
DEPENDENCE OF THE ORDINARY HALL CONSTANT ON THE 

TEMPERATURE AND ALLOYING-ELEMENT CONCENTRATION 
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An equation is der ived for  the Hall constant for  the case  of a b inary  d i so rde red  solid solution 
on the bas i s  of two-band theory .  The equation explains the change in the sign of the Hall emf  
at ce r t a in  a l loy ing-e lement  concent ra t ions .  An equation is found for  the t e m p e r a t u r e  coeff i -  
cient of the Hall constant  for  a compensa ted  meta l ;  this equation explains the dec r ea se  in this 
coefficient  with increas ing  t e m p e r a t u r e  and the change in sign at ce r ta in  a l loy ing-e lement  
concent ra t ions .  

Several  a t tempts  have been made to find theore t ica l  explanations for  the behav ior  of the ord inary  Hall 
constant in pure  meta ls  and in dilute b ina ry  solid solut ions.  Unfortunately,  no equations agree ing  well  with 
exper iment  have been found. Neve r the l e s s ,  it can be shown that a sys t ema t i c  extension of the W i l s o n - S o n d -  
h e l m e t  theory  r evea l s  an explanation of the exper imenta l  dependence of the Hall emf  on the t e m p e r a t u r e  
and a l loying-e lement  concentra t ion in me ta l s .  

According to the W i l s o n - S o n d h e i m e r  two-band theory  [1], the o rd inary  Hall constant can be wri t ten  
in the following f o r m  over  a r e l a t ive ly  b road  range  of magnet ic  fields:  

R = R1 R2 ~., 2 2 2 
o , ~, + P~ P, + p----~ , (1) 

where  a i = e2nixi is the e lec t r i ca l  conductivity; Pi = 1]ai is the r e s i s t i v i t y  of the i - th  energy band; n i and 
x i = ~'i/mi a r e  the e lec t ron  (i = 1) and hole (i = 2) concentra t ions  and mobil i t ies ;  e is the e lec t ronic  charge;  
~'i and m i a r e  the re laxa t ion  t ime  and the effect ive m a s s ,  and we have ~ = cr i + cr 2. The Hall constant R i = 1 
/ en  i for  each of the energy  bands in the meta l  par t ic ipat ing  in the conduction is governed only by the e lec t ron  
(or hole) concentrat ion n i and thus by the posit ion of the F e r m i  level  E F with r e spec t  to the bot tom of the 
conduction band (or with r e s pec t  to the top of the band in the case  of holes) .  It is known that E F depends 
ve ry  weakly on the t e m p e r a t u r e .  When alloying meta l s  a r e  added to the pure  meta l ,  E F is a ls0  affected 
ve ry  sl ightly,  even at the concentra t ions  at which ve ry  anomalous  behavior  is observed  in s eve ra l  physical  
p rope r t i e s  [2]. In poor  conductors  such as ant imony and bismuth ,  in which the e lec t ron  and hole concen-  
t ra t ions  a re  many o rde r s  of magnitude below the concentra t ions  in ord inary  me ta l s ,  these  slight changes in 
E F may be important  [3]. Since the e lec t ron  concentra t ion va r i e s  slightly as a function of the t e m p e r a t u r e  
or  the a l loying-e lement  concentrat ion,  we will below re la t e  all  the bas ic  changes in the overa l l  Hall con-  
stant  of the meta l  to the cor responding  changes in the band r e s i s t i v i t i e s ,  Pl and P2, in Eq.  (1). 

The r e s i s t iv i ty  assoc ia ted  with the i - th  energy band can be wr i t ten  as [4] 

rn,vr (2) 
pi-- e"ni X p!~, 

K 

where  v F is the veloci ty  at the F e r m i  level  and where  we have 

E 1~t~ = ~i (T) + ~ (c) + ,~, (Nb~ + ,~i (N~. + . . . .  (3) 
t~ 

where  /Zl(T ) is the coefficient for  phonon sca t te r ing  of e lec t ron  waves;  gi{c) is that for  sca t t e r ing  by alloying 
metals; /~t(Nv) and pi(Nd) a r e  the cor responding  coeff icients  of sca t t e r ing  by vacanc ies  and dis locat ions .  

Substituting Eq. (3) into Eq. (2) and then into Eq. (1), we can in pr inciple  find the Hall constant as a 
function of the t e m p e r a t u r e  and the alloying e lement ,  dislocation,  vacancy,  etc. ,  concent ra t ions .  In genera l ,  
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however ,  all these  dependences  a r e  compl i ca t ed .  We will  deal with c e r t a i n  p a r t i c u l a r  c a s e s  in which the 
Hall emf  is a r e l a t ive ly  s imple  funct ion of these  f a c t o r s .  

I .  We a s s u m e  a b ina ry  d i s o r d e r e d  sol id  solut ion and we a s s u m e  that the s ca t t e r i ng  of e l e c t r o n  waves  
which is r e spons i b l e  fo r  the " r e s idua l "  r e s i s t i v i t y  is i ncoheren t .  The  r e s i s t i v i t y  is known to be governed  
by  s q u a r e s  of the m a t r i c  e l emen t s  of the potent ia l .  Fol lowing Nordhe im ,  we choose  as  ma t r i x  e lement  

v . ,  = ~ ~' ~*v.,~, d~, (4) 
J ~ , 

w h e r e  Vn, the a tomic  potent ia l ,  van i shes  outs ide  the n - t h  cell ;  CK~ and CK a r e  wave funct ions  c o r r e s p o n d i n g  
to the s t a t es  of conduct ion e l e c t r o n  fo r  which the wave  v e c t o r s  a r e  x' and K. In p a r t i c u l a r ,  fo r  the i - th  band 
of a d i s o r d e r e d  sol id  so lu t ion  conta in ing  a concen t r a t i on  c of a toms  of spec ies  a and a concen t r a t ion  of 1 
- c  of a toms  of spec i e s  b we have 

I V~,~i I ~= No(1  - - c l  (f,,,q~' - - f b~ ,~ )  2 = Nc(1  - -  c)A f? ,  (S) 

w h e r e  faKiK ~ = f CKiVnaCKid~',* ~ �9 and N is the total  n u m b e r  of a toms .  Within the f r a m e w o r k  of s ing le -band  t h e o r y  

we find the N o r d h e i m  r e s i d u a l - r e s i s t i v i t y  t e r m  [5]: 

pi = A~c (1 - -  c )  , (6) 

rn, ( 3 N ) ' , ~  
A, = 16= a e~h: c ~ Af? (7) 

The  r e s i s t i v i t y  of the i - th  band thus depends on the a l l oy ing -e l emen t  concen t r a t ion  in the fol lowing ma n n e r :  

p~ = ~o~ + A~c (1 --  c ) ,  (8) 

w h e r e  P0i ~- Pi(T) is the phonon r e s i s t i v i t y  of the i - th  band.  (At low t e m p e r a t u r e s  and in h ighly  d e f o r m e d  
m e t a l s ,  P0i should include the r e s i s t i v i t y  due to the v a c a n c y  and d i s loca t ion  concen t r a t ions . )  

Subst i tut ing Eq.  (8) into Eq. (1), and c a r r y i n g  out s o m e  ca lcu la t ions ,  we find 

R = a '  + ~c(1 -- c) H- ~,c2 (1 --c)= , (9) 
~.. § Bzc (1 --  c) + &zc 2 (1 -- c) 2 

2 2 where  a 1 = R~po~-RzPol  , fli = f f l lA2Poz-R~AlPol ) ,  6~ = RtA~-R~A~, 

a., = (,%, + ~o~) ~, [~ = 2 (,ooi + po.,) ( A t  -{- A~), ?,~ = (A,  + A~) ~. (10)  

Using c < 1, we expand (9) in a s e r i e s :  

1 

R = R (0) + R '  (O).c + 2  R" (O) c 2 + . . .  ~ R o  + Bo (1 --  A.c) c ,  (11) 

w h e r e  R 0 = R (0) is the Hall  cons tan t  of the pu re  meta l ,  g iven by Eq.  (1), except  that  the ~i va lues  for  pure  
me ta l s  a r e  used;  a f t e r  lengthy ca lcu la t ions  we find we can wr i t e  B 0 = R '  (0) and A = R" (0)/2R v (0) as  

Bo = 2 (A.A.ol --  Alr-o2) R,_,pm 4- R,9o L , (12) 
M- 9 (pot , ~o2)" 

A =  1 + 2(A, + A2) 2 (R,Azo02 4- RzA~o:) + (R,2 +R~)(A~_om + A~p02) (13) 
,~ol + ?02 2 (R2~ol + R~o~)  (foi + 002) 

The  e x p r e s s i o n s  fo r  A and B 0 s impl i fy  cons ide r ab ly  fo r  an e x t r e m e l y  impor tan t  and b r o a d  c lass  of 
conduc to r s  - c o m p e n s a t e d  me ta l s  (R 1 = R 2 = 1/en) :  

A : 1 + A,  + A .  2 _ 1 -~- e2n(Ax + A~) x~x2 , (14) 
0o~ + r,~o2 (x~ + x2) 

xlx~. (15) Bo = 2R1A'2'~~ + po2) ~A'p~ 2e (A.,x.,_ " - -  A~xl) (x~ + x2) ~ " 

In  c o n t r a s t  with the c a s e  of the Nordhe im r e s i s t i v i t y ,  the Hall cons tan t  may  e i the r  d e c r e a s e  o r  in-  
c r e a s e ,  dependent on the s ign of B 0 in Eq. (11). The  s ign of B 0 is gove rned  by the s ign of  the f a c t o r  (A2P01 
-Alp02 ) in Eq.  (12): 

A2~ol--A~o2 =: 16"~ "~ I / 3 N  ~,,3 , e~-h 3 I---~-) (po,m~2Afj--po2rnS[Af~). (16) 
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T A B L E  1 

Bo Alloy Alloy R0 Bo Alloy Ro 

Pd--Ag 
Pd--Au 
Pd--H 

Pd--Ru 
Pd--Mo 
Pd--Rh -- 
Pd--Nb 
Pd--Zr 
Ag--Pd 

Ag--Pt -- 

Ag--Au - -  

F r o m  Eq. (16) we easi ly find 

- -  [ 1 3 ] *  

-- [141 
--[151 
- -  [131 
- -  [ 1 3 ]  

--[131 
- [131 
- -  [ 1 3 ]  

--[111 
-[111 
- -  [221 

Au--Ag 
Cu--Ni 
NI--Cu 
Ni--Tt 
Ni--V 
Ni--Cr 
Ni--Mn 
Ni--Co 
Fe--NI 
Fe--Co 
Fe--W 

Ro B0 

- -  - -  I22] 
- -  - -  [ 1 9 ]  

- -  - -  [ 1 9 ]  

- -  - -  [ 2 1 ]  

- -  - -  [ 2 1 ]  

_ _ [ 2 1 1  

- -  - -  I 2 1 ]  

- -  - -  [ 2 0 ]  

- -  - -  [ 1 8 ]  

+ -- [17] 

Pb--Sn 
Pb--T1 
Pb--In 
Pb--Hg 
Mg--Li 
Mg--Ag 
Mg--Cd 
Mg--A1 
A1--Mg 
A1--Si 
AI--Ge 
AI--Zn 

-6 
+ 
§ 

-6 

- -  [ 1 6 ]  

- [ 1 6 1  

- -  [161 
+ [161 
-6 [23l 
-6 [161 
-6 [161 
-6 [161 
-+- [161 
-6 [16] 
+ [16] 

B 0 > 0 for . . . . . . .  /n2t/2z2 > Af~ and/30 < 0 for tn2n2" % ~ Aft__ (17) 

E x p e r i m e n t a l l y ,  we can  d e t e r m i n e  the s ign  and magn i tude  of B 0 f r o m  the dependence  of the Hall  c o n -  

s tan t  o n t h e  a l l o y i n g - e l e m e n t c o n c e n t r a t i o n .  T a b l e  1 shows the s igns  of B 0 and those of R 0 which we found 
f r o m  the l i t e r a t u r e  and f r o m  our own e x p e r i m e n t s  (the l a t t e r  a r e  denoted by  a s t e r i s k s ) .  

Using Eq. (11) we can easi ly find an explanation for the change in the sign of the ordinary Hall constant 
at cer ta in  al loying-element  concentrat ions:  if R 0 and B 0 in Eq. (11) have different signs, an increase  in the 
concentrat ion of the alloying element may result  in a situation in which we have [B0c(1-Ac)[ = R 0. Then a 
fur ther  increase  in concentrat ion c will change the sign of the Hall constant; such a sign change has in fact 
been observed in i r o n - c o b a l t  [16], l e a d -  thallium, l e a d -  indium, l e a d -  mercury ,  m a g n e s i u m -  cadmium [15], 
and other al loys.  

We see f rom Eq. (11), which holds within a factor  on the order  of c3/3!, that with 

c = 0 5  A -1 (18) 

we wil l  o b s e r v e  an e x t r e m u m  in the Hall  cons t an t .  In a l loy s y s t e m s  such as  C o - N i  [18], C u - N i  [19], A u - A g  
[22], P b - T 1  [16], P d - A g  [13], and P d - A u  [14], for which experiments  have been ca r r i ed  out over a wide 
range of alloy concentrat ions,  this ex t remum has been observed.  Since we general ly have A ~ 1, the ex-  
t r e m u m  should shift toward a concentrat ion of c = 0.5, in agreement  with experiment.  

II.  No sa t i s fac tory  explanation has been offered for  the behavior  of the tempera ture  coefficient of the 
Hall constant.  Gm~hling and Hagmann [24] attempted to explain the change which they observed in this co-  
efficient in their  palladium alloys in t e rms  of a tempera ture  dependence of the concentrat ion of conduction 
electrons in turn due to thermal  expansion and a change in the Fe rmi  energy.  However,  their  theoret ical  
es t imates  of the tempera ture  coefficient turned out to be on the order  of hundredths of the experimental  
values.  Taking note of the pronounced paramagnet i sm,  the maximum in the susceptibil i ty x at 80~ and 
the s imi lar i ty  between the t empera tu re  dependences of z and R in palladium, Allison and Pugh [25] sug-  
gested that the temperature-dependent  par t  of the coefficient in p a l l a d i u m -  s i lver  alloys was due to the ex-  
t r ao rd ina ry  Hall effect. However, this explanation seems unconvincing, since the ordinary  Hall constant de- 
pends on the tempera ture  in all metals .  

Without using any a rb i t r a ry  assumptions we can explain the features  of the tempera ture  dependence of 
the Hall constant within the f ramework  of two-band theory.  Let us consider  the case of compensated metals  
(R 1 = R 2 = 1/en), which includes palladium. According to Eq. (1) we then have 

1 A ~  

e n r 

After  simple calculations,  using (19), and 

do = _ I dp_~ _ _ 

dT p ~ dT  

Az : z l - -  ~ = 1/Or -- 1/p~ (19) 

1 dP2 d ( A o ) = _ 1  dP2 1 dp~ (20) 
p~ d--T " dT  p~ dT  ~ dY ' 
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we find the t empera tu re  coefficient of the Hall constant (y) to be 
1 dn ~ 1 d (h~)  1 da 1 dn 2~11- - e~  

7 =  n dT  ha dT ~ d T =  n dT 1--~-----~' (21) 

where ol i = ( d p i / d T ) / P  i is the tempera ture  coefficient of the res is t iv i ty  of the i- th band, and we have 6 = 01 
/P2 and e = (dP2/dT) (dpl/dT) = (o~2/o~ l)/~. 

Let us consider  some limiting cases  of Eq. (21). 

1. High Tempera tu res .  Here we have Pi = alT + P~'o and P2 = a2T + P~'0; and P~o and P~0 are  the residual  
res is t iv i t ies  of the two bands.  Under the condition a 1 # a~, the denominator in the second t e rm in this equa- 
tion is finite, even as T ~ r  but the numera tor ,  1 -~6  = 1-(ata2T + a2P~o)/(ala2 T + alP*o), vanishes as T ---~. 
Then the tempera ture  coefficient of the Hall constant is governed by the extremely small  quantity 

%, 1 dn , (22) 
n d T  

which yields a tempera ture  coefficient for the Hall constant for palladium on the order  of 4 �9 10 -s deg -I [24], 
more  than an order  of magnitude below the experimental  vaIues at room tempera tu res ,  at which the t e rm 

~H=~ - -2~ ,~(1  - - e8 ) / ( 1  _ ~2), (23) 

which is a fract ion of the quantity 2a I .., 10-2-10 -3, cannot be neglected.  Equation (21) thus co r r ec t l y  ref lects  
the well-known decrease  in the t empera tu re  coefficient of the Hall constant in metals as the t empera tu re  is 
ra ised ,  and it ref lects  the very  small  t empera tu re  coefficient of the Hall constant at room tempera ture  or  
higher.  

2. Let us consider  the change in the al loying-element  par t  of the res i s t iv i ty  on the basis  of Nordheim 
law (7). We expand ~ = 6(c) in a se r ies  and re ta in  the f i rs t  three  t e rms ;  after  some calculation, we find 

= 9~ + A1?~ -- A2P~ c (1 -- A* .c), (24) 
Po2 P~2 

whore A* is a new constant,  a pa r t i cu la r  case  of which is descr ibed below [see Eq. (26)]. At high t e m p e r a -  
tu res  we have P0i " aiT; i .e. ,  we can neglect the role of vacancies  and dislocations in determining P0i. In 
this case  the numera tor  in Eq. (21) becomes  

1 --  ~ -- A2a~ --  A~a2 c (1 -- A'c) ,  (25) 
ala2T 

where A 1 and A 2 are  given as before  by Eq. (7). 

Since, in the f i rs t  approximation,  a i and A i do not depend on the al loying-element concentrat ion,  we 
would expect, at concentrat ions above c* = l /A*,  the sign of yn to change; this change has in fact been ob- 
served exper imental ly  [24]. Using the method of least  squares ,  we find f rom the data of [24] that the con-  
centrat ion c* at which this change occurs  is c* = 5.5 at.% Ag for  P d - A g  and c* = 8.75 at.% Au for P d - A u .  
Using Eq. (21), we can find c * = l /A*  theoret ical ly  f rom data on the phonon res is t iv i ty  of palladium, p(T) 
= 9.1 #~2. cm (0~ [8] and the constants? A = 1.0.102 (Pd-Au)  (the concentrat ions are  given in relat ive units) 
and A = 1.4 �9 102 (Pd-Ag)  [21]. Let us assume that the phonon res i s t iv i ty  of band 2 differs f rom the ove r -  
all phonon res i s t iv i ty  by the same factor  by which constant A 2 differs f rom the overall  fac tor  A for all the 
bands.  Then f rom 

c* : l/A* : aaT/  (a aT + A=) "~ aT / (aT + A)  (26) 

we find c* = 8 .3 .10  -2 (8.3 at.%) for  P d - A u  and c* = 6 ,1 ,10  -2 (6.1 at.%) for  P d - A g .  These values differ 
little f rom the experimental  values given above, offering fur ther  support for  Eq. (21). We see f rom (26) 
that c* depends s t rongly on the t empera ture .  

By studying the Hall constant and the e lec t r ica l  res is t iv i ty  as functions of the tempera ture  and the 
concentrat ion of the alloying element along with changes in the signs of the Hall constant and the t e m p e r a -  
ture  coefficient of the Hall constant; and by determining the maximum of the Hall constant through the use 
of Eqs.  (11), (21), (16), (18), and (26), using arguments  based on the model; we can determine important 
pa rame te r s  of the energy bands, par t icu lar ly  if we supplement this study with study of the heat capacity,  
the de H a a s - V a n  Alphen effect, etc. 

~-Here A is the coefficient in the res idua l - res i s t iv i ty  equation (6), averaged over all bands part icipating in 
the conduction; this constant is usually determined experimental ly.  
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Significantly, Eq. (4) is based on the assumption that the electron waves are scattered independently, 
and it neglects several interference effe6ts, e.g., the interaction between alloying-element atoms and dis- 
locations, that between vacancies and dislocations, and that between alloying-element atoms. In several 
cases these interactions produce a nonmonotonic change in the potential energy of the crystal  [12]. These 
effects can be taken into account in matrix element (5) if we discard the original restrictions.  We can r e -  
tain the mathematical formalism here, but we must recall  that faK-K! and fbK.K! in Eq. (6) change nonmono- 

l 1. l l 
tonically at low concentrations (on the order of O.1 at. %) of the alloying element. Since at c ~ 0.001 Eq. (11) 
can be written as R = R 0 + B0c , this nonmonotonic behavior affects the Hall constant through coefficients A i 
[see (8)] in Eq. (12). In this case the pronounced extrema of the Hall constant which have been observed [5-7, 
9-11, etc. ] become understandable. However, analysis of this anomalous behavior lies outside the scope of 
this paper and must be taken up separately. 
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