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T e m p e r a t u r e  dependences a r e  found for  the in t r amolecu la r  and in te rmolecu la r  contributions 
to the sp in- la t t i ce  re laxa t ion  of protons  in benzene and cyclohexane by dilution in deutera ted  
analogs .  The in te rmolecu la r  contribution in benzene is d iscussed  on the bas i s  of the model 
for  the molecu la r  distr ibution found f r o m  x - r a y  diffract ion s tudies .  The Hubbard co r rec t ion  
to the in te rmolecu la r  contribution is calculated on the bas i s  of the exper imenta l  p a r a m e t e r s  
cor responding  to rota t ion and t rans la t ion .  The r e su l t s  imply discontinuous t rans la t ional  
motion of molecules  in both l iquids.  

1. It is impor tant  to dist inguish between the in t ramolecu la r  and in t e rmolecu la r  contr ibut ions,  Till and 
Tlel r e spec t ive ly ,  to sp in- la t t ice  re laxat ion,  because  these contributions can r evea l  cha rac t e r i s t i c  fea tu res  
of and can be used to de te rmine  the p a r a m e t e r s  of rotat ional  and t rans la t ional  motion of the molecu les .  

We repor t  he re  a study of these  types of motion in liquid benzene and cyclohexane.  The contr ibutions 
were  sepa ra ted  through a p r o g r e s s i v e  dilution of these  compounds in thei r  deuterated analogs.  

Benzene has been studied on s eve ra l  occas ions  by the NMR method.  In [1-4] the contributions to the 
re laxa t ion  were  dist inguished by dissolution of benzene in deuterobenzene.  We c a r r i e d  out another  study of 
the sp in- la t t ice  re laxat ion  of protons in this substance in an at tempt  to make a more  accura te  check of the 
equations decr ibing the i n t e rmolecu la r  contr ibution.  

Fewer  NMR studies have been made of cyclohexane; the in t r amolecu la r  and in t e rmolecu la r  contr ibu-  
t ions to the re laxat ion  were  dist inguished in [3, 5], but these  r e su l t s  r e f e r  only to room t e m p e r a t u r e .  

2. The samples  consis ted  of C6H 6 in C6D 6 (molar  f rac t ions  of 1.0, 0.75, 0.5, 0.17, 0.1) and of C6H12 
in C6D12 (1.0, 0.83, 0.75, 0.5, 0.375, 0.23, 0.1). The samples  were  degassed at a p r e s s u r e  on the o rde r  of 
10 -5 t o r t  by repea ted  f reez ing-evacua t ion  and thawing cyc les .  The sp in- la t t ice  re laxat ion t ime  T 1 was m e a -  
sured  on a sp in-echo  s p e c t r o m e t e r  [6] having a working f requency of 16.365 MHz with a sequence of 9 0 -  90 
- 1 8 0  ~ pulses .  The T 1 values were  measu red  for  benzene f rom the melt ing point to +115~ and they were  
measu red  for  cyclohexane f r o m  room t e m p e r a t u r e  to +130-140~ The t e m p e r a t u r e  regulat ion and m e a -  
su remen t  were  descr ibed  in [7]. The ave rage  e r r o r  in the T 1 m e a s u r e m e n t s  was about 3% for  the samples  
having high proton concentrat ions and about 8% for  samples  having low proton concent ra t ions .  The same  
appara tus  was used to m e a s u r e  the self-diffusion coefficients  of the molecules  of these  substances ;  the e r r o r  
in these  m e a s u r e m e n t s  was about 5%. 

Thedeu te r a t ed  subs tances  were  furnished by the Leningrad Office of the Isotop en t e rp r i s e .  The degree  
of deuterat ion for  C6D ~ was 96.6%, and that for  C6D12 was 98.4%. The "cp" C6H ~ and C6H12 were  subjected to 
additional drying under  meta l l ic  sodium and a double dissolut ion.  

The in te rmoleeu la r  and in t r amolecu la r  contributions were  reso lved  i n t h e  concentrat ion dependence of 
the T~ "l values  for  the protons by the method of leas t  squa res .  In the calculat ions we took into account the 
in te rmolecu la r  contribution due to the in terac t ion  of protons with deuterons of surrounding molecules  and 
with those protons remain ing  among the solid molecules  because  of the incomplete  deuterat ion.  
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Fig.  1 

Fig.  1. Temperature dependence of the spin- lat t ice relaxat ion rate 
in C~H6-C~D ~ mix tu res .  The curves  co r re sponds  to different  con-  
cent ra t ions ,  as explained in the text .  

F i g .2 .  T e m p e r a t u r e  dependence of the sp in- la t t ice  re laxa t ion  r a t e  
in C~HI~- C6D~s mix tu re s .  
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Fig .  3. T e m p e r a t u r e  dependence of the in t r amolecu la r  (1) and in-  
t e r m o l e c u l a r  (2) contributions to the ra te  of sp in- la t t ice  r e l a x a -  
tion in benzene;  value of D -1 (3). 

F ig .4 .  T e m p e r a t u r e  dependence of the in t r amolecu la r  (O} and 
in t e rmolecu la r  (0) contr ibutions to the r a t e  of sp in- la t t i ce  
re laxa t ion  in cyclohexane.  1) D-l;  2, 3) T~'il and T -1 r e spec t i ve ly  le, 
[3]; 4, 5) Tfi  1 and T -1 r e spec t ive ly  [5]. re, 

3. F igures  1 and 2 show the t e m p e r a t u r e  dependences for  C6H6-C6D 6 and C6H12-C6D12 mix tu res .  
F igures  3 and 4 show the t e m p e r a t u r e  dependences of the in t r amolecu la r  and in t e rmolecu la r  contr ibut ions.  

Our values of Tfi  and T ie  for  benzene agree  be t te r  with the r e su l t s  of Powles and Figgins [4] than with 
those of Bonera  and Rigamonti  [2]; at 25~ e.g. ,  our  values  and Tli  = 99.5 see and T l e =  25 sec ,  those of [4] 
a re  Tl i  = 26 sec ,  and those of [2] (at 22~ a re  Tfi  = 60 sec and Tie  = 25 see .  The apparent  act ivat ion en-  
e rg ies  for  the t e m p e r a t u r e  dependences of T~ 1 and T ~  t, 1.2 * 0,2 and 2.9 �9 0.2 k e a l / m o l e ,  a r e  also approx i -  
ma te ly  equal to the values  r epo r t ed  in [4]. The contributions of in t e rmolecu la r  d ipo l e -d ipo l e  and s p i n - r o t a -  
t ional in terac t ions  were  dist inguished in [4] for  benzene.  Since our m e a s u r e m e n t s  we re  c a r r i e d  out over  a 
na r row t e m p e r a t u r e  range ,  we cannot make this dist inction.  We will not d iscuss  the i n t r amolecu la r  con t r i -  
bution in benzene he re .  

The In (;~1) = f(10s/ToK) dependence for  cyclohexane is  l inear;  it follows that sp in- ro ta t iona l  i n t e r ac -  
tions does not make an apprec iab le  contribution to the re laxa t ion  of cyclohexane protons  in the t e m p e r a t u r e  
range  studied. 

We also note that in cyclohexane there  may be an important  contribution to the p ro ton  re laxa t ion  due 
to the convers ion  of one cha i r - shaped  configuration into another  [8, 9] without any change in the posit ion of 
the molecu la r  cen ter  of g rav i ty .  These  convers ions  involve a change in both the or ientat ion and the length 
of the radius vec tor  connecting the pro tons .  Fo r  example ,  a change in the or ientat ion of the vec tor  between 
the axial and equatorial  protons  of some  ve r t ex  with r e spec t  to the plane pass ing  through the center  of the 
C - C  bond is 54~ ' ,  and the change in the length of the vec tor  between the protons  is the or thoposi t ions 0.56 
A. It would be plausible  to a s s um e  that the cor re la t ion  t ime ~'c found f r o m  the express ion  

r ~  1 = 3/2 h ~ ~ n - '  ~ r~ ~ % (1) 
t ] 
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TABLE 1. Effective Correlat ion Times r e for Certain T e m p e r a -  
tures for  Protons in Cyclohexane 

t~ 20 40 60 80 100 120 

%.101~ sec 1,16 -0,12 0,97--0,1 0,83-0,08 0,72-0,08 0,64-0,07 0,57-0,07 

TABLE 2" 

Substance 

Benzene 

Cyclohexan{ 

t~ 

25 

20 
30 
40 
50 

A 

22,85 

63,25 
53,80 
51,40 
44,05 

F3 (A). 103 

4,68 

2,20 
2,50 
2,59 
2,92 

F4(2A).103 

1,67 

0,78 
0,89 
0,92 
1,04 

F~(3A).103 

1,25 

0,55 
0,63 
0,66 
0,75 

1,08 

1,03 
1,03 
1,03 
1,04 

*For benzene we have a= 2.82 A, and b = 2.47 A and for cyclohexane we have a 
= 3.15 A and b = 2.23 A. 

is some effective pa ramete r  which charac te r izes  both the rotational motion of the molecule and this internal 
motion. Here n is the protons in the molecule; and ri] is the difference between a selected pair  of protons.  

The distance between the protons in a chai r -shaped molecule were  calculated on the basis of standard 
data [10]. Table 1 shows the value of ~'c for  cer tain t empera tu res .  The apparent activation energy for  Tl~t 
is 1.6 �9 0.2 kca l /mole .  

4. Theor ies  of the in termolecular  contribution to the overall  ra te  of nuclear spin-lat t ice relaxation 
in liquids differ in how the nature of the translat ional  motion of the molecules and the local s t ruc ture  of the 
liquid are  taken into account.  

T o r r e y ' s  theory [11] t reats  the liquid as a set of hard spherical  par t ic les  undergoing random jumps.  
The distance of c losest  approach between nuclei is the diameter  of these par t ic les .  F r o m  this theory for 
the case w~" c << 1 we have 

T_, 5 N ( 5 < r ~ > )  
le = h~x 4 ~  1-k 12 d2 , (2) 

where N is the number of nuclei per  unit volume; <r2>1/2 is the rms  jumping distance of the molecules;  and 
D is the self-diffusion coefficient.  

In contras t  with To r r ey ,  Oppenheim and Bloom [12] t reat  the translat ional  motion of the molecules as 
due to continuous diffusion and take into account the nonuniformity of the molecular  distribution; their  resul t  
can be wri t ten as 

r x 

= " dx  dy p'l~ (y) y (3) T~I -5 " x '  ' 
0 0 

which is a form more  convenient for  applications.  Here p(r) is the radial  distribution function of the mole-  
cules .  

Khazanovich [13] found a cor rec t ion  to the intermolecular  contribution which takes into account the co-  
operative nature of the t ranslat ional  motion of the molecules .  This account reduces essent ial ly  to the r e -  
placement in (3) of the self-diffusion coefficient by some pa rame te r  De, an effective diffusion coefficient.  
For  simplici ty,  we will use the cor rec t ion  obtained for the ha rd - sphe re  model: D e = 0.81D. 

The general ized Hubbard cor rec t ion  [14], which takes into account the noncentral  nature of the magne-  
tic nuclei in the molecule,  can be writ ten as 

f =  1 ~- (b/a)~ F~ (A ) -k ( b /a) ~ {5F4 (2A ) t -  3/:4 (3A)}, (4) 
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w h e r e  A = 2a22D~/De, a is the rad ius  of a molecule ;  b is the d i s tance  f r o m  the nucleus  to the cen te r  of the 
molecu le ;  D ~ is the ro t a t iona l -d i f fus ion  coeff ic ient  (D T = 1/6  TC); 

co 

FL (g) = CL ~ du [Jz-112 (u)]~,/u (u S + g) 
0 

and C 3 = 75/4 and C 4 = 35/8  (JL-1/2  is a s p h e r i c a l  B e s s e l  function).  Tab le  2 shows the va lues  of A, FL(g) ,  
and f; these  f va lues  a r e  much s m a l l e r  than t hose  found on the bas i s  of the h y d r o d y n a m i c  r e l a t ions  (1.267 
fo r  benzene  and 1.154 for  cyc lohexane) .  

F o r  l a r g e  A we can obvious ly  a s s u m e  that  the spins  lie at the c e n t e r s  of the molecu le s  and that  the i r  
c l o s e s t - a p p r o a c h  d i s tance  is equal  to the ef fec t ive  d i a m e t e r  of the mo lecu l e s .  

Katzoff  [15], Bochinski i  [16], and Nar ten  [17] have r e p o r t e d  x - r a y  d i f f rac t ion  cu rves  of the r ad ia l  d i s -  
t r ibu t ion  fo r  benzene ,  but these  cu rves  do not y ie ld  a d i r ec t  e s t ima te  of the i n t e r m o l e c u l a r  cont r ibut ion:  
the cen te r s  of in tense  x - r a y  s c a t t e r i n g  in benzene  a r e  the ca rbon  a toms ,  so  the cu rves  ac tua l ly  d e s c r i b e  
the d is t r ibut ion ,  not of the mo lecu l e s ,  but of the ca rbon  a toms  of ne ighbor ing  molecu les  a round  one of the 
ca rbon  a toms  of a s e l ec t ed  molecu le .  

Nar ten  d e s c r i b e d  a model  f o r  the d i s t r ibu t ion  of molecu les  in l iquid benzene  at 25~ A c c o r d i n g  to 
this model ,  each  molecu le  of l iquid benzene ,  l ike each  molecu le  in so l id  benzene ,  is su r rounded  by 12 ne igh-  
bor ing  mo lecu l e s .  The  c e n t e r s  of four  of these  ne ighbor ing  molecu les  lie at  an a v e r a g e  d i s tance  of r 1 = 5.63 
A f r o m  the cen t e r  of the se l ec t ed  molecu le ,  those  of four  o thers  l ie at  r 2 = 5.92 A, while  the cen te r s  of the 

o 
four  o the r s  lie at r 3 = 6.64 A.  This  d i s t r ibu t ion  can  be d e s c r i b e d  a p p r o x i m a t e l y  by 

p ( r )  = 

0~ 

4 

4/3 ~ (ri~i --r~ ) 

4 

4/3 ~ (ri]i-- r~1) 

4 
4/3 ~ ( /3 - - r~ l l )  

N 

for r ~ r l  

rx ~ r ~ rlI 

rn ~ r ~ rm 

rm ~ r ~ l 

l ~ r ,  

(5) 

where  

?'2 - -  r 1 r 1 @ r~ 
r i  = ra --  - -  ; r l l  = 

2 2 

1 ( r2--r~ r3--r.,~ 
rm =:r: + ~ 4 + 4 

and l = r 3 + (r 3 -  rl i i)  is the d i s tance  adopted as the boundary  of the u n i f o r m  m o l e c u l a r  d i s t r ibu t ion .  

Subst i tut ing (5) into (3), and us ing the c o r r e c t i o n s  g iven above,  we find 

T~'--4.05D6~h~ [ 0'960"10~9+N]3-1 ' f '  

Let  us c o m p a r e  the expe r imen ta l  value of T~e 1 fo r  25~ equal  to 4.0, with that ca lcu la ted  f r o m  (6), 
equal  to 3.67, and that found f r o m  

(6) 

T -1-1e - -  - - 2 ~  h2] t  4 N f ,  ( 7 )  
4,05 Dd 

conver t  into a un i fo rm  m o l e c u l a r  d i s t r ibu t ion  fo r  <r2> << d2; this va lue  is equal to in which Eqs .  (2) and (3) 
3.02. 

The  d i s c r e p a n c y  be tween  the value ca lcu la ted  f r o m  (3) and the expe r imen ta l  T~el va lues  can be e x -  
p la ined on the bas i s  of T o r r e y ' s  jump model .  F r o m  the d i f fe rence  be tween the expe r imen ta l  and t he o re t i c a l  
i n t e r m o l e c u l a r  cont r ibut ions  we find < r 2 >i/2 = 0.86 d. 
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No information is available on the molecular distribution for liquid cyelohexane. If the effective 
diameter of this molecule is evaluated from the condition for hexagonal close packing of hard spheres,  
(Tr/6)d 3 .N = 0.74 V m (where V m is the molar volume), we have d = 6.3 A at 25~ and Eq. (7) yields T'~ 1 
= 7.0 �9 10 -2 sec -1. The experimental value of T~ 1 at 25~ is 10 -1 sec -1. The rms jumping distance fJ~ the 
cyclohexane molecules is appreciably shorter than that for benzene. 

We see from Figs. 3 and 4 that the temperature dependences of D -1 a r e  parallel to the T.et curves; 
this result  means that the rms jumping length for the molecules does not undergo any noticeable changes 
with changing temperature.  

In conclusion the author thanks T N. Khazanovich for useful advice. 
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