincide with the magnetic ones for $kr \gg 1$ [5]. We may put +V as +V = $(m^2 - 1)k^2$ within the sphere and +V = 0 elsewhere, for then Helmholtz's equation formally coincides with Schrödinger's equation, whose solution is (1). The first term in (1) is the formula for Fraunhofer diffraction with this choice for +V.

From (1) and this +V we may calculate the scattered intensity $I = |\psi|^2$ and the attenuation factor $\sigma = (4\pi/k) \text{Im A}$ (k_0 , k_0) for $|m-1| \to 0$, which gives us all the results of chapter 11 of [6].

The following formula is readily derived for the refractive index α of a medium containing N particles per unit volume:

$$\alpha = 1 + Nr^2 \frac{2\pi}{k} \left\{ -e^{-\rho \operatorname{tg} \beta} \frac{\cos \beta}{\rho} \cos (\rho - \beta) + e^{-\rho \operatorname{tg} \beta} \frac{\cos^2 \beta}{\rho^2} \sin (\rho - 2\beta) + \frac{\sin 2\beta \cos^2 \beta}{\rho^2} \right\},$$

$$\rho = 2(n-1) kr, \quad \operatorname{tg} \beta = x(n-1), \quad m = n-i x.$$

Also, (1) enables us to calculate the characteristics of a multilayer sphere; for instance, the attenuation factor of a transparent ($\chi = 0$) two-layer spherical particle is

$$\sigma = \pi r_2^2 (2 - X_1 - X_2); \quad X_1 = [2 - K(\rho_2, \beta_2)] \cdot [1 - r_1/r_2],$$

$$X_2 = 4 \int_0^{r_1} \cos \left[\rho_2 \sqrt{1 - \xi^2} + \rho_2 \left[(n_1 - 1) / (n_2 - 1) - 1 \right] \sqrt{(r_1/r_2)^2 - \xi^2} \right] \xi d\xi.$$

Subscript 1 relates to the core and subscript 2 to the outer shell; $K = \sigma'/\pi r_2^2$, in which σ' is the attenuation factor for a sphere of radius r_2 and having $m = n_2$ in this approximation.

REFERENCES

- 1. H. S. Green and E. Wolf, Proc. Phys. Soc., 66A, 1129, 1953.
- 2. E Wolf, Proc. Phys. Soc., 74, 269, 1956.
- 3. P. Roman, Acta Phys. Hung., 4, 209, 1955.
- 4. L. Schiff, Phys. Rev., 103, 443, 1956.
- 5. M. Born, Optics [Russian translation], ch. 6, GONTI, 1937.
- 6. H. van der Holst, Scattering of Light by Small Particles [Russian translation], IIL, Moscow, 1961.

10 June 1964

Kuznetsov Siberian Institute of Technical Physics

CALCULATION OF THE π -ELECTRON STRUCTURE OF SOME VINYL ETHERS BY THE SEMIEMPIRICAL SELF-CONSISTENT FIELD METHOD

Yu. L Frolov

Izvestiya VUZ. Fizika, No. 3, pp. 177-179, 1965

Values are discussed for the resonance integral of C-O(θ_{C-O}) and for the parameter $\delta\omega_O$ of the oxygen atom for use in π -electron calculations for vinyl ethers by means of a semiempirical form of the MOLCAO self-consistent field method; $\delta\omega_O$ equals $\omega_O-\omega_C$, in which, in general, ω_i is the part of the coulomb integral $\alpha_i=\omega_i-\sum N_j\gamma_i$ dependent $j(\pm i)$

only on the type and valency state of atom i in the approximation used. The subscripts O and C correspond to oxygen and carbon, the γ_{ij} are the two-electron repulsion integrals, and N_j is the number of p- or π -electrons brought into the molecular structure by atom j.

The sequence of operations is as follows. First the electronic absorption spectrum (band with peak at 192 m μ [1],

Parameters (eV) of Vinyl-n-Butyl Ether, Divinyl Ether, and Furan

								Transition energies	energies	
- Friedrich Control	,	٥		,	7	Ü	Calculation	ation	Measurements	lents
Compodition	}) 			<i>i</i> .	Singlet	Triplet	Singlet	Triplet
2		_		70=15.05	γ _{ett} =8.15	-12.51	6.57	3.90	6.5	
$C_4H_9-0.CH=CH_2$	-16.5	-1.65	-2.92	7,1=10.73	$7^{1/2} = 5.75$	-9.72	8.4년 -	7.40	7,4	
				$\frac{7}{2} = 10.61$	$7_{12} = 7.45$	2.73	·			
				7 H	7 or = 704=-8.15	-13.31	6.05	4.85	6.05	·
				01.01=0}	742-703-5.75	-11.03	7.05	5.40		
3 4 1 2	- 16.5	1 65	65 6-		714 = 5.75	-6.39	8.40	09.9		
CH ₂ =CHOCH=-CH ₂		•		$ 7_1 = 7_4 = 10.70 $	$\gamma_{23} = 3.00$	+2.16	8.55	7.25		
				10 63	712 = 731 = 7.45	+2.89	9.05	8.50		
				1,2 (810.00	$\gamma_{13} = \gamma_{24} = 3.95$		09.6	8.90		
,0,			312=334=	14 00	701=704=8.15	-13.65	5.75	4.05	6.05	
			=-2.75	70=10.20	$\gamma_{e2} = \gamma_{e3} = 6.00$	-10.30	6.50	4.60	6.5	4.9
HO, HO	-16.5	-1.65		233==	$\gamma_{12} = \gamma_{31} = 7.40$	-9.72	7.50	5.80	7.8	****
		}		7,1=74=10.03	714 = 5.90	+1.94	7.40	6.30		
13 21				7. == 7. == 10 63	$7^{23} = 7.20$	+3.53	8.50	7.40		
EH —— EH				2	713 = 724 = 5.80		10.6)	10.00		
			_	-		-	_	_		

supposed band in 130-160 m μ region) is used to select the parameters for vinyl-n-butyl ether; then these are used to calculate the structures of divinyl ether and furan, the results being compared with experiment (UV spectra). Pople's method [2, 3] is used, the two-center electron-repulsion integrals being calculated by the method of [4], while the γ_i are found from $\gamma_i = 3.29$ Z $_i^{eff}$ [5], in which the Z $_i^{eff}$ are the effective nuclear charges calculated from Slater's rule, but with allowance for the charge distribution of the mobile electrons:

for C
$$Z_i^{eff}$$
=3,60—0,35 p_{ii} ,
for O Z_i^{eff} =5,25—0,35 p_{jj} ;

in which pii and pij are the charges of the mobile electrons on the corresponding atoms.

The table gives the results, in which ε_{μ} is the energy of the molecular orbital; the numbers are those of the carbon atoms. The energies of the electronic transitions have been calculated without allowance for interaction between configurations. The β_{C-C} are from $\beta(r) = 2523 \exp(-5.0085 r)$, the basic data for this coming from benzene and ethylene [4], i.e., $\beta(1.39 = -2.39 \text{ eV})$ and $\beta(1.35) = -2.92 \text{ eV}$. The lengths of the C-C bonds in furan are from the microwave spectrum [6]. The 252 m μ band of furan is very weak [7, 8] (peak extinction coefficient about one), and this may be assigned to the transition to the triplet state (calculated energy 4.6 eV).

The results are in satisfactory agreement with experiment; the parameters can be applied to molecules with the structure R_1 -O- R_2 , R_1 and R_2 being unsaturated hydrocarbon radicals.

The calculated electron-density distributions are

The results are in good agreement with the reactivity. The two ethers have negative charges on the β -carbon; they react with halogens in accordance with Markovnikoff's rule. The calculated electron-density distribution for furan indicates that the α -carbon is highly reactive in electrophilic attack and radical processes. The free-valency results for furan resemble those for aromatic compounds; in fact, the α -hydrogen is replaced by bromine [9], but the double bond is not broken. This is typical of aromatics.

REFERENCES

- 1. P. P. Shorygin, T. N. Shkurina, M. F. Shostakovskii, and E. P. Gracheva, Izv. AN SSSR, Otdel. Khim. Nauk, 1011, 1961.
 - 2. J. A. Pople, Trans. Faraday Soc., 49, 1375, 1953.
 - 3. J. A. Pople, Proc. Phys. Soc., London, A68, 81, 1955.
 - 4. R. Pariser and R. G. Parr, J. Chem. Phys., 21, 767, 1953.
 - 5. L. Paoloni, Nuovo Cimento, 4, 410, 1956.
- 6. B. Bak, D. Christensen, W. B. Dixon, L. Hansen-Nygaard, J. R. Andersen, and M. Schöttländer, J. Molec. Spectrosc., 9, 124, 1962.
 - 7. L. W. Picket and N. J. Hoeflich, J. Amer. Chem. Soc., 73, 4865, 1951.
 - 8. M. K. Orloff and D. D. Fitts, J. Chem. Phys., 38, 2334, 1963.
 - 9. P. Carrer, Textbook of Organic Chemistry [Russian translation], Goskhimizdat, Leningrad, p. 959. 1962.

18 August 1964

Zhdanov University, Irkutsk