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A theoretical  study is presented for akernating magne t i c  fields in a sphere and a long cylinder; this is ex-  
tended to frequencies such that differences in diameter  and surface conductivity are not distinguished in 
F6rster's method.  Optimal conditions for structural testing of the entire cross-section are found to occur 
in the audiofrequency range. Tables are given for the second derivatives of the real and imaginary com-  
ponents of the Bessel and McDonald functions. 

Electromagnetic structure testing for metals was introduced into Russian industry around 1930; FSrster's advances 
led to the adoption of his terminology, in which the induction method is termed the eddy-current method, although this 
is true only for nonmagnetic bodies. FSrster [1] showed that the diameter  and conductivity effects could be distinguished 

if a simple meter  was replaced by an oscilloscope, provided that x = a ] / 4  ~oJ=~q0 -9 ~ 4, ( f i f e  = 16),  which is 
the argument of the cylindrical function. This value for x severely restricts the general use of the method,  and also 
bounds the 'FOrster region' in the complex voltage plane. In fact, FOrster's method really only tests the surface layers, 
on account of the skill effect,  though only Dorofeev [2] states this directly.  

Here i examine the conditions for x < 5 (the low region), which is the one of real interest because the skin effect 
is small at low frequencies and the amplitude of the field falls to only 70% at the center (to 30% under F/Srster condi- 
tions). The region is thus that for testing the mater ia l  as a whole. 

Theory 

It appears sufficient to examine the extreme cases of a sphere and an infinitely long cylinder. Rodigin has made 
a detailed study of the cylinder, but very little is known about the sphere. The flux is considered here as being the 
quantity that is usually measured. 

The complex amplitude of the flux in the cross-section for a body in a lengthwise homogeneous field is known for: 

a) a long cylinder of radius a [3]: 

in which 

-= tto'~a~'~ 2 Ja (~a)  
go 

I; 2 = - -  i 4 ~ p  10-9; 

(1) 

b) a solid sphere of radius a [4]: 

in which 

( 2 p - K 1 )  1 - - x C ~  _ x 2  
~ = H j a ~ p  1 +  ( s i n x )  

( , . - I )  l - - x - -  + x  
s i n x  

x ~ ~ca = a l / - - - i 4 ~ o ~ p  l 0  -9. 

(2) 

We can put (1) and (2) in terms of the real argument as 

�9 = % e (x) = o0 [p (x) + i Q (x)]. (a) 

Differences in structure are seen as flux changes, which can be examined in two ways: 

1) As the modulus of the difference IA ~ t  = 1-~1 - -  ~2  [, which represents the reading given by a differential 
system; 

2) As the difference of the moduli A l ~  I = ](Dll - -  1(~21, which is the result of sequential testing of two speci-  
mens.  Assuming__ that_the parameters_ differ only slightly, we can find ] A �9 ] and A 101 as total  differentials, with 
I a 01 = IdOl and IOI = d [O[. 
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We put_(3) as ~ = A [a, ~, x(a, % % p)] -q- iB [a, I*, x (a, (o, ~, p)], in order to conduct a general examina- 
tion; then A @ is given as 

d r = dA + idB. 

We assume (which is usually true in fact) that a, g, and o all vary simultaneously by da, d/~, and do: 

dA=c~  o 2P- -  x - - +  P +  
a 

d B = %  2Q+x  ~x / T +  - - -  

For successive testing 

2 G T -  2 0 .  

-57, 

(4) 

dlgl  = d / A  2 + B '2 = d [r r P:~ + q"l = d [r 1 ~'(x)ll ,  

and by analogy with (4) 
d](D] = O0 [ ( 2 F +  x 

O F ) d a  + ( T : + x  
8x a 2 

0 F d~ + 

-O-x ,~ 2 Ox / 
(5) 

The quantity of direct interest is F'(x), or geff' because it represents the flux ~ produced by the eddy currents. 
The quantities in square brackets in (4) and (5) represent the weighting factors of da/a, d/l/#, and do/a in d~, so we 
will examine these primary functions. 

The real and imaginary components of (1) have long been known [8]: 

in which 

2 b e r x . b e i ' x - - b e i x . b e r ' x  & (x) = 
x ber 2 x q- b e ?  x 

2 b e r x - b e r ' x  @ b e i x . b e i ' x  Q, (x )  = - -  - -  

x ber 2 x + bef '  x 

f.(x)l = 2_ 1 /  (ber '  x ?  § (bei' x) 2 ; 
I 

x V (berx)  ~ + (beix) 2 

x = a z = a V  4~vmap 10 -9 �9 

(6) 

The real and imaginary parts of (2) may be separated by transforming the argument x = / c a  = (1 - -  i)a • 
X V 2~to~p 10 -9 and putting 

Then from (6) and (7) 

Symbols to be used are 

=- a ] / 2~o~ t ,  10 - r  (7) 

X 

T - V2" (8) 

sh 2T -t- sin 2~ ] 
F = ( 2 7 @ l )  1 - - T c h 2 , r  ~ c o s 2 7  

sh 27 - -  sin 27 
O = 2T 2 - -  (2,~ + 1) 

ch 2-; ~ cos 2-( 

[ s h 2 T + s i n 2 " ~  ] 
M = ( ~ - - I )  1 - - ~ c h 2 T _ c o s 2 T  

sh 25, - -  sin 27 
X = --  Z f - -  ( ~ - -  I) 

ch 27 - -  cos 27 

(9) 
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and for the general case 

Fj1/l 4- ON GM -- FN 
P., = I 4- ; Q2 - 

M" 4-N ~ .44" -k N"- 

, T . . ( 7 ) , = [ l _  }_ (2M + F) F + (2N + G) G ] '/~ 2 + N 2 

The derivatives in (4) and (5) are as follows; for a cylinder: 

OR, __ [ be r  x be i "  x - -  be i  x be r"  x _ 

Ox [ b e r x b e i ' x - -  b e i x b e r ' x  

2(berxber'x-kbeixbei'X)ber., x -t- b e F  x 1] pl(x)' 

0Q1 _ [ ( b e r '  x)  ~ -F (be i '  x)" § ber  x b e r " x  -t- be!xbei"x _ 
Ox [ be r  x b e r '  x + be i  x be i '  x 

2(berxber 'x4-beixbei 'x)  l_x ] 
- -  ber" x + beff  x Q l(x),  

[ OlFI[ b e r '  x b e r " x  -F b e i '  x b e i " x  

Ox = (ber '  x ) '  + (be i '  x)" - -  

_ be t  2 b e t '  x -k bei  x b e i '  x 1 ] f d "  

(ber x)  ~ + (bei  x) 2 x J 

b e r '  x b e i '  x 
These may be calculated via be r"  x ----- - -  bei  x - - ,  be i "  x = ber  x - -  ~ ,  as in the tables (see 

X X 

Appendix); (9) is used to give the derivatives for a sphere. An increase in g merely increases the modulus while leaving 
the curves nearly unaltered, so I consider the case g = I only, in order to facilitate comparison of results for sphere and 
cylinder; only the linear approximation is taken. The derivatives for the sphere then simplify somewhat to 

= - 0 7  Q ' ;  

c) 1F,[07 ..... 2F21 [ 2"F' -Jr- (2N + G) G' q- (2N' -F O') _F. ( 2N 4_ O) G 74 ] F' + ( 2N + G) 

The results are best expressed graphically, because 
cylinder are shown here by broken lines, and those 
(8) for the differential system; curves for the coefficients to da/a are not given, because 

t,0 (4) shows directly that they are obtained simply by doubling those for dg/g in both cases. 
The curves for the sphere do not deviate very widely from those for an infinite cylinder, 0,g 
and they come close together for small values of the argument. Some of them actually 
intersect; all have turning points, which occur when the argument is zero for P(x), P + 0,6 
(x/2)dP/dx, and 2P + xdP/dx but at other values for the other curves. 0~ 

The primary functions of (5) give the results for da/a, d#/g, and do/o  for the se- ~,z 
quential method; the table gives the functions, 0 

The curves for sphere and cylinder are again similar; da/a and dg/g  have the -0/ 
largest effects on d Igl when the argument is zero, while do/o  has the largest effect for 
the cylinder when x = 2.70 and for the sphere when ?~ = 2.89.  The coefficient to d a / a  -o.4 
is always twice that to d~]g; this is the increased sensitivity to variation in cross-section 

0 reported by Yanus [5] for a system with separated coils. The effect of d/ff~ is larger 
than that of do/o  up to x = 3.8 for the cylinder. The two effects nearly balance out 
from x = 3.3 to x = 4.3,  so the only effect to be seen is that from variation in the cross- 
section. The effect of dll]~ remains dominant over that of  do/o  for the sphere, but the 
nett effect is reduced by a factor up to 7 above y = 2 . 3 , 5 ,  on account of the similarity 4.0 
of the coefficients. 

the formulas involve transcendental functions. The curves for the 
for the sphere by full ones. Figure 1 shows the primary functions of 

\ \ 

\ ~ ]  , 

I 2 . , , . /  X 

I 

Fig. 1 
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If the objects to be tested are of closely constant size (or have been graded by diameter) ,  we may assume that  

d a / a = O .  The joint  effects of a and p may then be examined via the parameter  ( ~ ) :  ( ~ ) = - h ,  w h o s e m a g n i -  

tude and sign are dependent on do and dp. This parameter  was first used by Sapozhnikov; he employed it in curves for 
the simpler case of a broad strip [6]. The expressions for dP and dQ become 

T +gu(l+h) ,dO=--, Q+yUx.,+h) 

(with analogous expressions containing y instead of x in the case of the sphere). The reading of a differential  detector  is 
determined by the vector dF = d P  + idQ; Figs. 2 and 3 show some vector diagrams for various h for cyl inder  and sphere. 
The following conclusion s may  be drawn. 
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1. dF rises from zero if dl~/p = 0 (h = oo curve) and has a max imum at x = 2.3 (y = 2.1).  The frequency corres- 
ponding to maximum IdFI will be the opt imal  one. 

2. We have IdF'[ = I for x = y = 0 if p varies, and this is an extreme value.  Fixed conduct ivi ty (do = 0, h = 0) 
makes this the sole turning point.  

The most re l iab le  results are obtained with fixed fields in pe rmeab i l i ty  test ing.  The slow variat ion in td~'t near 
the turning point  enables one to use a differential  system with an al ternating field of frequency such that  x -~ 0 .8  and 
y-< 0.6. 

The curves for h : ~ and h = 0 represent independent variations in o and g as seen in the fluxes for cyl inder  and 
sphere. 

3. Only the maximum permissible frequency (that for which IdF'l is not appreciably less than for x = y = 0) is af-  
fected by increase in h up to about 2 .5  (cylinder) or about 3 (sphere). A second max imum occurs at h = 3 (cylinder) or 
4 (sphere). Further increase in h (dominance of do over dp) causes Idg[ to rise to several t imes the value for x = y = 0; 

the max ima  for h < 0 are larger than those for h > 0, bu t  the peaks always l ie  near x = 2.35 and y = 2.2,  as for g = con-  
stant (h = .o). The subsequent trend in [dgl above the peak is towards zero, as is best seen from the curves for the sphere 
for h = - 3 and h = 0. These regions (shown dotted) are those used in FOrstefs method.  

x 2 
From (6) and (7) we have the frequency to be used as f = ; this frequency is reduced by a factor 

a 2 8 = 2 ,  ~ 10 . 9  

p if p > 1, and ~opt will  vary during the cyc le  for a ferromagnetic ,  on account of the variat ion in g. A different 
approach [7] is therefore required to find the opt imum frequency for a ferromagnet ic .  

The sequential  system gives the difference of the modul i  only: 

dJFI = F + X O F ,  r + h), 
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while for 

(t,=  )alYi = 
2 0x  

The curves (Fig. 4) lead to the following conclusions: 

1. The best value is x = 7 = 0 if cylinders or spheres are r o b e  tested for ~ alone (da/a  = O, h 
x ~ ?, ~ 1 may  be used. 

2. Each curve has two turning points for h > 0; that at x = ?, = 0 (maximum due to differ-  
ence in g) and that due to difference in c~ (minimum),  because the lat ter  increases with do]o 
( i . e . ,  with h). The second turning point  is a maximum for h < 0. 

3. dKl changes sign if h > 0; the instrument then reveals no difference in the structure, 
although this may  be substantial.  

4. The second turning point becomes more pronounced as h increases, while the inversion 
point  moves to lower values of the argument.  

Figure 4 shows that the curves for the two bodies for the same h intersect;  identi ty of read-  
ings is therefore even more l ike ly  for a sphere and a short cylinder,  but this can be confirmed 
only by exper iment .  

Conclusions 

A homogeneous longitudinal e lec t romagnet ic  field produces the following effects for sphere 
and infinite cylinder at small  values of the argument: 

1. The pr imary curve for the fields of the bodies show that:  a) The two curves have the 

= 0); values up to 

t,2 J 

o,e 
+ / I . /  

\,. , ) ~  

Fig. 4 

same trend and coalesce at small  values of the argument; b) corresponding curves for sphere and cyl inder  intersect .  

2. Functions representing instrument readings show that  two turning points occur in the modulus of the difference 
and in the difference of the moduli;  the first lies at x = 7 = 0 and arises from difference in g, while the second corre-  

sponds to difference in o. These turning points represent maximum sensitivity to strnctural differences and should be 
u t i l i zed .  The region of low arguments contains an opt imal  frequency range that is more sensitive and distinguishes b e -  

tween the possible effects more readi ly  than does the Ft~rster region.  

APPENDIX 

Computat ion of Second Derivatives of Cyl indr ical  Functions of Purely Imaginary Argument  

The differential  equations considered here give rise to integrals represented by the Bessel function of zero order: 

Yo (x ]/'-----7) = ber x + i bel x (1) 

and the McDonald function: 

Ko (x ] / '~ = ker x + i kei x. (2) 

Tables [8-10] give the real  and imaginary  parts of these, and also the first derivat ives.  

Second derivatives occur in relat ion to differences in structure, but these appear not to be tabulated in the l i t e ra -  

ture on cyl indr ical  functions. However, they can be expressed in a s imple fashion in terms of the functions and their  
first derivatives.  For J0 we have 

in which 

J0 (Y) + 1 j~ (Y) + Jo (Y) = 0, 
y 

y = x g 2  2. 

(3) 

Then 

1 (ber '  x + i bel '  x), 
4 (y) - r  

j~ (y) = ~ (ber" x + i bel I' x). 
- - i  

(4) 
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We substitute (1) and (4) into (3) and separate the real and imaginary components to get 

ber 'x  bel 'x  
ber" x = - -  bet x , bei" x = ber x . . . .  . 

X X 

Substitution of (2), 

into 

wi• z = x U { ,  

I 1 
K' o (z) = ~ (ker' x + i kel' x), Ko (z) ------ - (ker" x + i kel" X) 

i V t  

1 , - K ( Z ) + z K 0 ( z ) _ K o ( z )  0, 

similarly gives 

ker"x = ~ kei x - -  - -  
ker' x kei' x 

kei" x = ker x - -  . ~  
X 

The tables given here have been computed from (5) and (6). 

(5) 

(6) 

Second Derivatives of the Real and Imaginary Components of the Zero-Order Bessel 

and McDonald Functions 
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--1.6158 
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+0.5000 

0.5000 

0.5000 

0.4999 

0.4996 

0.4992 

0.4983 
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0.4947 
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