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Here f 11 corresponds to oscillation along the axis of symmetry, f. to oscillation perpendicular to that axis, and
( Jida s
1M

) are (3 — j) symbols [2].

We have 8 ~ 0. 15 for heavy strongly deformed nuclei; (7) gives the greatest anisotropy for isolated peaks at about

5%.
We can find fi as a function of ¢ from experiment (no satisfactory theoret- y’g[ﬁl - 7
ical relation is available). All of the above formulas correspond to a single y-ray
energy, but the Y-ray source may be a betatron, in which case the angular distri- 4§— ,/
bution is governed by the maximum energy Eym’ A -
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Figure 1 shows /44 and J. as functions of E, . for typical values of the position and width of the giant resonance
in strongly deformed nuclei. Here the anisotropy is about 3% in the most favorable:cases.

Nuclei near A = 25 have marked deformation, the most deformed being Mg-24 (ratio of semiaxes 1.8:1) [3], with
B=0.67. The anisotropy is about 27% for a line spectrum and 7% for a betatron spectrum (E, ., at the maximum of the
giant resonance). The smallness of the effect for heavy nuclei (about 3%) makes it difficult to observe, whereas for A ~
~ 25 the effect is large enough (about 7%) to be observable.
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SELECTION OF AN ABSOLUTE INTENSITY SCALE FOR RAMAN LINES

N. K. Sidorov and L. S. Stal'makhova

Izvestiya VUZ. Fizika, No. 3, pp. 162-163, 1965

5672 4 7g72
Bernstein and Allen's formula (1] S IR for the standard intensity is used for determining absolute

(26"24+7g"%) 439
Raman intensities; b’ is the trace of tensor o' for the derivative of the polarizability with respect to the normal coordi-
nate, g' being the anisotropy of that tensor. The unit of intensity on this scale is the quantity (5b 2 + 7g"%) 5o found for
the 459 cm™t line, whose absolute value is 34 X 10-8 cm4/g [2]. If we use as standard the 802 cm~! line of CgHyg, the
(56" +7g"%),,
(50" 4 78" g3
But uniform illumination of the vessel in a plane perpendicular to the axis (as in the standard elliptical illumina-
(5672 - 13g72),,
(50" + 138 )50

measure of the absolute intensity in the scale § = is (5b"% + T g = 24 107 Cm4/g [3]

tor) makes it preferable to use the scale R = , because this ratio can be evaluated by experiment with-
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out measuring the degree of depolarization p, which has to be measured in order to obtain S [1].

Naberukhin [4] (see also [5]) has shown that f(p), the relation of the measured integral intensity to p and to the
geometry of the illumination in an elliptical system, varies by not more than 4% for p from 0 to 6/7.

Placzek's theorem gives [1, 3] that

Okl _Q w o M(d) (V—S‘?Q ) 22 &

R - 7 - P} T Q) 3 *
(80" + 138 )z W ¢, sz @ CH,L 802\ v—Aav | f(osp)

M

Here Q is the area under the line, n is the refractive index of the liquid, ois the spectral sensitivity of the photomulri-
plier, M is molecular weight, d is density, and Av is line frequency. It is simple to show that f(p) Vit Psop) and f(p) /
/F(pa59) may vary from 1 to 1. 08 for the elliptical system for p between 0 and 6/7, so we may put f(p)/f(pgge) = 1, and
R is virtually independent of p. This produces an eror less than that from substituting in f(p) /f(pge) for the measured p,
because the latter have 5-10% error. All the other quantities on the right in (1) can be found by experiment.

To find § requires measurement of p, whereas to find R does not, so (5b’2 + 13g'2) Ay can be found without direct
measurement of p (which is a difficult task). Also, the (5b'2 + 7g'%) Ay arising in the determination of S differs from
(5b™ + 13g' Ay in that the latter directly characterizes the absolute intensity, because Placzek's theory gives Iay as
proportional to (5b" + 13g") Ay, not to (5b" + Tg?)ap. Then (5b* + 135" gy = (5" + gy (1 + pyg) = 26 - 107% cm*/
/g. because pgy = 0. 07. Measurement of R gives us the absolute line intensities as

(562 + 13g"2),, = R-26-10"% ecm*/g.
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BASIS FOR NEGLECTING OVERLAP INTEGRALS IN
CALCULATIONS ON MOLECULAR SYSTEMS

V. G. Plotnikov
Izvestiya VUZ. Fizika, No. 3, pp. 163-164, 1965

The most usual method in calculations on molecules, MO-LCAO, employs parameters calculated by Mulliken's
method [1], which has the disadvantage of neglecting overlap integrals without giving a convincing reason for this. The
basic equation in MO-LCAO may be put as

Feje=¢; Sejy, @

in which F is the matrix for the Fok hamiltonian, S is the matrix for the overlap integrals, the cji are the coefficients
in the expansion for the molecular orbital, and the &; are the energy levels.

The nondiagonal elements of (1) take the following form in the semi-empirical MO-LCAO method:
Bix — Sike, (2)
in which
1
Bix = ESirc(ail + ki) (3
the o being the diagonal elements.
We see from (2) and (3) that both terms in (2) are of the same order in S, so it would seem impossible to neglect
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