CHOICE OF OPTIMAL CONDITIONS IN ELECTROMAGNETIC ANALYSIS

B. I. Belikov
Izvestiya VUZ. Fizika, No, 3, pp. 134-143, 1965

A theoretical study is presented for alternating magnetic fields in a sphere and a long cylinder; this is ex-
tended to frequencies such that differences in diameter and surface conductivity are not distinguished in
Forster's method. Optimal conditions for structural testing of the entire cross-section are found to occur
in the audiofrequency range. Tables are given for the second derivatives of the real and imaginary com-
ponents of the Bessel and McDonald functions,

Electromagnetic structure testing for metals was introduced into Russian industry around 1930; Forster's advances
led to the adoption of his terminology, in which the induction method is termed the eddy-current method, although this
is true only for nonmagnetic bodies. Forster [1] showed that the diameter and conductivity effects could be distinguished

if a simple meter was replaced by an oscilloscope, provided that x = a}/ 4 mwsp10—° >4, (f/f,= 16), whichis
the argument of the cylindrical function. This value for x severely restricts the general use of the method, and also
bounds the 'Forster region' in the complex voltage plane. In fact, Forster's method really only tests the surface layers,
on account of the skin effect, though only Dorofeev [2] states this directly.

Here i examine the conditions for x < 5 (the low region), which is the one of real interest because the skin effect
is small at low frequencies and the amplitude of the field falls to only 70% at the center (to 30% under Férster condi-
tions). The region is thus that for testing the material as a whole.

Theorz

It appears sufficient to examine the extreme cases of a sphere and an infinitely long cylinder. Rodigin has made
a detailed study of the cylinder, but very little is known about the sphere. The flux is considered here as being the
quantity that is usually measured.

The complex amplitude of the flux in the cross-section for a body in a lengthwise homogeneous field is known for:

a) a long cylinder of radius a [3):

_ .2 J(ra) @
¢)=H01La PHW,
in which
K? = — {4roop 1079
b) a solid sphere of radius a [4}:
(2y+1)(1~xco,sx)~x2 (@)
= sSin X
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We can put (1) and (2) in terms of the real argument as

Q=@ F (x) =D, [P(x) +1Q (x)]. (3)
Differences in structure are seen as flux changes, which can be examined in two ways:

1) As the modulus of the difference |A @] = @1 — @, |, which represents the reading given by a differential
system;

2) As the difference of the moduli A|®] = [CI)- J— [(Egl, which is the result of sequential testing of two speci-
mens, Assuming that the parameters differ only slightly, we can find [A®| and A|®| as total differentials, with
[A®| =|d®| and [D]=d|D|
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We put (3) as O = Ala,p

J 1 x(a, o, o, )] +iB[a,, x(a,0, 5,p)], inorderto conduct a general examina-
tion; then A ®  is given as

d® = dA + idB.

We assume (which is usually true in fact) that a, g, and o all vary simultaneously by da, dp, and do:

-nffox E) o 2 (£ ) %
X

a 2 dx ) n 2 dx s @
0Q \ da ( x 0Q\ dp x 0Q>dc
dB=0 2 = i S ol ol 33 Tl
O{( QTxdx)a \Q+20x>p +(2 ox | o
For successive testing
d|B|=dy LB =d [0 P T = d[D|F ],
and by analogy with (4)
da x OF\ dp X 0F \ ds
D = 2F F= .= ‘ DS sl
410 [( i 0x>a ( +2 (?x> ‘U«+(2 @x)c] ®

The quantity of direct interest is F(x), or o g, because it represents the flux & produced by the eddy curmrents.

The quantities in square brackets in (4) and (5) represent the weighting factors of da/a, dyu/u, and do/o in d®, so we
will examine these primary functions.

The real and imaginary components of (1) have long been known [3]:

2 berx-bei’ x —beix-ber'x

Py (x) =— — >
X ber?x - beix
0, (%) ___ 2 berx-ber’x -+ beix-bei’ X (6)
X ber?x -+ bei*x
(x)) . (ber” x)* + (bei’ x)* |
x (ber x)* 4 (bei x)*

in which I
x=ay=a) drnocplo?. -

The real and imaginary parts of (2) may be separated by transforming the argument x = xa = (1 —i)a X
X 1/ 2zwop 10~ and putting
v =a} 2nwsp 10-°. ‘ (M
Then from (8) and (7)

=, 8
i % (8)
Symbols to be used are
sh 27 -} sin 27 ]
= (2 Nit—y————
@+ )[ ch2y—cos2y
sh 27 -——sin 27
ch 2y —cos 2y (9)
sh 2y -+-sin2y ] !
ch 2y —cos 27

2*/__. i ~
N:-2:{2—~'(p—~1)75h v — sin 27
ch 2y — cos 27

G=2¢— (1) 7

M=w—n[v—
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and for the general case
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The derivatives in (4) and (5) are as follows; for a cylinder:
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ox ber x bei’ x — bei xber’ x
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- o . - Ql(x)’
ber? x 4 bei? x
d|Fl _ [ber’ xber” x +bei’ xbei”x
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. bei’ x
, bei” x = ber x — , as in the tables (see

These may be calculated via ber” x = — bei x —
X

Appendix); (9) is used to give the derivatives for a sphere. An increase in g merely increases the modulus while leaving
the curves nearly unaltered, so I consider the case p = 1 only, in order to facilitate comparison of results for sphere and
cylinder; only the linear approximation is taken. The derivatives for the sphere then simplify somewhat to

op, 1 Q, [F 2}

2= — (yG'—20); 2 |2y

" 273(7 ) v [F T ¢
OIF| _ 1 2FF'+(2N+G)_G'+(2N’+G')G_g]F2+(2N+G)G
oy 2F, F:4+ (2N +G)G 7 N? '

The results are best expressed graphically, because the formulas involve transcendental functions. The curves for the
cylinder are shown here by broken lines, and those for the sphere by full ones. Figure 1 shows the primary functions of
(8) for the differential system; curves for the coefficients to da/a are not given, because

10

(4) shows directly that they are obtained simply by doubling those for dg/p in both cases. S !
The curves for the sphere do not deviate very widely from those for an infinite cylinder, 08 F—\ AN j
and they come close together for small values of the argument. Some of them actually \ -
intersect; all have turning points, which occur when the argument is zero for P(x), P + o8 ) \K(’> '
(x/2)dP/dx, and 2P + xdP/dx but at other values for the other curves. 04 e 5 =
The primary functions of (5) give the results for da/a, dp/y, and do/o for the se- 6z jiia’?! < S
quential method; the table gives the functions. p I S g,
The curves for sphere and cylinder are again similar; da/a and dp/u have the 04 \\ ,1
largest effects on d|F | when the argument is zero, while da/c has the largest effect for ' N r\S‘:‘?‘/J
the cylinder when x = 2,70 and for the sphere when y = 2.59. The coefficient to da/a an
is always twice that to du/y; this is the increased sensitivity to variation in cross-section " J,L”)Lf—;
reported by Yanus [5] for a system with separated coils. The effect of dp/p is larger 0 3 //2/ I
than that of do/o up to x = 3.3 for the cylinder. The two effects nearly balance out 42 AN ,f(*"*
from x = 3.3 to x = 4.3, so the only effect to be seen is that from variation in the cross- 24 \ J |
section, The effect of dy/p remains dominant over that of do/o for the sphere, but the ' N |

nett effect is reduced by a factor up to 7 above y = 2.35, on account of the similarity o5lai) 2488, 504 l—

of the coefficients. .
Fig. 1
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If the objects to be tested are of closely constant size (or have been graded by diameter), we may assume that

ds’ dp\
da/a = 0. The joint effects of g and ¢ may then be examined via the parameter { — | : (-—1—) = [1, whose magni-
8 P‘
tude and sign are dependent on do and dp. This parameter was first used by Sapozhnikov; he employed it in curves for
the simpler case of a broad strip [6]. The expressions for dP and dQ become

fi_g[ x 0P

P3|, a=2] o+ 7%
X v

P~ 55;<1+/z>]

w
V

(with analogous expi‘essidns containing y instead of x in the case of the sphere). The reading of a differential detector is
determined by the vector dF = dP + idQ; Figs. 2 and 3 show some vector diagrams for various h for cylinder and sphere.
The following conclusions may be drawn.

Cylinder Sphere
x gg_? 1+;_Cg£‘l 2F1+xg_§‘l 1 ’;“(Z}? Fz+;‘%% 2F2+Y%%
0.0 0.0000 1.0000 2.0000 0.0 0.0000 1.0000 2.0000
0.6 —0.0036 0.9947 1.9894 |0.4} —0.0008 0.9989 1.9978
0.8 —0.0099 0.9847 1.9694 10.6| -0.0041 0.9938 1.9876
1.4 —0.0844 0.8698 1.7396 |1.0] —0.0309 0.9567 1.9134
2.0 —0.2260 0.6211 1.2422 [1.4] —0.1006 0.8429 1.6858
2.5 —0.3014 0.4258 0.8516 11.8] -~-0.1964 0.6737 1.3474
2.8 —0.3091 0.3486 0.6972 2.0 —0.2371 0.5871 1.1742
4.0 —0.2264 0.2350 0.4700 }2.8) —0.2766 0.3652 0.7304
5.0 —0.1675 0.2054 0.4108 3.5| ~—0.2337 0.2935 0.5870

1. dF rises from zero if dp/p = 0 (b =  curve) and has a maximum at x = 2,3 (y = 2.1). The frequency corres-
ponding to maximum |dF| will be the optimal one.

2. We have ldﬂ =1for x =y = 0 if y varies, and this is an extreme value. Fixed conductivity (do = 0, h = 0)
makes this the sole turning point.

The most reliable results are obtained with fixed fields in permeability testing. The slow variation in |dF| near
the turning point enables one to use a differential system with an alternating field of frequeney such that x = 0, 8 and
y = 0.6. : '

The curves for h = = and h = 0 represent independent variations in ¢ and y as seen in the fluxes for cylinder and
sphere.

3. Only the maximum permissible frequency (that for which |dF| is not appreciably less than for x =y = 0) is af-
fected by increase in h up to about 2.5 (cylinder) or about 3 (sphere). A second maximum occurs at h = 3 (cylinder) or
4 (sphere). Further increase in h (dominance of dg over dp) causes |dF| to rise to several times the value for x = Y = 0;
the maxima for b <0 are larger than those for h >0, but the peaks always lie near x = 2.35 and y = 2.2, as for p = con-
stant (b = ). The subsequent trend in {dF| above the peak is towards zero, as is best seen from the curves for the sphere
forh= —3 and h = 0. These regions (shown dotted) are those used in Forster's method. -

x‘Z
a2 8r2 o 10-°

pifp>1, and fopt will vary during the cycle for a ferromagnetic, on account of the variation in p. A different
approach [7] is therefore required to find the optimum frequency for a ferromagnetic.

From (6) and (7) we have the frequency to be used as f = ; this frequency is reduced by a factor

The sequential system gives the difference of the moduli only:

d|F| x0F
—— =F4=—(1+h),
dp.jp. +20x( )
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while for

dpfp =0 (h= o) d;ﬂ;’.‘.‘i’i‘ﬁ’.
» 20x ¢

The curves (Fig. 4) lead to the following conclusions:

1. The best value is x = y = 0 if cylinders or spheres are to be tested for y alone (do/o = 0, h = 0); values up to

X &y ~ 1 may be used. T
s . . r2 ﬁ/ Vi )(
2. Each curve has two wrning points for h > 0; that at x = y = 0 (maximum due to differ- : A N2
ence in p) and that due to difference in ¢ (minimum), because the latter increases with do/o 107 NV
(i.e., with h). The second turning point is a maximum for h < 0. 18 e N
— L W
3. d|F| changes sign if h > 0; the instrument then reveals no difference in the structure, 25 A \\ N
although this may be substantial. : 74 N2
‘ W 4
4. The second turning point becomes more pronounced as h increases, while the inversion /¢ ] '\\ \ !
point moves to lower values of the argument. 0 N o
> A .
Figure 4 shows that the curves for the two bodies for the same h intersect; identity of read- 2e \'&» :"’,/
ings is therefore even more likely for a sphere and a short cylinder, but this can be confirmed P
only by experiment. o6 ]
-G8 T
Conclusions ' b5y
DAtk 0 \ \ A
A homogeneous longitudinal electromagnetic field produces the following effects for sphere \
and infinite cylinder at small values of the argument: ' Fig. 4
ig.

1. The primary curve for the fields of the bodies show that: a) The two curves have the
same trend and coalesce at small values of the argument; b) corresponding curves for sphere and cylinder intersect.

2. Functions representing instrument readings show that two turning points occur in the modulus of the difference
and in the difference of the moduli; the first lies at x =y = 0. and arises from difference in y, while the second corre-
sponds to difference in g. These turning points represent maximum sensitivity to structural differences and should be
utilized. The region of low arguments contains an optimal frequency range that is more sensitive and distinguishes be-
tween the possible effects more readily than does the Forster region.

APPENDIX

Computation of Second Derivatives of Cylindrical Functions of Purely Imaginary Argument

The differential equations considered here give rise to integrals represented by the Bessel function of zero order:

Jo(xV=1)=berx+ibeix - (1)

and the McDonald function: ‘ ¢
Ko(x Vi) = ker x + i keix. (2)
Tables [8-10] give the real and imaginary parts of these, and also the first derivatives.

Second derivatives occur in relation to differences in structure, but these appear not to be tabulated in the litera~
ture on cylindrical functions. However, they can be expressed in a simple fashion in terms of the functions and their
first derivatives. For J; we have :

S + ;Jé (%) + Jo (9) = 0, (3)
in which
y=xV =1
Then

Jy(9) = s (ber” x + £ el ), AOE :1-, (ber” x + i bel” x). 4

==
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We substitute (1) and (4) into (8) and separate the real and imaginary components to get

ber”x:—belx—berx; bei”x_—_berx—bei d
X (5)
Substitution of (2),
' 1 " 1
(o (2) = —V—l: (ker” x + i ket” x), Kg(z)= 7 (ker” x - i kei” x)
into )
n 1 f
Ko@) + 7 Ky (2) + Ko (2) =0,
with z=x Vi, similarly gives
ker’ x " kei’ x (6)

ker” x = — kei x — kei” x = ker x —
x ?

The tables given here have been computed from (5) and (6).

Second Derivatives of the Real and Imaginary Components of the Zero-Order Bessel
and McDonald Functions

x ber”x bel”x ket"x kei”x
. 0.0 0.0000 -+0.5000 + o0 + oo

1 —0.0019 0.5000 +1000.3869 +0.9605
2 —0.0075 0.5000 95.3726 - 0.6186
3 —0.0169 0.4999 11:4661 | 0.4229
4 —0.0300 0.4996 6.5841 0.2888
5 —0.0469 0.4992 4.3112 0.1895
6. —0.0675 0.4983 3.0849 0.1128
7 —0.0918 0.4968 2.3035 0.0524
8 —0.1199 0.4947 1.8005 1-0.0041
9 —0.1517 0.4915 1.4482 —0.0346

1.0 —0.1872 +0.4870 1.1896 —0.0657
2 —0.2689 0.4731 10.8384 —0.1099
4 —0.3646 0.4501 0.6125 | —0.1360
5 —0.4176 0.4343 +0.5275 —0.1442
6 —0.4736 0.4156 0.4558 |~ —0.1496
8 —0.5946 0.3640 | 0.3416 —0.1538

2.0 —0.7257 0.2932 0.2557 ~0.1514
2 —0.8646 0.1983 0.1897 —0.1447
4 —1.0083 0.0747 - 0.1386 —0.1349
5 —1.0798 +0.0007 0.1175 —0.1293
6 —1.1511 —0.0823 0.0987 —0.1232
8 —1.2889 —0.2774 ‘ 0.0679 —0.1106

3.0 —1.4143 —0.5149 0.0439 —0.,0977
5 —1.6158 —1.3183 +0.0066 —0.0672

4.0 —1.5091 —2.4402 —0.0101 —0.0422
5 —0.8513 —3 8434 —0.0152 —0.0237

5.0 +0.6530 —5.3592 —0.0146 —0.0113
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