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The two maxima in the susceptibility are shown to arise from irreversible displacement of the 180 ~ and 
90 ~ boundaries; the activation energy arising from the internal stresses is found to be proportional to these. 

There is no theory of magnetizat ion for the cr i t ical-f ield range, for no proper allowance can be made for factors 

of thermal, mechanical ,  and other origins. We have to do without a theory that explains the general trends and particu- 

lar features of the curves for the magnetizat ion and susceptibility. 

Here I consider the behavior of the maximal  susceptibility of a polycrystalline mater ia l  from this point of view. 

The basis is the statistical theory of spontaneous magnetization,  although Vonsovskii [1] has pointed out that this is appli- 

cable only under the following very special conditions: 1) all  types of boundary between domains are equivalent; 2) there 

is a single-valued relation of the phase concentrations n i to the magnetizat ion I; and 3) the mater ial  is completely iso- 

tropic. I assume that these conditions are largely complied with in an annealed material  that has not been deformed in 

any way. There are domains with 180 and 90 ~ boundaries; I assume that the 180 ~ ones are mutual ly equivalent,  as are 
the 90 ~ ones. The entire specimen may be considered as a mixture of two media if  we assume that the two sets of boun- 

daries are displaced independently: 1) one with 180 ~ neighbors; 2) one with 90 ~ neighbors. 

The internal stresses should be of random orientation if  there is no texture caused by deformation, so each of these 

media will be quasi-isotropic and should have an n i uniquely related to I, It is then considered [2-5] that the statistical 
theory of susceptibility is applicable. 

Brown gives the differential equations 
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The solution to (1) is e - A ~  -- I; f i  (ui), the f i ( u i  ) being defined by 

~ n i = ~ O n i - - 1 .  

Then 
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in which the C i are arbitrary constants. Then f i  = e - A ( u i  - Ci) and 
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From (4) we have 

E h ~ e - A  (ux - CK) 

l ----- Is Ee -A (u~ - -  C~.) (5) 

The energy of  magnet iza t ion  is u k = -IsHh k. 

We now put the C k as C k = Chk; then 

~h~e A (IsH- C)ha 
I = I s Ee A (lsH -- C)h~c (6) 

The essential point here is that the C k are constants for reversible displacements but are variables for irreversible ones. 

We consider the max ima l  susceptibil i ty due to displacement  of domain boundaries, so the C are variable.  We 
average (6) over a l l  grain orientations to get 
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susceptibil i ty is 

Finally,  we put C = -Hools; then W = AIs(H + H~o), so the 
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1. The graph function f (W) = 

1 I 

W 2 s h  ~ W 

and is shown in Fig. 1; the function is somewhat reminiscent  of a gaussian curve, be-  

ing nearly symmetr ica l  about the f(W) axis in plot of  f(W) against W. Then 
1 1 

f ( W )  - -  W 2 s h ~  may  be t reated as showing that  magnet iza t ion  (and 

reversal) occur most readi ly when H = -Hoo; i f  we represent the specimen as in 
[6, 7], the magnet iza t ion  may  be said to change abruptly when the external  
field becomes such as to correspond to the energy HI s = - H ~ I  s. The various 

Hoo fall  around H s (which may be taken as the most  probably value for Hoo), as 
in uniaxia l  crystals magnet ized  along the easy axis  or as in stretched mater ia ls  
with posi t ive  magnetostr ic t ion [8-12]; hence a large Barkhausen jump is to be 
expected.  

Then C = -HooI s varies from one region of  spontaneous magnet iza t ion  to 
another when the displacement  is irreversible; i t  may  be considered as the ac -  

t ivation energy arising from the internal stresses. Figure 1 shows that f ( W )  
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- 

W 2 sh 2 W has its peak at  W = 0, so ~ = AI L'(0) has a max imum va lueo f  

bors, 

1 
z = -- AI~. (9) 

3 

This is the max imal  susceptibil i ty Xmax; the case envisaged here is spontaneous magnet iza t ion  with 180 ~ neigh-  
and hence we put (9) as 

Xmaxt~ = __1 AIJ. (I0) 
3 

The constant A here has the dimensions of  reciprocal  energy and may be put as A = b/XsO i, in which b is a con- 
stant of  the order of one and XsO i represents the constant for the energy of  the internal  stresses. The ma x ima l  susceptibil- 
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ity associated with displacement  of  180 ~ boundaries is then 

b l ]  K 
XInax~ . . . . .  , (11) 

3ks~i ~l 
in which K = bI~/3Xs; formula (11) implies  that this follows a hyperbolic  law. 

The 90 ~ boundaries giv e analogous formulas, except  that the constants C = --H~I s appearing L (W)--= c th  IF - -  

1 1 1 
lg z , and L '  ( IF)  V/~ sh 2 I[/ will  differ from those for 180 ~ boundaries. A suitable notation here is 

Ct~ = - -  Hoot+Is - -  for co 180 % boundaries 

C*,~ --- - -  hr~ot~ I s - -  for c 90 ~ boundaries 

This implies  a second maximum in the susceptibil i ty at 

of  the 90 ~ boundaries. 

Xmax,p.+ 
K 

arising from irreversible d isplacement  

The two contributions to the susceptibil i ty are addit ive when the boundaries in the two media  are displaced inde-  

pendently; 

2 K  
Xmax -~- Xmaxf~ + "Zmaxt_ , : ~ . (12) 

The ~ = f(H) curve should thus have two peaks under certain conditions, as ac tua l ly  occurs for n ickel  wire an-  

nealed in hydrogen at  900~ for 2 hr. I used the bal l is t ic  method,  with care near the region of ~max;  care was also 
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taken to measure the H corresponding to this as closely as possible, namely 

Fig. 2. 1) Magnet izat ion curve and 2) sus- 
cept ib i l i ty  for soft polycrystal l ine n ickel  

wire. 

H~. Figure 2 gives the results, which show that there are two peaks sep- 

arated by 0.2  Gauss. This smal l  separation shows why they have previous- 
ly been overlooked for polycrystal l ine mater ia ls ,  where low resolution in 

H has been usual. 

In addition, (12) impl ies  that the two peaks should move together as 
o i alters; this I examined by subjecting the wire to plastic extension. 
Figure 3 gives the results for eight specimens of  ex t remely  soft nickel  

wire. 

Figure 3 shows that ~maxH~o = constant as a function of  H over a 
wide range; this, with the Xmax of (12), gives 

in which K 1 = const/2K. 

(13) 

This shows that H~ is proportional to the internal  stress; i . e . ,  the act ivat ion energy for boundary displacement  is 

proportional to the stress. 

Conclusions 

1. There are two peaks Xr~axt~ and Zmaxt-+ in the sus- 
cept ib i l i ty ,  which are due to displacement  of 180 ~ and 90 ~ 
boundaries. 

2. Theory and exper iment  show that the act ivat ion 

energy W = - H ~ I  s is proportional to the internal  stress, 
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