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This scattering is considered for the relativistic case with allowance for radiation corrections by a method 
previously described [1-3] for solving radial equations for the nonrelativistic case, the basis being an ap- 
proximate method [4] employing trial wave functions whose parameters are found without resort to varia- 
tional methods. Detailed formulas are deduced. The scattering of  Klein-Gordon particles is also consid- 
ered. 

The relativistic quantum mechanics of particle collision involves the same difficulties as the relativistic theory of 
line spectra, which arise, in part, because no rigorous and relativistically invariant theory has been available even for a 
system consisting of only two particles. However, the motion of  a particle in an external field can be described with ad- 
equate rigor in certain instances, in which case it is usual to neglect processes such as pair production and emission or 
absorption of quanta. Quantum field theory must be used from the start in any more rigorous discussion of problems in- 
volving (say) change in the number of particles, and this gives rise to additional difficulties [5], which it is not my ob- 
ject to discuss here. 

It is true that only relatively few problems can be handled on the basis of  particle plus external field, but this ap- 
proximation is of great theoretical and practical importance, being one of  the basic methods of  current relativistic quan- 
tum theory. But even then there have so far been no exact analytic methods for collision problems, apart from some in- 
stances of  coulomb scattering, scattering at a potential well, and certain other fields of  purely trial interest. 

Perturbation theory is used in relativistic studies of continuous spectra, but this is restricted to the region of weak 
interactions, which is a severe restriction. Comparison with numerical integration [6] shows that the Born approximation 
[7, 8] becomes unsuitable for Z > 10 even in the scattering of  electrons of  energy 100 MeV. The essential difference be-  
tween the relativistic scattering of  particles described by Dirac's equation and nonrelativistic scattering described by 
Schrodinger's equation is that in the second the interaction with the field may be treated as a small perturbation at high 
energies, because ~ --~ ~ implies that the phase ~llj --,- 0, whereas the latter is in general not so for the scattering of  
Dirac particles [9], the phase remaining substantial even for x-~- ~o, so perturbation theory cannot be applied [10, 11]. 

Here I extend my recent treatment for nonrelativistic problems [1-3] to give methods o f  solving the radial equa- 
tions for the scattering of particles of spin 1/2 in a static external scalar central field. 

The treatment may be made much more general and precise by using some results from the quantum theory of  
fields instead of  employing simply the one-part icle relativistic Dirac equation: use is made (for particles of  spin 1/2) of 
a modified Dirac wave equation (Dirac's equation incorporating radiation corrections), which was first derived by Schwin- 
get [12] The additional terms in the hamiltonian arise because the external field polarizes the vacuum, and this may 
interact (via its virtual field) with the particle and with the zero-point fluctuations of  the vacuum. Pauli [13] pointed 
out that Dirac's equation could be generalized somewhat without loss of  relativistic invariance, although he did not con- 
sider polarization of  the vacuum. 

Exact Solution 

The equation to be used is [14] the modified relativistically invariant Dirac equation for the scattering of  a parti- 
cle of  mass m and spin 1/2 (the system of units is such that N = c = 1): 

~ . ( %  % _ i m ) ~ F =  ~,[g,q ~Ft~ ~ g2q , -~A ] (1) 

'~ is the bispinor describing the particle and 7p is the usual 4-dimensional Dirac matrix (74 is diagonal). The operator 

% = --  iOt~ + q. A~, A~ (Z, i ~), (2) 

in which O. denotes the derivative with respect to xt~;X and ~0 are the vector and scalar parts of the four-dimensional 
potential; ~ z  is the D'Alembert operator; FI~ v is the antisymmetric tensor of  second rank that describes the external 
field: 

F,.~ = O~A~ _20,,A~; x~ (r, i, t), (3) 
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and q is the constant for the interact ion between the par t ic le  and the field. 

The terms on the right in (1) represent radiat ion corrections, gl and gz being dimensionless constants given by the 
quantum theory of  fields. 

Consider an external  static scalar central field; here A = 0 and ~0 = ~0 (r). The permutat ion relations satisfied by 
the Dirac matrix,  taken with (2) and ('3), enable us to put the right side of  (1) in the form 

3 

i q  = 7y0j ~ - -  m -~ 

in which A is the Laplace operator.  

The variables are separated in spherical  coordinates.  The problem is a stationary one, so the t ime  dependence of 
takes the form g~(g, t) = r exp - iEt, in which E is the to ta l  energy o f  the part icle.  We represent the bispinor r as 

a set of  two spinors: 

, ( h  = Z,e(r) 

We expand Zi(T ) with respect to spherical spinors and represent these in the form 

z ,  (7} = (r) ej,.  (O, 
r 

(r )  = 1__ p j, (r) %-,,M ( e ,  [ '  = % - -  i,  
F 

in which fa is a spherical spinor, j and M being the quantum numbers for the total  angular momentum and for the pro- 

ject ion of this on the Z axis; l is the first parameter  of the spherical function. The subscripts will  in future be omit ted 
when this can lead to no misunderstanding. The ~ are known [15], so the problem reduces to that  of  finding the radial  

functions. s and s are respect ively the large and small  components of r so x z vanishes in the nonrelat ivist ic  approxi-  

mation.  

We substitute (5) into (1) and use (2)- (4) together with the known properties of spherical  spinors [16]; tedious manip- 
ulations give us a system of  four radial  equations: 

G'~t (r) 4- D.l (r) G~t (r) - -  (E -Fm @ q~+ (r)) F~t (r) = O ,  

F %  (r )  - -  D~t ( r )  F,, ( r}  -~ ( E - -  m 4- q ~+( r ) )  O.z (r)  = O, 

z l for ] = l - -  1/2and ~ - -  l - -  1 for ] = l +  1/2 

(6a) 

(6b) 

(7) 

(as usual in Dirac's theory, x takes only the value -I for l = 0), with 

D. (r) ~ x___F ~/ (r) q | g',, [ 2 p, ] _ g ,  ; , ( r ) = ~ ( r ) + ~  { ' ( r ) - - - -  (r)  . (8) 
r 2m r 

The primes denote differentiat ion with respect to r. The two values for ~ (for a given momentum) correspond to the 
two l inear ly  independent components of the spinor wave, which represent the two possible states of  polar izat ion.  We e l i -  
minate  F from (6) to get a second-order differential  equation for G: 

D T" T' G' 1~ -F T+T_) G = (9) O "  - q -  (D '  - -  _ O, 
T _  T _  

in which 

T+_ (r)  --- E - T  m q-  q?+  (r ) ,  (10) 

F being expressed in terms of  G from (6) and (10) as 

f ,  ( r )  = T -~ ( r )  [O ' ,  ( r )  + D ,  ( r )  6 ,  ( r ) ] .  (11) 

I consider at a la ter  point the solution of  (9) with exact  t rea tment  of the radiat ion corrections; at this point I consider 
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only the terms in g2 in (1). Here D~ = x from (8). We put 
r 

N~ (r) = TZ ':~ (r) O~ (r), 

and transform (9) to 

(12) 

N;' (r) @ [ ~c2 x (zr~ + 1) V~(r) ] N~ (r) = O, (13) 

in which 

/~2 ~ (E,~ _ rn~), 

T' [ r~T3/4] ' 
V.  (r) = - - 2qE~+ --  (q?+)2 _+_ ~__ in T'~/~- " q 

(14) 

(15) 

and ~t is given by (7). G(r) satisfies the usual boundary conditions 

aj~ (0) = O; 

a:l (r) ~ Ajz l 2 -- Q 

(16) 

(17) 

The boundary conditions for N(r) are implied by (12), (16), and (17). 

Equation (13) has been solved [1] in the nonrelativistic quantum theory of collisions by means of generalized power 
series; the relativistic (13) differs from the equations considered in [1] only in the value of 'g  and in the precise form of 
Vx(r), so I shall not repeat the derivation of  N(r) and merely give the final results, which follow simply and directly 
from [1]. The following are some general comments on this. 

It is clear from (17) that we have so far considered only the case in which V~(r) decreases more rapidly than 1/r 
for r --- ~; as in [1], (13) has, in general, only two singular points (at 0 and *% I assume that ~0(r) has no divergence 
higher than a coulomb one at r --~ 0; but V~(r) here differs from V(r) in being for the relativistic scattering of  a particle 
of spin 1/2 and having a pole of  second (not first) order for r ~ 0. At first sight it seems that the term in ~0+(r), which 
describes the radiation corrections, would give a pole of  third order (which usually corresponds to tensor forces); but this 
is not so, and it is readily shown that all third-order poles mutually cancel in combinations of radiation terms. This is of 
major importance here, for the general analytic theory of differential equations [16] shows that only the absence of third-order 
poles allows us to apply directly the method developed in [1, 2] for the solution of (13). 

It merely remains to find the root of the characteristic equation for N• and to derive the recurrence formulas. 

We have ~0+(r) = u/r for r ~ 0, with u =~o_1 + 282m"e~~ in which the r  are the coefficients in the expansion 

(r) = ~ ~ l r  i. Then the only characteristic root Xvt that satisfies (12) and (16) is of the form 

i = - i  

ks = 1/2 + ix 2 --q2v2]Ii2. (18) 

By analogy with [1], we obtain N as a generalized power series: 

N~t ( r )  = C~torX, 2 a,tn rn; Cxln =" Or 

n = 0  

(19) 

in which C~Z 0 is some constant (generally complex); the a~ l  n are given by the recurrence relation 

, bxl- 2 o~xln-I i= l (20) 
~ t n  = -  n ~ - 5  2) ,~n - -  n a~t0 = t ; n = 1 , 2 , 3 . . .  

The prime to the sum indicates that the b~0 in (20) must be replaced by b ~  - K2; the b ~  are the coefficients of 

V~ (r) = ~ b~r i. (21) 
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The general  theory [16] shows that series (19) for N~< l (r) converges to the exact  solution, the radius of  conver- 
gence extending to the nearest singularity. The nearest and only singularity lies at ~, so the series converges to the ex-  
act  solution (at least for r finite), which serves to solve the problem, on account of the behavior of V~(r) for r large. 

It follows from (12) that the asymptotes of N and G coincide apart  from a constant of no significance here; the 
asymptote of N(r) therefore also has the form of (17). The formulas for the phases 71 in terms of an asymptote of  the 
form of  (17) have been derived and expressed in terms of the a of (20) [2], so the scattering phases for (17) are known. 
Also, formulas are known [15] for the effect ive re la t ivis t ic  scattering cross-section in terms of the asymptot ic  phases ~o 
rljl('K ) and r l j_ l_r (K)  from (17) for both directions of  spin; these are not given here. 

Now I turn to the l imits  on the appi icab i l i ty  of this method arising from the force of  interact ion between the par-  
t i c l e  and the external  field. 

We discarded the second root of  the characteris t ic  equation and used only the first root on the basis that i t  did not 
satisfy (16); but (18) shows that this applies only to real  X w i . e . ,  for xZ - qZ . vz > 0. It is c lear  that,  roughly speaking, 
q2u2 = ot 2, in which a is the fine-structure constant; et ~ ~ 5 �9 10 -5 for e lec t romagnet ic  interactions of  e lementary  par t i -  
cles, and so (18) is correct (and the method is appl icable)  even i f  the interact ion force exceeds the force of  e lec t romag-  
netic interact ion by not less than two orders of magnitude.  The second root must be taken into account for fields stron- 
ger than this; then (19) will be replaced by a combination of  two series. The case requires special  examinat ion i f  this 
modif icat ion is imprac t icable .  

Approximate Solution 

The above solution gives rise to considerable labor when numerica l  results are required, except  for the re la t ive  
values of  the wave functions for r small .  This makes i t  of interest to have also a s imple approximate  analyt ic  solution, 

for which purpose i t  is convenient  to use t r ia l  wave functions whose parameters are determined without resort to var ia -  
t ional  methods; this method has been used [4] to solve analogous nonrelat ivist ic  problems and is readi ly  extended to the 

present case. Moreover, both radiat ion corrections can be incorporated. 

First I consider the changes in the basic nonrelativist ic forms of  the method of  t r ia l  wave functions [4] that  have 

been considered in [17-19]. 

In the general ized method of  determining the parameters [17] we have to rep lace  the Schrtsdinger-type radial  oper- 

ator by a re la t ivis t ic  Dirac one, as (9) shows; the radiation corrections are also incorporated in this: 

cd T' d ( T ' - - - D ~ - T + T _ ) ,  
L~l dr  ----5-.-' - - T _  " d--r - +  D ' - -  D ~ if- (22) 

in which T and D and given by (10) and (8). 

We introduce the n -paramete r  t r ia l  wave function G x l  (r). We apply operator L~l to G x l ,  mul t ip ly ing  from the 
left  by the Ajx  l (r) and integrat ing from 0 to ,o; this gives a system of  equations that may  be solved via (17) give the 

scattering phases: 

i Ay, t (r )L~t -G~t(r )dr- -O;  I 1,2...ft. 
0 

(ss) 

The A j ~ I ( 0  must ensure that the integrals converge; (7) shows that x has two values. 

It can be shown that  asymptot ic  self-consistency [18] may  be used, as in the nonrelat ivist ic  case [17], to obtain an 
appropriate set of Aj•  from the general ized method given above. We may also substitute G di rec t ly  into Parzen's [9] 

integral  identi t ies  for the phases. 

The vi r ia l  theorem [17] must be applied with a re la t ivis t ic  relat ion first derived by Novozhilov [20] for the Dirac 

equation appl ied to a continuous spectrum: 

_ A 2 
j '[?(r)q-r~'(r)](8 "2 q- F ~-) dr = - - ( ~ 8 ~  q- mc)~)~. (24) 
0 q t~  

This differs from the nonrelat ivist ic  one in containing the der ivat ive  of  the phase with respect to the ma~s, which 

hinders [20] its use in calculations.  We can use (24) in a good approximation only for high energies such that K0 ~ ~ >> 

>> m0m~. No diff iculty arises over the convergence of the integrals for l > 1. 

Finally,  the expansion method [19] involves simply expansion with respect to smal l  r in L~iOxl(r) = 0. The para-  

meters of the tr ial  functions are determined as in the nonrelat ivist ic  case; in a l l  cases they must be such as to satisfy (16) 
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for r --~ O. 

Conclusions 

The same formulas for the a• are reached for the case r  cc 1/r for r --~ ~, which has not been considered here; 
(17) is then replaced by the asymptote of the coulomb field. The a~l might be related to the phases from this asymptote 
by the method of [2] for an asymptote of the form of (17); but I consider that it would be of interest to make a detailed 
study of the convergence of (19) for this case. The approximate method for this case involves only a certain change in 
the virial relation [20] (together with the change in the asymptote), where r (r) loses its coulomb part, as it were. 

It has been claimed [14] that the radiation corrections (in the form used here) do not always give a complete de- 
scription of the interaction of  the particles with the vacuum in the ultrarelativistic case. 

The method is applicable, generally speaking, to the scattering of  any particle of  spin 1/2 in any field; but spe- 
cial practical interest attaches to cases in which perturbation theory is inapplicable on account of  the strong interactions 
between the particle and the externat field. 

The method may also be applied to the scattering of  particles of  Klein-Gordon type (spin 0); here the wave func- 
tion for the scattered particle has one component, whose angular part is a spherical function, the equation for the radial 
part being simply (9). The simplification of  T+ and D is trivial. 
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