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There  has been increas ing  in te res t  in the s t rength and dest ruct ion mechan i sms  for  ideal (flawless) 
s t r uc tu r e s  in recent  y e a r s ,  for  two reasons :  f i r s t ,  var ious  ideal solids have been produced in the l abora to ry ,  
e .g. ,  wh iskers  of a wide va r i e t y  of m a t e r i a l s  [1], h igh-s t rength  g lass  [2], and g lass  f ibers  [3]. The outlook 
for  the use  of the high s t rength of these m a t e r i a l s  (if not d i rec t ly ,  then as a component  par t  of some c o m -  
posi te  mate r ia l )  s e e m s  good. Second, in studying the des t ruct ion mechan i sm of o rd ina ry  (flawed) sol ids,  
we a re  studying the rupture  of in te ra tomic  bonds nea r  the flaws in the mos t  o v e r s t r e s s e d  mic roscop ic  vo l -  
umes  which do not themse lves  contain f laws.  The s t rength  of the ma te r i a l  in these mic roscop ic  volumes is 
quite high and co r re sponds  to the s t rength  of the ideal s t ruc tu re .  

The s imples t  s t rength cha rac t e r i s t i c  of the ideal s t ruc tu re  is  the theore t ica l  s t rength  [4] - the s t r e s s  
at which a un i formly  deformed s t ruc tu re  becomes  unstable at 0~ An analogous cha rac t e r i s t i c  - the max i -  
mum s t rength  - can be introduced for  d iscuss ing the ideal s t ruc tu re  at T > 0~ [5]. Here  only the ave rage  
s ta t i s t ica l  effect of the t e m p e r a t u r e  is taken into account,  through the t he rma l  p r e s s u r e ,  as an additive c o r -  
rec t ion  to the externa l  mechanica l  effect .  

This  s tabi l i ty  with r e spec t  to pure ly  mechanica l  effects  (or to a combination of mechanical  and 
quas imechanica l  effects) could be a r b i t r a r i l y  cal led the "mechanica l  s tabi l i ty ."  Analys is  of the m e -  
chanical  s tabi l i ty  of an ideal s t ruc tu re  [5] is actual ly  a f i r s t  approximat ion  of the s t rength  ca lcu la -  
tion for  an a r b i t r a r y  t e m p e r a t u r e  and for  rapid  des t ruct ion,  in which case  fluctuation effects  a r e  ruled 
out. 

Account of the r ea l  s pec t rum  of t h e r m a l  v ibra t ions  in a solid const i tutes  the next approximat ion  and 
yields informat ion about the dynamic s tabi l i ty .  The ro le  of the external  effect (deformation) reduces  to one 
of changing the s pec t rum  by changing the in te ra tomic  dis tances  and in terac t ion  f o r c e s .  

A c ry s t a l  is known to be mic roscop ica l ly  s table  if  its potential  energy  i n c r e a s e s  with an a r b i t r a r y  
smal l  v i r tua l  d isp lacement  of any a toms f r o m  thei r  equi l ibr ium posi t ions .  In an analys is  of the set  of all 
smal l  deformat ions  in t e r m s  of normal  coordina tes ,  this condition r equ i re s  that the v ibra t ion f requency be 
r ea l ,  w2(K, s) > 0, for  all wave vec to r s  K and polar iza t ions  s .  If the f requency is not r ea l ,  the v ibra t ion 
ampli tude i nc rea se s  as t ime  e l apses ,  and this c i r cums tance  is equivalent to des t ruct ion of the la t t ice .  Here  
we cannot make the a p r io r i  a s se r t i on  that for  c r i t i ca l  conditions (high t e m p e r a t u r e ,  deformat ion ,  etc.) the 
c ry s t a l  becomes  unstable with r e s pec t  to i ts  ent i re  f requency s p e c t r u m  at once.  It is e x t r e m e l y  probable  
that the "des t ruc t ive"  f requencies  occupy only finite pa r t  of the spec t rum which depends on the externa l  con-  
dit ions.  Using a model of a l inear  chain of identical  pa r t i c l e s ,  Born showed that s tabi l i ty  at all wavelengths 
follows f rom the mechanica l  s tabi l i ty  with r e spec t  to un i form extension of the chain if the second der iva t ive  
of the potential  for  the in te ra tomic  in teract ion is posi t ive fo r  any pa i r  of nea re s t  neighbors and is negative 
for  any pa i r  of m o r e  r em o t e  ne ighbors .  This  condition probably  always holds in a r ea l  ma te r i a l ,  but the 
converse  a s se r t i on  - that mac roscop ic  (mechanical) instabi l i ty of the c rys t a l  automat ica l ly  leads to i n s t a -  
bi l i ty  with r e spec t  to all waves - turns  out to be incor rec t ,  as we will show below. 

The  p rob lem of c rys t a l  s tabi l i ty  is usual ly  formula ted  in t e r m s  of an inc rease  in t e m p e r a t u r e  (melting) 
instead of in t e r m s  of a mechanica l  effect  [7]. Below we analyze the s tabi l i ty  of a un i formly  deformed one-  
dimensional  lat t ice in which the re  is a sho r t - r ange  interact ion between a toms .  
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F i g .  10 D i s p e r s i o n  c u r v e s  of a one 
d i m e n s i o n a l  c r y s t a l  a s  func t ions  of 
the  d e f o r m a t i o n  of e. 

1. We c o n s i d e r  a l i n e a r  cha in  of i d e n t i c a l  a t o m s  of m a s s  M 
whose  H a m i l t o n i a n  can  b e  w r i t t e n  as  

H =  -- + T 2" U(R~-- R,.), (1) 
l 

w h e r e  ]Pl and R l a r e  the  m o m e n t u m  and c o o r d i n a t e  o p e r a t o r s  fo r  
an a t o m  at s i t e  l .  In  the  h a r m o n i c  a p p r o x i m a t i o n  the  n o r m a l - m o d e  
f r e q u e n c i e s  w (K) c o r r e s p o n d i n g  to  H a m i l t o n i a n  (1) a r e  found f r o m  
the so lu t i on  of the equa t ion  

co 

M~o2 (K) = 2 ~ ~h (1 -- cos tcah), (2) 
h 

w h e r e  4~ h i s  the  f o r c e  cons t an t ;  a i s  the  d i s t a n c e  b e t w e e n  n e a r e s t  
n e i g h b o r s ;  and K is  the  wave  v e c t o r .  To  f ind the d e p e n d e n c e  of the  
f r e q u e n c y  on the cha in  l eng th  o r  on the e longa t i on ,  we expand  the 

p o t e n t i a l  e n e r g y  of the  c r y s t a l  in t e r m s  of the  quan t i t y  a = (1 + e)a0,  w h e r e  a0 is  the  e q u i l i b r i u m  d i s t a n c e  
b e t w e e n  a t o m s  at  a d e f o r m a t i o n  of e = 0. 

N o r m a l - m o d e  f r e q u e n c i e s  (2) can  be  e v a l u a t e d  if we know the e x p l i c i t  b i n a r y  i n t e r a c t i o n  p o t e n t i a l  in 
H a m i l t o n i a n  (1). We u s e  the M o r s e  p o t e n t i a l  

U ( R )  = D [(e -~(~'-r~ --  1)2 --  I], (3) 

w h e r e  r0 i s  the e q u i l i b r i u m  d i s t a n c e  b e t w e e n  a t o m s ;  D is  the  depth  of the  p o t e n t i a l  we l l ;  and 1/o~ r e p r e s e n t s  
the  we l l  w id th .  

(4) 

Us ing  (3), we c o n v e r t  Ec~. (2) to  

Mr (x) = 4zt'-D y j  [2e -2~(ha-r~ - - e  -~(ha-r~ (1  - -  c o s  tcah). 
h 

C a r r y i n g  out the  s u m m a t i o n ,  we f ind the  fo l lowing  e x p r e s s i o n  f o r  the  n o r m a l - m o d e  f r e q u e n c i e s  t ak ing  into 
account  the  i n t e r a c t i o n s  of a l l  n e i g h b o r s  and fo r  a g iven  d i s t a n c e  a b e t w e e n  n e a r e s t  a t o m s :  

Ka 
f s i n  2 - -  ( 5 )  

~: ( ' )  = M (-%S 2 

M(K)=M 2 (ch 2aa - -  cos xa)(ch aa - -  cos t~a) 

~xa OS 2e 2~r~ cth ~a (ch ~a - -  cos ~:a) - -  e ar~ cth ~- (ch 2~a --  c x a )  

w h e r e  f = 8ol2D and 

Equa t ion  (5) i s  of the  s a m e  f o r m  a s t h e  f a m i l i a r  equa t ion  fo r  a l a t t i c e  in which  t h e r e  i s  an i n t e r a c t i o n  b e -  
tween  n e a r e s t  n e i g h b o r s  on ly .  In Eq.  (5), h o w e v e r ,  the  m a s s  depends  on the wave  v e c t o r .  

T h e  e q u i l i b r i u m  d i s t a n c e  b e t w e e n  a t o m s  in the  cha in  f o r  a d e f o r m a t i o n  e = 0 i s  found f r o m  

u '  (ha) h = o. (6 )  
/z 

act  2 
2 c h - - = e  . 

2 

U s i n g  (3), we can  c o n v e r t  Eq.  (6) to 

t ion  
T h e  c r i t i c a l  i n t e r a t o m i c  d i s t a n c e  ac ( e ) ,  at which  we have  w = 0, is  found f r o m  a s o l u t i o n  o f  the  e q u a -  

( ?) - x 3 - l - ( 1 - - e ~ r ~  x2 + e~r~176 c~ x - -c~  - = 0 '  (7) 

w h e r e  x = cosh  o~a. 

We s e e  f r o m  Eq.  (7) tha t  the  c r i t i c a l  a t o m i c  d i s t a n c e  and the c r i t i c a l  d e f o r m a t i o n  depend  on K ( i .e . ,  
on the w a v e l e n g t h ) .  
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Figure  1 shows the dispers ion curves  for  the l inear  c rys ta l  (ar  0 = 2.5) which we calculated for  var ious 
deformations on an MIR-1 computer .  This  f igure shows that waves with small  K "vanish" f i r s t  (at eT ~ 30%); 
i .e . ,  the c rys ta l  f i r s t  becomes unstable with respec t  to long-wave vibrat ions.  As the deformation inc reases ,  
the spect ra l  range corresponding to the instabil i ty expands until the ent i re  spec t rum becomes  imaginary at 
some deformation e".  The c rys ta l  thus becomes completely "unstable" over  some deformation interval  eT 

Solving the stabil i ty problem for a l inear  c rys ta l  in the usual approximation,  in which only the in t e rac -  
tion between neares t  neighbors is taken into account, we find the cr i t ica l  value ac(e ) to be equal for  all wave-  
lengths: 

in2 
a c - -  r o ~ -  - - ,  

~z 

2. We can show that the cr i t ica l  value a c (e) at which we have w = 0 for  long-wave vibrat ions (as K 
0) cor responds  to the ama x value which governs the theoret ical  s t rength a m of a l inear  c rys ta l .  In other  

words,  the theoret ica l  s t rength is the value of the external  s t r e s s  at which the c rys ta l  becomes unstable 
with respec t  to long-wave vibrat ions (it is macroscopica l ly  unstable since long-wave vibrat ions are  d i rec t ly  
re la ted  to macroscopic  e last ic  p rope r t i e s ,  e.g. ,  the elast ic  moduli). 

By definition we have 

(~ / 
:m = \0Tj~m~x, 

where ama x is found f rom 

~r = o. (8) 
h 

For  long-wave vibrat ions,  Eq. (2) becomes 

M~o2(~) 4 E 6)h xah E,~nh~, = s i n ~  -7 -  ~.~ ( ~ a )  -~ 

h h 

and the cr i t ica l  value of a c (e) at which we have w -- 0, is found f rom the solution of ~ ~hh2 = 0, which is the 
same as condition (8). 

C O N C L U S I O N S  

1. The model of a uniformly deformed one-dimensional  lat t ice in which there  is a shor t - range  in-  
te rac t ion  between atoms is unstable with respec t  to long-wave vibrations in the harmonic approximation.  

2. The c r i t i ca l  deformation,  at which the c rys ta l  becomes  unstable with r e spec t  to long-wave v ib ra -  
t ions,  cor responds  to the theore t ica l  s t rength.  
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