
POSSIBLE USE OF RECOMBINATION 

EFFECTS ON THE POPULATIONS OF 

AND IONIC LEVELS. I 

FOR SELECTIVE 

EXCITED ATOMIC 

O.  P .  S e m e n o v a  UDC 533.9:537.568 

Studies of recombina t ion  in a p l a s m a  of modera te  density a r e  reviewed.  Conclusions a re  
drawn regard ing  the poss ib le  use  of t e r n a r y  recombinat ion to produce elevated populations 
of high-lying excited a tomic  and ionic levels  and regarding  the conditions in a g a s - d i s -  
charge  p l a s m a  which provide  the sha rpes t  d i f ferences  among these  populat ions,  with the 
h igher - ly ing  levels  populated predominant ly .  T h e r e  a re  additional recombinat ion p r o c e s s e s  
which could produce e levated populations in ce r t a in  cases  in the high-lying excited levels  
of a toms and ions having displaced leve ls :  rad ia t ion less  two-pa r t i c l e  recombina t ion  and 
t e r n a r y  recombina t ion  of ions fo rmed  by the s t r ipping of an e lec t ron  f r o m  an inner  shel l .  

The poss ib le  product ion and use  of se lec t ive  population of excited atomic and ionic levels  is of con-  
s iderab le  in te res t  in connection with many p rob l ems  of p l a s m a  diagnosis  and quantum e lec t ron ics .  Below 
we analyze the use  of recombina t ion  p r o c e s s e s  for  this purpose .  

At modera t e  p l a s m a  densi t ies  t e r n a r y  recombina t ion  must  be  taken into account.  Be lyaeva  andBudker  
[1] d iscussed  recombina t ion  leading to the fo rmat ion  of an a tom in its ground s ta te  and in which the th i rd  
pa r t i c l e  is an e lec t ron .  Such a recombina t ion  p r o c e s s ,  which involves the t r a n s f e r  of much ene rgy  (on the 
o rde r  of the ionization ene rgy  of the atom) to a th i rd  par t i c le  does not readi ly  occur .  Studies of r e c o m b i n a -  
tion involving the fo rmat ion  of a toms in high-lying excited s ta tes  and accompanied  by the t r a n s f e r  of a r e l a -  
t ively  smal l  energy  to a third par t i c le  have been repor ted  recen t ly .  As might be expected,  this type of r e -  
combinat ion is m o r e  efficient .  D'Angelo [2] was the f i r s t  to show that recombina t ion  involving the f o r m a -  
tion of excited a toms in a hydrogen p l a s m a  (especial ly with the main quantum numbers  p = 5, 6) occurs  much 
m o r e  eff icient ly than recombina t ion  to the ground s ta te .  A calculat ion of pure  recombina t ion  - r e c o m b i n a -  
tion involving the fo rmat ion  of an a tom in i ts  ground s ta te  - taking into account recombina t ion  through all 
poss ib le  excited s ta tes  yie lds  much higher recombina t ion  coeff icients  than those found if these  excited s ta tes  
a r e  not taken into account.  This  resu l t  means  that recombina t ion  d i rec t ly  to the ground s ta te  of the a tom is 
essen t ia l ly  negligible.  In t r ea t ing  a tomic  t rans i t ions  f r o m  atomic s ta tes  to the  ground s ta te ,  D'Angelo took 
into account spontaneous t rans i t ions  and ionization of excited a toms due to coll is ions with e lec t rons .  Drawin 
[3] wrote  the coefficient  ce for  pure  recombina t ion  in a manner  consis tent  with D 'Angelo ' s  study: 

= p-1 (1) = c'raa § Q3,, (Te) 7- ~ ,  

where  Cerad is the r ad ia t ive - r ecombina t ion  coefficient;  T e and n e a r e  the e lec t ron  t e m p e r a t u r e  and density; 
Qs,p is the effect ive c ro s s  sect ion for  t e r n a r y  recombina t ion  to s ta te  p; Apq is the probabi l i ty  for  the sponta-  
neous p ~ q  t ransi t ion;  Kp,c{Te) is the effect ive c ro s s  sect ion for  the ionization of an a tom in s ta te  p; and p* 
is the main quantum number  of the h ighes t - ly ing  s ta te  which must  be taken into account (Ep.  ~ KT). 

In ref ined calculat ions [4-6], t rans i t ions  between excited s ta tes  due to coll is ions with e lec t rons  were  
also taken into account.  Simultaneous account of t rans i t ions  between excited s ta tes  due to col l is ions with 
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e lec t rons  and of spontaneous radia t ion  as well  as of e lec t ron-co l l i s ion  ionization of excited a toms is p o s -  
s ible  only s ta t i s t i ca l ly  because  of the in te r re la t ionsh ips  among these  p r o c e s s e s ,  which cannot be t r e a t ed  
sepa ra t e ly .  Coefficient  a cannot be  descr ibed  in a s imple  graphic manner .  Since the recombina t ion  r a t e  
is governed by the l i fe t ime of the excited s ta tes ,  a turns  out to be a compl ica ted  function of the e lec t ron  
densi ty,  the par t i c le  energy  dis t r ibut ion,  and the conditions for  the emiss ion  of radia t ion.  The par t i c le  en-  
e rgy  dis tr ibut ion for  an opt ical ly  thin l aye r  has  been found f r o m  the sy s t em of equations made up of the 
ba lance  equation for  each of the excited s ta tes :  

dn,~ __ np{n~[Kp,c+~'t(p,~]@~z~Ap,q}@ne~2~nqKq,p-~-nqAqp@nen+(neQ3, p7-arad'P)" 
d t  q#'p q<P q~P q>P 

The las t  t e r m  takes  into account the appearance  of excited s ta tes  p due to t e r n a r y  and rad ia t ive  r e c o m b i n a -  
tion. A Maxwell  veloci ty  dis t r ibut ion was adopted for  this calculat ion.  Under the assumpt ion  that r e c o m -  
bination occurs  slowly in compar i son  with the t ime  between e lec t ron  conditions, the condition (dnp/dt} = 0 
was adopted, tn a fu r the r  s impl i f ica t ion adopted for  solving the s y s t e m  of equations it was a s sumed  that 
there  was a Bol tzmann dis tr ibut ion among the high-lying excited s t a t e s ,  since there  is l i t t le  radiat ion f r o m  
these  s t a tes ,  and account need be taken only of the upper  l imit  on the number  of s t a t e s , p * .  Final ly ,  the a s -  
sumption N o = 0 was made,  cor responding  to the assumpt ion  that a toms which have descended to the ground 
s ta te  par t ic ipa te  no fur ther  in col l i s ions .  This  s y s t e m  of equations was solved [4-6] for  the e lec t ron  flux 
(dne/dt) descending to the ground s ta te ,  which governs  the pu re - r ecombina t i on  coeff icient .  Here  the coef -  
ficient a was cal led the "coeff icient  for  co l l i s iona l - rad ia t ive  r e c o m b i n a t i o n f  The values of a calculated 
on a c o m p u t e r ' f o r  a hydrogen p l a s m a  a re  shown in Table  1. 

In an effort  to de te rmine  the effect of the s t ruc tu re  of the a tomic  levels  on this coefficient ,  an analysis  
was made of the case  in which the ground s ta te  is  t rea ted  as the f i r s t  excited s ta te  of the hydrogen atom; 
this level  s t ruc tu re  co r re sponds  to an alkal i  meta l  a tom (the ground and f i r s t  excited s ta tes  a re  close to-  
ge ther) .  It  was  found that (x is r e l a t ive ly  insensi t ive  to the s t r u c t u r e  of singly charged  ions.  

These  calculat ions were  ve ry  compl ica ted ,  requi r ing  knowledge of many atomic constants ,  not in-  
volving an analytic express ion  for  a ,  and using the c l a s s i ca l  c r o s s  sect ions found by Gr iz insk  for  t rans i t ions  
between excited s ta tes  (the Gr iz insk  c r o s s  sect ions were  found under the assumpt ion  that the energy  t r a n s -  
f e r r e d  in the col l is ion is l a rge  in compar i son  with the e lec t ron  energy;  low-energy  t r a n s f e r  is important  
during recombinat ion}.  F u r t h e r m o r e ,  the computer  solutions of the s y s t e m  of the equations p reven ted  eva l -  
uation of the ro les  of the individual excited s ta tes  in the redombinat ion.  

In a study of decaying H and He p l a s m a s  (n e ~ 10 i3 cm-3),  Hinnov and H i r s chbe rg  found exper imenta l  
data conf i rming well  to the calculat ions of [4-6]. T h e r e  have been other  expe r imen ta l  ve r i f i ca t ions .  The 
e r r o r s  in the c r o s s  sect ions used apparent ly  lie within the exper imenta l  e r r o r .  

A s imple  and graphic  method is the n a r r o w - r e g i o n  method proposed  by Byron [8] for  evaluating the 
coefficient  fo r  t e r n a r y  eo l l i s iona l - rad ia t ive  recombinat ion .  Byron as sumed  that the t e r n a r y - r e c o m b i n a t i o n  
coefficient  is governed by  the r a t e  of pa s s age  through the "na r rowes t "  energy  gap p * - ' p * - 1 ,  which c h a r a c -  
t e r i z e s  the min imum deexci tat ion of level  p* due to c oll isions and radiat ion:  

~tr = Ap*+n, Kp,, , ,_,  + ~ P2'A~ n~ n: 
q ~ p * +  1 p = l  e 

This  method is based  on the different  behav ior  of the probabi l i ty  for  level  deexei tat ion due to col l is ions and 
due to radia t ion involving a change in p (as p i n c r e a s e s ,  the probabi l i ty  for  deexci tat ion through col l is ions in-  
c r e a s e s ,  while that for  deexci tat ion through radia t ion decreases} .  

The quantity AP* r e p r e s e n t s  the r a t e  at which the level  p* is deexci ted through radiat ion;  for  the hy-  
d r o g e n a t o m ,  taking into account the ave rag ing  over  in ternal  quantum numbers  I with an account of the a s s o -  
c ia ted s ta t i s t i ca l  weights ,  we find that 

1 
AP* =: 166. IO s - - - s e e  -1 . 

/)4,5 

The quantity neK p*,p*_l r e p r e s e n t s  the r a t e  at which the level  is deexcited due to col l is ions with e lec t rons .  
The thi rd  t e r m  gives the contr ibution of rad ia t ive  p r o c e s s e s  f r o m  levels  p > p* d i rec t ly  to levels  p < p*. As 
a ru le ,  this  t e r m  is unimpor tant .  The  quantit ies n ~ and n~ .  a r e  the equi l ibr ium populat ions of the highly 
exci ted s ta tes  having.q ->p*; these  populations obe~ the Saha equation. F o r  hydrogen a toms ,  we have n~ =q2n2 e 
(2~rl~2/m~Tel) 3/2. T -3/2 exp(Eq/~Tel  }. Evaluation of a t r  f r o m  this re la t ion  yields  values  of a = a t r  + a r a d  
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which agree  well  with the values  found in [4]. The t rans i t ion  p * - - p * - I  is singled out on the bas i s  of the 
s t rong effect of the energy  gap on the probabi l i ty  for  eol l is ional  p r o c e s s e s .  States having p > p * make e s -  
sent ia l ly  no contr ibution to recombina t ion  because  of the high ionization probabi l i ty .  P rac t i ca l  use  of the 
equation p roposed  for  a r equ i r e s  an es t imate  of p*, for  which the cor responding  deexcitat ion ra t e  is  min i -  
ma l .  It  was shown that a can be evaluated within a coefficient  T which va r i e s  f r o m  1 to 1/4, depending on 
how c lea r ly  the deexcitat ion min imum is defined. Although a specia l  method was ,used to evaluate a for  a 
hydrogen p l a s m a ,  this method was r ecommended  for  evaluating (~ for  other  a toms .  The p rope r t i e s  of the 
pa r t i cu la r  a tom enter  through Ep*, the constants ,  and the effect ive c ro s s  sec t ions .  

The n a r r o w - r e g i o n  method for  descr ib ing  recombina t ion  was applied in [9] to a l o w - t e m p e r a t u r e  
p l a sma ;  B ibe rman  et al. [10] have r epor t ed  a s e r i e s  of Corresponding theo re t i ca l  s tudies .  Here ,  as in 
previous  s tudies ,  recombina t ion  has  been  t r ea t ed  as a downward diffusion of e lec t rons  in energy  space .  
The  d i sc re t e  na ture  of the leve ls ,  the actual  conditions on the radia t ion emiss ion ,  and poss ib le  deviation 

f r o m  the Maxwell dis t r ibut ion (function Fp) we re  taken into account.  In taking into account the opposite flux 
of e lec t rons ,  r e spons ib le  for  the ionizat ion (nlnefl) under  the conditions of a s t eady - s t a t e  l o w - t e m p e r a t u r e  
p l a s m a ,  one can speak of a na r row region,  taking into account by Byron.  Taking into account the e lec t ron  
flux j = n lnef i -nen+a  in energy space ,  introducing the reduce  populations Yp = (n0/4)  of the excited leve ls ,  
and introducing the e lec t ron  densi t ies  Ye = (ne/ne ~ (where 4 and n ~ a r e  the equi l ibr ium values  of np and n e 
given by  the Saha equation), B ibe rman  et a l . , found 

p* 

p > l  Fp Kp, p+l ( Te) " 

This  equation can b e  used  to evaluate the contr ibutions of var ious  levels  to the di f ference between the r e l a -  
2 t i r e  populations of the ground level  and the excited level  p* for  which we have Yp* = Ye" 

The populations of the highly excited levels  having p > p* va ry  sl ightly s ince they a r e  at equi l ibr ium 
with the continuum. Lower- ly ing  leve ls ,  nea r  the ground level ,  may  be at equi l ibr ium with it .  In t e rmed ia te  
levels  a re  cha r ac t e r i z ed  by a rapid  change in population; these levels  const i tute the na r row region for  the 
recombina t ion  p r o c e s s .  In con t ras t  with the Byron study, the na r row region h e r e  can be thought of as a set  
of energy l eve l s .  The r a t e  at which the na r row region is pa s sed  de te rmines  ~ .  Evaluat ion of the posi t ion 
of this na r row region yields  AE = ((3/2)T e -  7/2Te)  (reckoned f r o m  the ionization energy) .  At low t e m p e r a -  
t u r e s  the na r row  region moves  toward  the highly excited s t a tes ,  so the levels  can be t r e a t ed  as being hydro -  
gen- l ike .  At high t e m p e r a t u r e s  the region shifts  toward lower  levels  by an amount E t - E  2. 

B ibe rman  et al. [9] found analytic express ions  for  ~ both for  these  l imit ing ca se s  and for  a b road  
t e m p e r a t u r e  range;  for  the b road  t e m p e r a t u r e  range ,  ~ can be wr i t ten  as 

= 4.3.10 -3~ (Ry/Te) ~ [1 k -E' ( AE, I'+ b g, \--~e-] (RfTe)~/~exp (-  E2/L) + (13 3a)-'] --2 cm6/sec 

for T e -< 0.07AE I we have a = 3.2 -10 -2 and b = 4/9, while for T e -> 0.07 AE I we have a = 0.25 and b = 5/6. 
Analysis oftheseexpressions for ~ led to the conclusion that at lowT e (T e < 6000~ the coefficient ~ is es- 
sentially independent of the nature of the atom. At higher temperatures, the properties of the atom are re- 
fleeted through the gap EI -E  2 and through y i/gl. Calculation of ~ = f(Te) for H, He, K, and Cs yields 
values agreeing well with the Bates calculations (for H), experimental data (H, He) [7], and data calculated 
for (Cs) [11] at low t e m p e r a t u r e s .  At these  t e m p e r a t u r e s  the nature  of the a tom is of only minor  i m p o r -  
tance.  At higher  t e m p e r a t u r e s  the re  a re  d i sc repanc ies  among the (~ values  calculated by different  inves t i -  
ga to r s ,  apparen t ly  t r aceab le  to the different c ro s s  sect ions  used .  The m o r e  compl ica ted case  in which the 
radia t ion emiss ion  must  be taken into account was also analyzed.  As was mentioned above, the r a t e  of r a d i a -  
tive t rans i t ions  fal ls  off rap id ly  with increas ing  p, while the r a t e  of col l is ional  t rans i t ions  i n c r e a s e s .  This  
c i r cums tance  allows the ent i re  energy  range  to be divided into two regions:  E > E R (corresponding to r a d i a -  
t ive recombinat ion)  and E < E R (collisional recombinat ion) .  At low Te ,  level  E R l ies  below the na r ro w  r e -  
gion (E R -> 7/2Te)  , and the radia t ion is inconsequential ,  s ince the recombin ing  e lec t ron  spends most  of its 
t ime  pass ing  through the highly excited s t a t e s ,  and we have ~ = f (coll is ional  p roces se s ) :  a = ~ t r  + e~rad" 
At high t e m p e r a t u r e s ,  E R fal ls  in the na r row region,  and radia t ion s t rongly  affects  the value of o~. Col l i -  
sional and rad ia t ive  p r o c e s s e s  must  both be taken into account .  An express ion  was p roposed  for  ~ for  this 
case. 
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TABLE 1 

E 
P (eV) 

3 1,51 

4 0,85 

0,38 

i0 ~ c m  -3 

4000 ~ K 8000 ~ K 

4,6, [0 ~ 1,0.i03 

! , 8 ' 1 0  ~ 3 ,2 .10  ~ 

6 ,6 .10  ~ 1,0.10 t 

-1,!.105 2 ,1 .10  * 

1,4. I0 ~ 3 ,0 .10 ~ 

10 ~3 cm -3 10 u c m  -3 

4000 ~ K 8000 ~ K 4000 ~ K 8000 ~ K 

1,7.109 
3,8.109 

2,2.109 
1,7.109 
1,6.109 

2 '0"10 ~ 

1,1.107 

1,6.107 

1,6.107 

1,6.107 

2,4.105 

1,2. I0 ~ 

2,2.106 

2 ,8 .10  ~ 

3 ,5 .10  ~ 

1,1.10 s 
2,9. lO s 
2.8.10 s 
3,0. lO s 
3,6. l0 s 

B ibe rman  et al  made an impor tan t  contribution in der iving express ions  for  c~ for  the genera l  case ,  
which can be used  to t r ace  the effect  of Te ,  the nature  of the a tom,  the radia t ion emiss ion ,  and the deviation 
of the e lec t ron  dis tr ibut ion f r o m  a Maxwell  dis t r ibut ion on the value of a .  Significantly, these  express ions  
for  a we re  reduced  to a s i m p l e r  f o r m  sui table for  numer i ca l  calculat ions for  var ious  a toms on the bas i s  of 
such s imple  atomic p r o p e r t i e s  as E l - E 2 ,  E2, and Ei /q  I. Al though the calculat ions were  s impl i f ied,  they 
give quite re l i ab le  r e su l t s  for  recombina t ion  in a s t eady- s t a t e  l o w - t e m p e r a t u r e  p l a s m a  in the ionization r e -  
g ime .  

Studies of the a tomic  dis t r ibut ion with r e spec t  to excited s ta tes  in a nonequi l ibr ium p l a s m a  a re  in-  
t e res t ing  in connection with the topic of this rev iew.  Bates  and Kingston [12] and McWhir ter  and Hearn [13] 
analyzed the populations of excited s ta tes  of hydrogen a toms and hydrogen- l ike  ions,  r e spec t ive ly ,  in a non- 
equi l ibr ium p l a s m a .  Taking into account the l inear  dependence of the exc i t ed-s ta te  populations on the 
g round-s ta te  population,  they wrote  reduced  populations in the f o r m  Yp = r0(p) + rl(p)Y 1. Here  the coeff i -  
cients r0(p) and rl(p) a re  compl ica ted  functions of Te  and ne and the s t ruc tu re  of the atomic s t a t e s .  The 
r0(p) and r l (p ) values  which they calculated for  hydrogen and hydrogen- l ike  tons in an opt ical ly  thin p l a s m a  
for  var ious  T e and ne, taking into account all  coll is ional  and rad ia t ive  p r o c e s s e s ,  a r e  shown in the a c c o m -  
panying Tab le  1. Setting rl(p) = 0, i .e . ,  t rea t ing  recombina t ion  alone,  we can de te rmine  the population d i s -  
t r ibut ion among excited s ta tes  due to recombina t ion .  

0 
Tab le  1 shows np va lues  which we calculated f r o m  (np/np) = r0(p) for p = 1-6; ne = n + = 10 I2, 1013, and 

1014 cm-$; and T e = 4000 ~ and 8000~K. We see  that during recombina t ion  the mos t  favorab le  conditions for  
the product ion of sha rp  population d i f fe rences  among the exci ted s ta tes  of H a toms ,  with the h igher - ly ing  
s ta tes  populated predominant ly ,  a re  T = 4000~ and n e = 1013 cm -3. 

t 2 Vorob ' ev  [14] evaluated the analogous coeff icients  r~(p) and rl(p) [yp = ner0(p) + r~(p)] for  H a toms ,  
taking only col l is ional  p r o c e s s e s  into account; these  r e su l t s  we re  fo rmula ted  as Yp = f(E) dependences for  
th ree  values  of T e and for  Y2 e = 102 and 10 -2. It  was found that in a hydrogen p l a s m a  in the recombina t ion  
r e g i m e  sha rp  population d i f fe rences  can be produced with the higher  s ta tes  populated predominant ly .  These  
r e su l t s  can also be used for  an opt ical ly  dense p l a s m a ,  s ince in this case  rad ia t ive  t rans i t ions  will be b a l -  
anced by radia t ion absorp t ion .  

Drawtn [15] analyzed the effect  of rad ia t ion  absorpt ion  on the population dis t r ibut ion among var ious  
s ta tes  of H a toms .  The population dis t r ibut ion was found by solving the s y s t e m  of equations taking into a c -  
count, in addition to the p r o c e s s e s  t r ea t ed  by Bates ,  Kingston, and McWhir te r ,  p r o c e s s e s  due to radia t ion 
absorp t ion .  The following t e r m s  were  added to the equations for  (dn0/dt): 

rip(1--Ap, q) Apq - -  ~a n q ( i - - A q ,  p ) Aq ,  p - -  n+ n -  ( 1 -  A p ) ~ r a d P  ] 
q<p q>p 

where  ( l - A )  is  a fac tor  taking into account the effect ive absorpt ion in the spec t r a l  l ines (Ap,q) and in the 
continuum (Ap), ( l - A )  = 0 co r r e sponds  to a thin p l a s m a ,  ( l - A )  = 1 co r r e sponds  to a dense p l a s m a ,  and 0 
< ( l - A )  < 1 co r re sponds  to the in te rmedia te  case .  The calculated Yp and Yp/Yi dependences were  plotted 
as Yp and Yp/Yt vs N e for  two values  of T e and for  different absorpt ion intensi t ies  in the l ines and in the 
continuum [15]. These  graphs  also showed the dependences for  an opt ical ly thin p l a s m a .  

It follows f r o m  these  studies that t e r n a r y  recombina t ion  produces  a toms in highly excited s ta tes ,  and 
the re  a r e  excited s ta tes  through which it is difficult for  e lec t rons  to pa s s  {there is a na r row  region).  The re  
a r e  sharp  changes in the populations of s ta tes  in this  na r row region.  These  a r e  the most  nonequi l ibr ium 
s ta tes  and a r e  the most  in te res t ing  s ta tes  in this rev iew.  
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In a nonequi l ibr ium s t eady- s t a t e  p l a sma ,  with two opposi tely d i rec ted  e lec t ron  f luxes,  due to r e c o m -  
bination and ionization (Ye < 1), the Yp = f(E) dis tr ibut ion usually has the no rma l  fo rm,  with the lower - ly ing  
s ta tes  populated predominant ly .  Even in this case ,  however ,  as can be seen f r o m  the f igure in [15] for  an 
opt ical ly thin hydrogen p l a s m a  at F e = 12,000~ and with n e ~ 1012-1013 cm -s, we have Y10 > Y4 > Y3. Cool-  
ing intensif ies these  inequal i t ies .  

In a p l a s m a  in the recombina t ion  r eg ime  (Ye > 1) the population dis tr ibut ion Yp = f(E) has a negat ive 
s lope,  ref lect ing the predominant  population of the highly excited s ta tes  due to recombinat ion .  

F o r  r e l a t ive ly  high populations in the highly excited s t a tes ,  and for  sharp  populat ionchanges due to t e r n a r y  
recombinat ion ,  the p l a s m a  should be in the recombina t ion  r eg ime ,  T e should be  low (or ~ should be high), 
and n e must  be such that t e r n a r y  recombina t ion  p redomina tes  over  rad ia t ive  recombinat ion ,  but n e must  
not be too high (the p l a s m a  conditions must  be fa r  f r o m  equi l ibr ium).  F u r t h e r m o r e ,  rad ia t ive  t rans i t ions  
between lower - ly ing  excited s t a t e s ,  not offset  by absorpt ion,  a re  favorable ;  these  t rans i t ions  lead to a sha rp  
population change in the na r row region.  Radiat ion absorpt ion causes  the population dis tr ibut ion among 
var ious  s ta tes  to approach  the equi l ibr ium dis t r ibut ion.  

Two-pa r t i c l e  recombina t ion  may occur  in the case  of ce r ta in  a toms and ions through f ree-bound  r a -  
diat ionless  t rans i t ions  resu l t ing  in the fo rmat ion  of a highly exci ted a tom (or ion) whose exci ta t ion energy  
exceeds  the f i r s t  ionization energy  (Ell). During this two-pa r t i c l e  recombina t ion  an e lec t ron  is cap tured  
into an excited s ta te ,  and the excess  ene rgy  is t r a n s f e r r e d  to a different  a tomic  e lec t ron .  The resu l t ing  
a tom has two excited e lec t rons .  This  recombina t ion  p r o c e s s  would be expected in a p l a s m a  containing a toms  
and ions having displaced s ta tes ,  most  of which have energ ies  above the f i r s t  ionization energy .  This  type 
of recombina t ion  is more  efficient than two-pa r t i c l e  rad ia t ive  recombinat ion ,  whose c r o s s  sect ion contains 
the fac tor  (e2/hc = 1/137) ~. Two-pa r t i c l e  rad ia t ion less  recombina t ion  must  be taken into account i n a n a l y z -  
ing recombina t ion  in p l a s m a s  containing a toms and ions having displaced s t a t e s .  

The densi ty of highly excited a toms  (E a > Ell ) which a r e  f o rmed  is low, because  of autoionization,  
however ,  this type of recombinat ion  m a y  be stabi l ized,  both because  of downward rad ia t ive  t rans i t ions  (di- 
e lec t ronic  recombinat ion)  and because  of t rans i t ions  to s ta tes  which undergo re la t ive ly  l i t t le  autoionization 
in coll is ions with e lec t rons  or  a toms (recombinat ion s tabi l ized by coll is ions) .  The coefficient  for  r e c o m -  
bination through f ree -bound  rad ia t ion less  t rans i t ions  s tabi l ized by some p r o c e s s  can be wr i t ten  as [16] 

' AStabA ( EdZ 
0 s t a D  " a Wd = ~ a  T-S/' wz "2"l'10-16exp ~-- toT ] '  

where  A stab and A a a re  the s tabi l izat ion and ionization probabi l i t ies ;  w d and w i a r e  the s ta t i s t i ca l  weights 
of the autoionized s ta te  of the a tom and the ground s ta te  of the ion; and Edi is the d i f ference  between the 
energ ies  of these  s t a t e s .  Since at modera t e  densi t ies  of a nonequi l ibr ium p l a s m a  we usual ly  haveA a >A stab 
for  the ionization leve ls ,  we can wri te  ~ as 

stab stab w a 10_16 { Eal~ =A .T -s/, .2, 1. exp -- . 
Wi \ KT ] 

In the case  of d ie lec t ronic  recombinat ion ,  A stab = A r a r e  the probabi l i t ies  for  rad ia t ive  t rans i t ions  to level  
K, and we have otstab = otdiel. We see  that a diel depends exponential ly on Edi , so that only displaced s ta tes  
having Edi approx imate ly  equal to Ell a re  important  for  d ie lect ronic  recombina t ion  up to Edi .-. KT. A cco rd -  
ing to the l i t e r a tu re ,  the die lect ronic  contr ibution to pure  recombina t ion  is apparent ly  sl ight .  Under ce r ta in  
conditions in a g a s - d i s c h a r g e  p l a s m a ,  s tabi l izat ion of two-pa r t i c l e  rad ia t ion less  recombina t ion  through co l -  
l is ions with e lec t rons  and a toms may be efficient (Astab = Acoll  ). F u r t h e r m o r e ,  account must  be taken of 
the poss ib le  par t ic ipat ion  in recombina t ion  of ions fo rmed  by the s t r ipping of inner e lec t rons ,  r a t he r  than 
valence e lec t rons .  Accordingly,  other  mechan i sms  involving the fo rmat ion  of highly excited a toms may  be 
operat ing in the case  of a toms having displaced s t a t e s .  

The l i t e r a tu re  r evea l s  no study s imul taneous ly  taking into account t e r n a r y  recombina t ion  and two-  
par t i c le  rad ia t ion less  recombinat ion .  Nor has  there  been a study of recombina t ion  involving ions fo rmed  by 
the s t r ipping of inner  e l ec t rons .  

In a subsequent  paper  we will analyze the effect of recombina t ion  on the level  population and on the 
radia t ion of a toms having displaced s t a t e s .  
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