the Sj.&j by comparison with 8. 1 show here that this is not so.

Consider combined orbitals of the following form instead of the ordinary ones:

?iZERm DK, (4)
K
in which the ¢, are basic functions and

Rix:E(l ——Sia) Palc, (5)

in which the P, are elements of the coupling matrix defined by

Pa;c ”—*261}(’3} (6)

i
Then to an accuracy of §* we may assume that the basis is orthogonal, and, ashas been shown [2], the energy may
be put as

A
E= ¥ <ot Foo) . 0
K

Variation with respect to (6) subject to the additional condition [ ¢; ¢xd = = Sy then gives

det | Fig — g505, | = 0. (8)
The form of the F;, coincides with Mulliken’s formulas, so that Sik of (2) should be replaced by the §;, if we calculate
the B;, in accordance with [1]. The semiempirical approximation of [1] may thus be justified via the use of combined
orbitals, so its use in [1]is in order.
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A VARIATION PRINCIPLE IN THE DYNAMIGC SCATTERING OF X-RAYS

V. S. Mospanov
Izvestiya VUZ. Fizika, No. 3, pp. 164-166, 1965
Consider the scattering of x-rays by an ideal crystal whose nuclei are rigidly fixed. We then have to consider the

interaction with the crystal as a whole, because we have to solve Maxwell's equation for the vector potential A jointly
with Schrédinger's equation for the crystal:

mce

1. 4=
AA——A=—J
¢t c [6))
(Hy + Hip) ¥ = in¥,
in which J is the current representing the reaction of the crystal on the radiation
A
J={wsjwar, 2
A ich e
i :;c—mz(vaa(r—m)—}-a(r—ra)va) 4—;1-0250‘——"51)/1 (r, £). (3)
o o
We substitute (3) into (2) and introduce the microscopic (unaveraged) density p(r) to get
- ich ep(ryA(r, 1)
J(r,t):g;j}:w[Vaa(rmra)+a(r—ra)va]¢dz+ﬂ——(~——. (4

The first term in (4) is of importance in resonant scattering of y-rays; it will be considered elsewhere. Resonance
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effects are unimportant in x-ray scattering, so this term may be neglected and (1) may be replaced by

aa—Lgtreend ®)
c? mc?
Taking A(t) as harmonic, we reduce (5) to
M+ Ad="20 A (6)
THA= me? P '

Equation (6) is easier to solve than the usual equation in Laue's dynamical theory [1}; it may be formulated as a
variational principle, for which purpose we transfer from the differential form of (6) to an integral one:

A= S G(r,r)p(r)A(r)dd. (N
mc?
The Green's function G(r, ") satisfies
AGH+r2G=A(r—r’) (8)

and the condition of periodicity G(r + a,1") = eiK a G(r, t*). The periodicity in the density also causes A to be periodic,v
the repeat distance being that of the lattice:

A(r+4 a) =ecika A (r). 9

It is then sufficient to find Ay(r) for a single cell. For the whole crystal

A(r) = zeiml/lo(r—rl). (10)

e

The integral equation (7) corresponds to a variational principle [2, 3]

BA =0, (b
A=t [ar e A a— <4nf>2 [ar@emaemaeyeeydar. (12
me mce-

We replace the cell by the equivalent sphere of radius R and use (6) to eliminate p(r) from (12):

A= ];_{1’:) Ae, (13)

94 o1, @ 24
.= N —ar = ) =G, ) | 14
A 5 as | as [Or A 0r][A0r,G(r ry—G(r r)()r’] (14)

r<R-2 r'<R-e .
The solution is found by expanding A and G with respect to the spherical harmonics of (2); the trial functions are
of the form

I=n
An(r) = D Cim Ri (") Yim (3, 9). (15)
=0 m
Ry(1) satisfies
a2 4rep(r) 1(+1)
[Erz + k2 — P ps } rRy(r) = 0. (16)

The expansion in Laue’s method employs plane waves, whereas the present solution takes account of the transla-
tional symmetry and gives an expansion in spherical harmonics.

Consider the case I = 0; the trial function is Ag = CRy(r), in which Ry(r) satisfies

a* drep(r)
[ars = | R =e (0

The solution is essentially dependent on the form of p(r); for point scattering we may transform (17) to

[d? b dmeNoF °

dr K et :l r Ro (f) = 0,
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in which F is the structure factor. The solution is Ry = e™I/inr, with n = Vk¥ — 4mezNgF /mc?. If «? > 4me?NyF /mc?, then
% = k — 2me?NoF /kmc?, i.e., allowance for the interaction causes an additional phase change. If p(r) = c/roa= 1), we
get attenuation not associated with absorption, namely primary extinction.

This method is convenient when the radiation arises within the crystal.

I am indebted to Dr. D. F. Zaretskii for direction in this work.
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ION DIFFRACTION IN ELECTROLYTES*

V. I. Vashchuk

Izvestiya VUZ. Fizika, No. 3, pp. 166-168, 1965

A recent paper [1] describes an experiment whose result the workers interpreted as diffraction of cu®* jons in aque-
ous CuSOy during electrolysis. This interpretation conflicts with the generally accepted position that quantum effects be-
come important when the De Broglie wavelength of the atoms becomes comparable with the interatomic distances [2].
This is obviously not the case for electrolytes.

The description itself forces us to reject the interpretation, for ions diffracted at a hole 0. 2-2 mm from the cath-
ode and moving at 107% cm/sec would take 20-200 sec to reach the cathode, whereas the electrolysis is run for only
10 sec. It is stated that longer times do not produce a normal diffraction pattern. It is clear that the cathode receives
ions already very close to it; no diffraction at the hole is observable.

The screen with a hole in it acts by perturbing the electric field between the plates; the polarization near the
cathode gives the field the form shown in Fig. 1.

L2 A,

Fig. 1 Fig. 2

No ions pass through the hole if this is closed with a metal foil, but the electric field is unaltered. I have tried
this and have found that the pattern is the same and is obtained as readily as when the hole is open (Fig. 2). This again
shows that the wave aspect of the ions has no part in producing the pattern.

It also follows that the hole could be replaced by a circular rod with one end near the cathod to give precisely the
same pattern, as one would expect, because the electric field is then the same as for the screen with a hole,

I have found that an unchanged pattern is obtained if this rod has the same diameter as the hole in the screen and
has its end the same distance away. The deposition of the copper is dependent on the distance between rod and cathode
for a given mean electric field U/r, but there is none of the alternation of central maxima and minima to be expected
from diffraction or interference. There is merely a gradual weakening of the central dark spot, which vanishes (mini-
mum) with increase in distance but is not replaced by any subsequent maximum.

*Shortened version of the original.
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