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A method previously described [1-4] is further developed for radial equations for nonrelativistic quantum- 
mechanical  problems on collisions. 

This method [1-4] usually involves a fairly large volume of calculation, but it can be modified from [2, 3] for 
scattering in a central static field to reduce the volume considerabIy; the oscillatory part most slowly convergent at 
large r is first isolated in explicit form from the wave function for the scattered particle, which greatly eases the sum- 
mation of the power series in [2], because these then converge much more rapidly. The symbols are as in [ l -a] .  

The solution to a second-order radial equation 

f"z(r)@ [ ~ 2 _ r - 2 ( l  q_ 1 ) l - -  V ( r ) l f i ( r )  = 0 

is sought in the form of two particular solutions 

(1) 

f t  ( r )  = A t [ f l  + (r) q- f / -  (r)] ,  (2) 

with 

f f  (r) = a t  ~ (r) e x p  ~ itcr, 

the a + being arbitrary constants and the A l normalization constants; f / (r)  satisfies the boundary conditions 

(a) 

f t  (0) = 0; 

f t  (r)  ee  sin (Kr - -  

We substitute (3) into (1) to get ~o l (r) as 

? F  ~ 2 iK~ + '  - -  [ r  -2 

(4) 

+ ~t). (5) 
2 

( l q - 1 ) l q -  V ( r ) ]  ? + = 0 .  (6) 

It is readily shown that the regular functions ~ + and ~0- 
so we merely have to find + + al~o l (r) in order to solve the 

By analogy with (2), we seek a solution for o F ( r  ) 

As for (2), 

are merely complex-conjugate functions; a -  also equals (a +) *, 
problem, in accordance with (2) and (3). 

around the first special point r 0 = 0 Of (1) in the form 

co oo 

a? :?? (r) = a? ~ C,+r n = D + ~ ~+ r n = D +Ri ~ (r). 
n = t  q- I n=l-t-1 

we have for a + the recurrence relation 

n - l - - I  

~/+n = j = l  
( n + l )  ( n - - l - - l ) '  

(7) 

(8) 

~ + i  = 1; n l - i -  2,  l - k 3  . . . .  

The primes indicate that b_ t  must be replaced by b_  1 - 2ik(n + l - 1) in the summation, 
+ 

which gives any of  the aln. 
in which the bj are the coefficients in the V(r) of  (2). The next special point of  (1) lies at 0% so (7) converges to the 
exact solution, in accordance with the general theory [5], at least for any finite r. This is sufficient to solve a collision 
problem, i. e . ,  to determine the scattering phases. 

A difference from [3] is that now (2), (3), and (5)-(7) show that R;(r) for r large [but for the region in which (7) 
�9 ~ - - +  . 

converges] tends to a fimte value R l, which can be found from (8). The scattering phases have then to be expressed in 
- - +  

terms of R l. The results of  [1] may be utilized if we normalize the wave function as in [1] for the general case. It is 
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convenient to represent the asymptote of the wave function of  [1] as a sine wave of  al tered phase; then 

11< exp ir/~ sin @r -- - -  ) 2 2_~t = A  l(D~]~ + e x p i ~ c r + D f R F e x p - i x r ) .  (9) 

We use Euler's formula, equate coefficients to sin kr and cos kr, and use the fact that  the minus signs in D -  and 
R -  are equivalent  to the complex conjugates D + and R+ to get 

expi*r~ lcos ~qz - -  = ~ A t i ( D l R f  - - D i  Rt ), (lO) 

expi-~ lsin "~t-- = t cAl t  ~ l q -Di  Ri ). (11) 

We use the relat ion [1] between the asymptotic behavior and that at zero to get in the phase representation 

__i (1 - -  exp 2@t) = DlzDi ID[-% 
2 

(12) 

But (2), (3), (7), and (8) imply that 

D, = A l (D + @ D,+*). (13) 

+ 
The last four equations contain only ~l ,  Dl ,  Dl ,  and A l as unknowns, so we can express the scattering phases via these 

- - +  
in terms of  R l ,  which serves to solve the problem. 

It is often convenient to take the arbitrary constants of (3) in the following form: 

q_ 

ar  = 1/2A~C~. (14) 

This choice of the a ~ gives real  wave functions, which are very convenient  in numerica l  calculat ions.  It has been 
shown [2] that the wave function in the general  case can always be expressed as the product of a complex constant and 
a red1 function; the expl ic i t  form of this constant is ex t remely  important  in some theore t ica l  studies [1] (since the scat-  
tering phase may be expressed in terms of it), but i t  does not need to be ca lcula ted  in some cases, as in the computa-  
tion of re la t ive  wave functions, which can [3] be used to find even the scattering phase i f  they are known for any r). In 

• 1/2A/ (14) D l = 

The constants are thus chosen from (14); (11) is divided by (10) to give the scattering phases simply as 

~I --+ --+ 
tg ~z . . . .  Rt~/Rlz. (15) 

We must make r sufficiently large in the ca lcula t ion  of  R~; see [3] for some estimates of how large r should be 

for e lec t ron-a tom collisions. As in [3], the phase will  not depend on the choice of r for r large. 

This method has no advantages over those of  [2, 3] for r small ,  as numerical  calculat ions for e lectron scattering 

by hydrogen atoms have shown. 

The modif ied method of  [2] (insertion of  an expl ic i t  osci l la tory asymptote in the wave function for the scattered 
part icle)  can be used with part icular  solutions other than of  the form of  (3); solutions can be sought with the exponen- 
tials of  (8) replaced by sin kr and cos kr, but then (6) is replaced by a different ial  equation in which the coeff ic ient  to 

• is replaced by a function of  r (either - 2 k  tan kr or +2k cot kr). This gives a recurrence relat ion much more com-  
plex than (8), although the a are then real .  There is also the diff icul ty that the poles are infini te  in number, which 

+ 
demands a special  examinat ion of  these. It can be shown from (3) and (7) that  here O r = R~R and ~ -  = -RzI, and then 
the right side of  (9) shows that (14) gives exact ly  the same result for the phases as do the functions of (3), but via much 

larger volumes of calculat ion.  

There is except ional  interest (especially from the theore t ica l  point of  view) in the case k -~ 0, because in this 
case (at least) there is no special  point at ~o, so a power-series solution constructed near zero may be correct ly extend-  
ed to any inf ini te ly  remote  point. The modif ied method is precisely that of [1-3] i f k  = 0, so the proof given below is 

app l icab le  to both methods. 
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We examine the behavior at infinity by performing the usual r = 1/z transform and examining F(r) = f ( r ) / r  for 
z --~ 0. We have 

F"  (z) - -  z - 4 V ( z )  F (z) = O. (16) 

Consider e lec t ron-a tom collisions; here for z ~ 0 

z -4v(z )  ~ z-4 exp  J 7 2 / z - +  O, 

because the exponential tends to zero more rapidly than any finite power of z; so F"(z) = 0 for z -+ 0, and the equation 

has thus no special point at z = 0. Hence F"(r) = 0 for r --~ ,o has no special point either. 

The oscillatory asymptote can also be used to modify the method [4] of solving problems on a tomic exci tat ion by 
dec t ron  impact .  
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