
We consider that Planck's  forn]ula should be considered as a part icular  case of Wien's thermodynamic formula, 
especia l ly  in view of the simple derivation given below. 

The energy density of equilibrium radiat ion is dependent solely on the frequency u and temperature T: 

a .  (,,) = u ( r , . , )  a.~. ( 2 )  

There are only three dimensional  universal constants (Planck's  constant h, Boltzmann's constant k, and the veloci ty  of 
light c), so (2) may be put as 

du (~)=: v (h-~y, ~ ) d ( h ~ )  (3) 

with one dimensionless argument; the dependence of v(x, y) on its second (dimensional) argument may be established by 

comparing the dimensions on the two sides of (8). We isolate on the right expl ic i t ly  the factor (u/c)~: 

du (',) = h~ " d(hv). (4) 

Function g is dimensionless and cannot be dependent on the dimensional argument u, which constitutes the content of 
Wien's theorem. 

This is not a thermodynamic derivat ion of Wien's formula, but its general i ty  is not in doubt. An important  conse- 
quence is that Wien's law retains its form for other types of equil ibrium radiation, e. g . ,  gravitat ional .  
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The physical  aspects of the definit ion of at tenuation coeff ic ient  have been discussed in deta i l  for scalar waves and 
for part icles  [1-4]. Here I extend the t reatment  to the scattering of a plane e l l ip t i ca l ly  polar ized e lec t romagnet ic  wave 

(propagating para l le l  to a locus q) at a par t ic le  of any shape. I also discuss the conditions for the at tenuat ion coeff ic ient  
to coincide with the screening coefficient.  

The components of the scattered field in the wave zone take the form 

~ihr 

E j  = ik---r aLP (~)' e) Eop; H. = m a in, El; (1) 

E, H, E 0 and H 0 are the vectors of the scattered and incident  waves, k is wave number, n is a locus in the direction of 
observation of the scattered light, and m a is the refractive index of the medium outside the particle;  r, @, ~0 are the 

polar coordinates of the point of observation (the origin lies at the center of the par t ic le ,  while | is reckoned from the 
direct ion of q, so n = q for | = Jr) and the a j, p are cer ta in  complex functions, with j, p = 1, 2, subscripts 1 and 2 re-  
ferring to components perpendicular  and para l le l  to the reference plane respectively.  

The screening coeff ic ient  c is [8] defined by 

l:-~ f l l a a  ds - loi f r l n  ds,  G :  (2) 

in which II = (c/81r) Re[E + E0, H* + I-I~0], II a : (c/8~r) Re[E, H] are the Poynting vectors of the total  and scattered fields, c 
is the veloci ty  of light,  and I0 is tile intensity of the incident  wave. The integrat ion is taken over a sphere of radius r. 
The first term in (2) represents the scattered light; the second, the absorbed light. 

We substitute (1) into (2) and use the above assumption about E 0 and H 0 with I 0 = (c/8~r)ma(E0, ~);  in addition, the 
integral  with respect to @ is ca lcula ted  by the stat ionary-phase method to give 

2~ 

k2 Re {(all + a22) + (a2., - -  a11) cos 2~ cos 2~ + (ais + a21) cos 2~ sln 2~ + i (a2r - -  al2) sin 2,~} d~ (3) 
0 

I00 



Here ~ is the el l ipt ici ty of the incident wave; all  the a j, p have arguments rr and ~o. 

For a spherical particle a12 = a21 = 0, a u and a~2 being independent of ~ and all(rr ) = aaz(Tr ) - aOr ), so 

4r: 
= - -  k s  R e  a ( = ) ,  ( 4 )  

which is not dependent on the state of polarization of the incident wave. 

The at tenuation coefficient is defined by 

I o z -  ~ f l q  dz  
= (5) 

I0 

The integration is carried over  the receiving area z of the detector, which lies perpendicular to q at a distance e >> z 1/2 

from the particle. The numerator in (5) is the difference of the energies recorded by the receiver when the particle is 
absent from the incident flux and present in it. 

We assume that z >> R e (X is the wavelength of the incident light) and that the detector does not record the scatter- 

ed light; then we get by substitution into (5) for 1I and use o f ( l )  with E 0 and H 0, together with the | integral calculated 
as above, that ~ = o. 

If the detector does record the scattered light, we have from (8) 

1 S . . . .  ,cos Ol 
-q = ; - -  A ~_ z - -  (F1 + F2 cos2~ cos 2~ + Fa cos2~ sin 2,~ + r~ sinz>) k T r  a dz, 

(6) 

FI,~ = ~ Ia11] 2 + la~l s + lal,.l 2 + la21I 2, F a = 2 Re (ana*,~. + a.22a%0, F~ = 2i Irn (alia*t2 - -  a~a*.,.1). 

For a spherical particle, • = (1/2) 7 F1 rcos O 1 dz  [ker2[ is independent of the state of polarization; the second term in (6) 

is a correction significant when X is much less than the size of the particle. 

The condition z >> X e indicates that the detector is much larger than the first Fresnel zone; if this is not so, but 

e >> z 1/2, we have ~ # o. In particular, for a spherical particle and a detector in the form of a square of side 2b, subject 

to Re a0r) >> Im aOr) [6], we have 

in which C and S are Fresnel integrals. 
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