DERIVATIVES WITH RESPECT TO PARAMETERS OF THE
EIGENVECTORS OF A HAMILTONIAN AND
THEIR APPLICATION

A, Ya. Tsaune UDC 539,101:182,192

A method is described for finding the first- and higher-order derivatives of the eigenvectors
of a Hamiltonian with respect to its parameters, This method is useful even when the explicit
dependence of the eigenvectors on the parameters is not known, The method is based on a
transfer of the differentiation from the eigenvector to the Hamiltonian and on a separate anal-
ysis of the derivatives of the projections of the eigenvector onto the corresponding subspace
and onto the orthogonal complement of this subspace, Conditions governing the position of the
eigenvector being differentiated in its degenerate subspace are analyzed. This method can be
used in certain fundamental problems, and it can be related to steady-state Rayleigh— Schro~
dinger perturbation theory.

In many physical problems the derivatives of eigenvectors of a Hermitian operator with respect to
parameters must be found, In the overwhelming majority of cases, however, the explicit dependences of
these vectors on the parameters are unknown, so a direct differentiation cannot be carried out, In the meth-
od described below this difficulty is avoided by transferring the differentiation from the vector to the opera-
tor, We will use the Hamiltonian as the Hermitian operator,

We start from the stationary Schrodinger equation
(H—IE)|s3) =0, (1)

where H is the Hamiltonian defined in Hilbert space A; I is the unit operator; E, is an eigenvalue; 1s%) is
an eigenvector; s denotes the (generally degenerate) corresponding subspace, and ¢ denotes a vector in A(S),

The Hamiltonian is a function of the parameters Rj §=1,2,...,N), the set of which we denote by R;

we thus have
H=H(R). 2

We obviously also have
E,=E,(R), |ss)=]|sa(R)}. 3)

We will omit the R below for brevity; to indicate that H, E, etc, correspond to fixed values of the paraméters
(R =Ry) we write

H(RO)EHW ‘ ES(RO) EE:O! lsd(RO) > EISG ) 0 (4)
( 89" (R) | H (Ro) |83 (Ro) ) = (59’ | H| 53 ).

The eigenvectors can be orthonormalized for any parameters; i.e,, we can write

5
(8’0" | 861 = B,580s0. ()
We introduce the following notation for the derivatives:
oH oE dss>
——=0,H, $ =0,E, —— =[0;80" (6)
oRrR; R, . oR; ’

and we will assume that H is differentiable with respect to its parameters as many times as necessary,
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To find the first derivative, we differentiate (1) and transform to the equilibrium values of the param-
eters, finding

(H— IE )] 0,850 = — [0;(H — 1E)]s| s9%. @

We cannot find |85’ o directly from this expression, since (H—IEg) has no inverse, We thus single out
from A the subspace Ajsuch that

A= AP @ A,, 8)

where A(()S) is AS) at R = R, and & indicates the orthogonal sum, Obviously, A®) ig an invariant subspace
of operator Hg, and projection onto this subspace does not remove the vectors from the region of definition,
We assume that A} is also invariant; then Hyand I, respectively, generate [1]

the operators Ho(s) and 1% in Ao(s) (9a)
and the operators Hy and I' in Aj. (9b)

We introduce Pggand ((—Pg),, the orthogonal projection operators projecting onto A(()S) and Aj, re-
spectively [1]; we can now show that we have [1]

PSO (H - IEs)O = (H"— IEs)OPsOi (103-)
(I — Po(H ~1E), = (H—1E)y (I — Py). (10b)
Multiplying (7) from the left by Pgqand (I—Pg)y; and using (10a), (10b), and (9); we find
(H —IE)PIP | 0,55 vy = — Py [0;(H — IEJ) o83, (11a)
(H—IE)y (I~ Py)e18;53 5= — (I — P |0;(H—1IE)]s |59, (11b)
Since we have
(0,85 19 =Py 0,59 1+ (1 — Pg)o]0;89 2, (12)

Eq. (11b) gives the second part of the derivative, while (11a) holds only if its right side vanishes, since ma-
trix (H—IEs)gs) is of rank zero, Otherwise, we must transform to new eigenvectors in Ags):

[8Tyo= (834 ¢ 8a]st g, (13)

which satisfy
Pyuloj(H—1E)|olstr=0 (j=1,2,..., N). (14)

The solution of this equation always exists; (ajES)o serves as an eigenvalue, Two cases are possible:

1) The vectors [s7'y (7 =1,2, ..., M) do not depend on j; i.e., there exists in Ags) at least one set
of vectors which satisfy (14) for all j.

2) There is no set of vectors which satisfy (14) for all j,

We assume the first case, Then according to the value of (3;E4), we can resolve A{S) into A(()Si), cor-
responding (ajEs)O(i), with [s7() (c @ = 1,2, ..., my); Agsz), corresponding to (8jES)(()2), with |s7@®> @
=1,2, ..., Mp);...;and Agsn)’ corresponding to (BjEs)(()n), with [s7@)) (e ™ =1 27, ., My). Here we

have

AP =3 @A, 3 M =M, (15)
v=I v=1
The problem now reduces to that of determining
[0j51>0=PS0I8j51>0+(I—PS)OldjS"c)O, (16)

in which the second term ig found from (11b) with {s¢ ¢ replaced by [sT?,, and the first term satisfies
(H—IE)$) Py [9;5t) ¢ = 0. (17)

Since matrix (H—IES)(()S) is of rank zero, the golution of this equation is not restricted in any manner, and
we can assume

Py ldss714=0. (18)

It is not difficult to show that this condition does not violate the condition for orthonormality within Ags):

87| 5Ty = Bav, (19)
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which follows from (5), The first derivative can thus always be determined from simply the second term
in (186).

To find the second derivative, we differentiate (1) (where |sc> has been replaced by |s7») twice; fix
the parameters; multiply the resulting equation from the left by Pgyand ((—Pg)y and use (10a), (10b), and
(9); finding

(H — TE)OPyy 0,5 1o = — P [0y (H — Iy | 574 — Pog [0 (H — TE)]o] s 0 — Poo [0, (H — TEQ 1o 0;5% 10/208)

(H—1E) (I — Py |08t o= — (I‘PS)o[axj (H—IEs)]o] s '
—~ (I — Py)g [0; (H — Es)]| 0,8t — (I — Pys) [0, (H — IE5) 510587 . (20b)

The second equation gives [—Pg)y |8st7> o unambiguously, while the first requires that the right side of
(10a) vanish, Otherwise, we must further refine the vectors within each A((]SV)C Ags)(v =1,2,...,n1in
(15), i.e., we must transform to

M,
[$60) 5 = §<0) 5o ¢ 82l | 5600
0=, [T s, 1)

O =1,2 ..., M; v=1,2,...,n),
which satisfy the equation found by equating the right side of (20a) to zero (after the first derivatives are
substituted in), The eigenvalues of this system are (3KjEs)0s and different values of these eigenvalues lead
to a further resolution of each A(()SV) such that we have

Al = cpZ‘x @ A, (22)
where A(()SV ?) is formed from |s6¥ @) (V9 =12, ,,., M, ) and where we have

ﬁle =M, (23)
P2

As in the analysis of the first derivative, we assume that for all k,j = 1,2, ..., N there exists a single set
IsG(”)> o; then in the expression for the second derivative,

1086 25 = Py [ 9js8 ) 4 4 (1 — Py)o | 0iss0 34 (24)

the second term is given by (20b) (where |s7>) has been replaced by |s0, in the derivatives), and the first
term can be written asg
M
Py 040 >, = 92 . 88" >, <50 | Oyjs0 > (25)
The coefficients on the right side of this equation are found by a repeated differentiation of the orthonor-
mality condition analogous to (19):

< 868> = < 5088 > = dor (26)

It is not difficult to show that these coefficients can be written in the symmetric form
Re <86 0,56" >, = Re <58 {0,808 >, = — 2i [Re < 8,56" | 0,80 >, 4 Re < 0;50(3esY > ], (27a)
Im < 58] B8 >y = — Im < 9| 9ys0 >, = % (Im < 0,58 |Oes0 >0 — Im < 3,58[dest >ol.  * (27h)

Here Re and Im are the signs of the real and imaginary parts,

The procedure for finding the third and higher derivatives is obvious, The eigenvectors to be differen-
tiated are refined, and the resolution of A(()S) is continued, It is also obvious that this process is related to
a "removal of the degeneracy" as the parameters are varied,

If there does not exist a set of vectors which satisfy (14) for all j [see case 2 below Eq, (14)1, no further
differentiation can be carried out, since certain vectors from Ags),must be used as original vectors for cer-
tain j, while other vectors must be used for other j. The set of parameters Rj of this type cannot be used
to simultaneously find the derivatives of a given vector,

Schrodinger equation (1) wag differentiated in this derivation; this approach was first used in [2] (see
also [3]) to find the first derivative of the eigenvector and the second derivative of the corresponding nen-
degenerate eigenvalue, All the equations were obtained on thebasis of eigenvectors of the Hamiltonian,
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The derivatives of the eigenvectors of the Hamiltonian are also of independent interest, since they can
be used in the following general problems:

1. To determine the eigenvectors for a set of parameters different from the fixed set, through the
use of the series

[30 (R, + AR) > = | 55>, + 3], >,,ARj+§1§;a,cjse>,,AR,-AR,c+ L (28)
J K,

2. To find the derivatives of the matrix elements of arbitrary (parameter-dependent) operators A in
the basis of eigenvectors of the Hamiltonian:

[0;<<s6JA[s0>],= <350 | A|s6 >, 4 <V 0A (86> + < s0[A[d;80 >, (29)
In particular, this procedure allows us to find the derivatives of the energy,
Es= < sOlH|sH>. (30)
3. To expand a matrix element in a series in terms of increments in the parameters; e,g., for the
energy, to write
. 1@ p
Es(R,+ ARy = Egy -+ ,2 (0;Es)o AR+ 52 (Ox;Es)g AR AR, - ... . (31)
Kj
Equations (28) and (31) can evidently be thought of as the equations of a "multiparameter perturbation

theory,"

In conclusion we turn to two particular cases, Let us assume that the Hamiltonian depends only on a
single parameter, in the usual form for steady-state Rayleigh—Schroddinger perturbation theory [4]:

H = HO® + RH, $2)

and Eg is nondegenerate, Then the second index in the expression for an eigenvector can be omitted, We
write all the operators in the basis of eigenvectors of H(?); then we have

Py =15> < 8], (1—P5)0=r§¢1r>00<r|, (33)
and
<r|(H—IEY™' [t > =E>b——E<) (r, £ 5). (34)
Using (11b), (18), (20b), (25), (27a), and (27b), and using (9Eg)y =<s|8H|s>), we find
Py, |35 >, =0, (1-ps)o1os>0=ﬁr§$|r>o<—;§\)9§%)z°—, (@352)
Psol025>0=—1s>02|——<r—l—a—hﬂs—>—£ (35b)

(E® — EO)?

<rlOH|t>, <t[OH s>, S lrs <r|0H| s>, <s|0H]|s>, (35¢)
(E£0) _ E(so)) (E(tO) _ E(So») =, 0 (E;O) _ EgO))z .

(1 — Py), | 0% >, = 2 ?;SII’>0

rES

Also using (12) and (24), substituting everything into (28), and setting AR = 1, we find Eq. (25.14) of [4], which
gives the eigenvector according to second-order perturbation theory,

Substituting (35a) into (29), using (12), and setting s' = s, we find

: o <S|OH|r>,<rlAls>, <s|Alr>,<r|0H|s>
— - I N __\V 0 V]
[0<s|Als>]y=<s]|0A|s>, }; ED _ ED & EO — E© ,

which is the sum-~rule equation of [5].
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