DEPENDENCE OF THE ORDINARY HALL CONSTANT ON THE
TEMPERATURE AND ALLOYING-ELEMENT CONCENTRATION

E, G. Okonnikov UDC 538.63:669.234

An equation is derived for the Hall constant for the case of a binary disordered solid solution
on the basis of two-band theory, The equation explains the change in the sign of the Hall emf
at certain alloying-element concentrations, An equation is found for the temperature coeffi-
cient of the Hall constant for a compensated metal; this equation explains the decredse in this
coefficient with increasing temperature and the change in sign at certain alloying-element
concentrations,

Several attempts have been made to find theoretical explanations for the behavior of the ordinary Hall
constant in pure metals and in dilute binary solid solutions, Unfortunately, no equations agreeing well with
experiment have been found, Nevertheless, it can be shown that a systematic extension of the Wilson— Sond-
heimer theory reveals an explanation of the experimental dependence of the Hall emf on the temperature
and alloying-element concentration in metals,

According to the Wilson— Sondheimer two-band theory [1], the ordinary Hall constant can be written
in the following form over a relatively broad range of magnetic fields:

5 \? s \2 / P2 )2 < 1 )2
“R(aY R (2) =R ~R ,
R R1(° > 2(5 ) \P1+Pz : 014 P2 (1)

where o7 = eznixi is the electrical conductivity; p; = 1/oi is the resistivity of the i-th energy band; n; and
X; = Ti/mi are the electron (i = 1) and hole (i = 2) concentrations and mobilities; e is the electronic charge;
7; and m; are the relaxation time and the effective mass, and we have ¢ = o; + 0. The Hall constant Rj = 1
/eni for each of the energy bands in the metal participating in the conduction is governed only by the electron
(or hole) concentration n; and thus by the position of the Fermi level Ex with respect to the bottom of the
conduction band (or with respect to the top of the band in the case of holes), It is known that Ep depends
very weakly on the temperature, When alloying metals are added to the pure metal, Ey is also affected
very slightly, even at the concentrations at which very anomalous behavior is observed in several physical
properties [2], In poor conductors such as antimony and bismuth, in which the electron and hole concen-
trations are many orders of magnitude below the concentrations in ordinary metals, these slight changes in
E may be important [3], Since the electron concentration varies slightly as a function of the temperature
or the alloying-element concentration, we will below relate all the basic changes in the overall Hall con-
stant of the metal to the corresponding changes in the band resistivities, py and p,, in Eq, (1).

The resistivity associated with the i-th energy band can be written as [4]

meF ~ (2)
R i P
en; p

where vy is the velocity at the Fermi level and where we have
Zipoe = (T) -+ prle) + v (V) (N + ., 3)

where y;(T) is the coefficient for phonon scattering of electron waves; Bi(c) is that for scattering by alloying
metals; p; (Ny) and 1 (Ng) are the corresponding coefficients of scattering by vacancies and dislocations,

Substituting Eq, (3) into Eq. (2) and then into Eq, (1), we can in principle find the Hall constant as a
function of the temperature and the alloying element, dislocation, vacancy, etc,, concentrations, In general,
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however, all these dependences are complicated, We will deal with certain particular cases in which the
Hall emf is a relatively simple function of these factors,

I, We assume a binary disordered solid solution and we assume that the gcattering of electron waves
which is responsible for the "residual™ resistivity is incoherent, The resistivity is known to be governed
by squares of the matric elements of the potential, Following Nordheim, we choose as matrix element

Vmc' = Ey dﬁz'vn'l,’lc’ dT, (4)

where vy, the atomic potential, vanishes outside the n-th cell; ¥, and ¥, are wave functions corresponding
to the states of conduction electron for which the wave vectors are ' and x, In particular, for the i-th band
of a disordered solid solution containing a concentration ¢ of atoms of species a and a concentration of 1
—c of atoms of species b we have

l inlc; |2= NC(l —c) (falcifc; ‘_fbrci/cl,')z == NC(] —C) Afi21 (5)

where faxix{ =f z/);c*ivnaz/),{{d'r; and N is the total number of atoms, Within the framework of single-band theory
we find the Nordheim residual-resistivity term [5]:

0 == A1C(1—~C) , (6)
Ai_—_lﬁﬂa_"ié_(:ﬂ\l”%ﬁ . {7)
e2h? T )

The resistivity of the i-th band thus depends on the alloying-element concentration in the following manner:
pe==pu + Ac(l—c), 8)

where pg = p;(T) is the phonon resistivity of the i-th band, (At low temperatures and in highly deformed
metals, py should include the resistivity due to the vacancy and dislocation concentrations,)

Substituting Eq, (8) into Eq, (1), and carrying out some calculations, we find

R_al_l_plc(lﬁc)—l_ach(l_C)z ©9)
~°‘z+Bzc(1 — )+ 3 (1 —c)? ’

where @y = Ryph—Rypl, By = BAspp—RypA10q), & = RiAZ-R,A%,
ay = {pot -+ 902)2’ By = 2 (po1 + po2) (Ay -+ Ay, 8= (A + A2 (10)

Using ¢ < 1, we expand (9) in a series:

R= R(O)+R'(0)-c+—;—R”(O)c2+...zROJrBO(l VS (11)

where Ry =R (0) is the Hall constant of the pure metal, given by Eq, (1), except that the g; values for pure
metals are used; after lengthy calculations we find we can write B, = R'(0) and A = R"(0)/2R!(0) as

By = 2 (Astor — Aven) Mﬁ , (12)
{pot - o2)*
Ao 2+ A) 2R Asi + RyAvper) + (Ry + Ry) (Aspn + Avgn) (13)
‘ T ot 2 (Rypor + Riypor) (for 4 po2)

The expressions for A and B simplify considerably for an extremely important and broad class of
conductors — compensated metals Ry =R, = 1/en):

A +A, Xy Xs
A=14+L "= T detn(A +4,) 172 14
po1 —+ Doz F ! )(x1+x2) 14

Ao — A, 002 X, X
B, =92R, LEN T TR 9p(A,xy — Ax) — TR 15
0 S —— (Ayx, 1Xq) (s + 5o (15)

In contrast with the case of the Nordheim resistivity, the Hall constant may either decrease or in-
crease, dependent on the sign of By in Eq, (11). The sign of By is governed by the sign of the factor (Ay0y
—A,pp) in Eq, (12):

1

Aypor — Ayogy == 1673 .
e*h®

/AN (13 .
(T) (pomEBAf} — poamiAf2) . (16)
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TABLE 1

Alloy R, B, Alloy ! R, B, ‘ Alloy 1 Re B,
Pd—Ag | — |—[18]*| Au—Ag | — |—[22] | Pb—Sn | 4 |—%
Pd—Au | — |--[14] | Cu—Ni | — |—[19] | Pb—TI + | =118
Pd—H — | =[5 | Ni—Cu | == | —1[19] | Pb—In + | —[16]
Pd—Ru — | —[13] Ni—Ti — | =y Pb—Hg | + | —[16}
Pd—Mo — | —[13] Ni—V — | —121 Mg—Li — | - [18}
Pd—Rh — | —=[13] Ni—Cr — | —[21] Mg—Ag — | +[23}
Pd—Nb — | —[13] Ni—Mn — | —[21] Mg—Cd | — | 016}
Pd—Zr — | —[13} Ni—Co — | —120] Mg—Al — | 4116}
Ag—Pd — | =11 Fe—Ni — | —118] Al—Mg — | 4116}
Ag—Pt — | =11 Fe—Co + | -7 Al—Si — | + 116
Ag—Au — | — 122 Fe—W R Al—Ge — |+ 118

Al—Zn — | +116]

From Eq, (16) we easily find
allyts >A_f% and B, < 0 for MallaT: é&

By >0 for .
’ ninyty AfY mnyt Af}

(17)

Experimentally, we can determine the sign and magnitude of B, from the dependence of the Hall con-
stant onthe alloying-element concentration, Table 1 shows the signs of B, and those of R which we found
from the literature and from our own experiments (the latter are denoted by asterisgks),

Using Eq. (11) we can easily find an explanation for the change in the sign of the ordinary Hall constant
at certain alloying-element concentrations: if Rgand B, in Eq, (11) have different signs, an increase in the
concentration of the alloying element may result in a situation in which we have |Bge(1—-Ac)| =R, Thena
further increase in concentration ¢ will change the sign of the Hall constant; such a sign change has in fact
been observed in iron—cobalt [16], lead—thallium, lead—indium, lead—mercury, magnesium —cadmium [15],
and other alloys,

We see from Eq, (11), which holds within a factor on the order of ¢3/3!, that with

c=05A ! (18)

we will observe an extremum in the Hall constant, In alloy systems such as Co—Ni [18], Cu—Ni [19], Au—-Ag
[22], Pb-T1 [16], Pd—Ag [13], and Pd-Au [14], for which experiments have been carried out over a wide
range of alloy concentrations, this extremum has been observed. Since we generally have A = 1, the ex-
tremum should shift toward a concentration of ¢ = 0,5, in agreement with experiment,

II, No satisfactory explanation has been offered for the behavior of the temperature coefficient of the
Hall constant, Gmohling and Hagmann [24] attempted to explain the change which they observed in this co-
efficient in their palladium alloys in terms of a temperature dependence of the concentration of conduction
electrons in turn due to thermal expansion and a change in the Fermi energy, However, their theoretical
estimates of the temperature coefficient turned out to be on the order of hundredths of the experimental
values, Taking note of the pronounced paramagnetism, the maximum in the susceptibility » at 80°K, and
the similarity between the temperature dependences of ® and R in palladium, Allison and Pugh [25] sug-
gested that the temperature~dependent part of the coefficient in palladium — silver alloys was due to the ex-
traordinary Hall effect, However, this explanation seems unconvincing, since the ordinary Hall constant de-
pends on the temperature in all metals,

Without using any arbitrary assumptions we can explain the features of the temperature dependence of
the Hall constant within the framework of two-band theory. Let us consider the case of compensated metals
Ry =Ry = 1/en), which includes palladium, According to Eq, (1) we then have

1 Ao

=——, As=0g —ay=l/p —lp,.

)

en o

(19)

After simple calculations, using (19), and

do ldo,  1dp, d(a0) 1 doy 1 dp (20)
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we find the temperature coefficient of the Hall constant (y) to be
1 dn 1 d(ds) 1ds 1 dn 9 1 —ed

7T=—— —_—_— = e —— —

Ay —
ndT ' A dT < dT n dT Y

where @; = (dpi/dT)/p; is the temperature coefficient of the resistivity of the i-th band, and we have & = p,
/py and € = (dpy/dT)(dp,/dT) = (exy/0x()/6.

Let us consider some limiting cases of Eq. (21).

(21)

1. High Temperatures, Here we have py; = /T + pfj and py = a,T + pfy; and pfy and pf; are the residual
resistivities of the two bands. Under the condition ¢; # g, the denominator in the second term in this equa-
tion is finite, even as T ~~=, but the numerator, 1— €8 = 1— @18,T + aypfy)/ @1a;,T + aypf), vanishes as T —e,
Then the temperature coefficient of the Hall constant is governed by the extremely small quantity

¢ oL 22)
n dar
which yields a temperature coefficient for the Hall constant for palladium on the order of 41075 deg™! [24],
more than an order of magnitude below the experimental values at room temperatures, at which the term

"= — 20,8 (1 —ed) [ (1 — 89), (23)

which is a fraction of the quantity 2c; ~1072-1073, cannot be neglected, Equation (21) thus correctly reflects
the well-known decrease in the temperature coefficient of the Hall constant in metals as the temperature is
raised, and it reflects the very small temperature coefficient of the Hall constant at room temperature or
higher,

2, Let us consider the change in the alloying-element part of the resistivity on the basis of Nordheim
law (7). We expand é = 8(c) in a series and retain the first three terms; after some calculation, we find

a=&+A____1P°2“2__A29°‘ c(1— A*-c), (24)
Po2 po2
where A* ig a new constant, a particular case of which is described below [see Eq. (26)]. At high tempera-
tures we have pg = a;T; i.e., we can neglect the role of vacancies and dislocations in determining pg. In
this case the numerator in Eq, (21) becomes

Asay — Ay ¢
a4,a;

1] —ed = (1 — A%*c), (25)

where A, and A, are given as before by Eq, (7).

Since, in the first approximation, aj and A; do not depend on the alloying-element concentration, we
would expect, at concentrations above ¢* = 1/A*, the sign of ¥" to change; this change has in fact been ob~
served experimentally [24], Using the method of least squares, we find from the data of [24] that the con-
centration ¢c* at which this change occurs is ¢* = 5,5 at, % Ag for Pd—-Ag and c* = 8,75 at, % Au for Pd—Au,
Using Eq, (21), we can find ¢* = 1/A* theoretically from data on the phonon resistivity of palladium, p(T)
=9,1 UQ.cm (0°C) [8] and the constantst A = 1,0« 10 (Pd—Au) the concentrations are given in relative units)
and A = 1,4-10% (Pd—Ag) [21]. Let us assume that the phonon resistivity of band 2 differs from the over-
all phonon resistivity by the same factor by which constant A, differs from the overall factor A for all the
bands. Then from

¢* = 1jA% = g,T/ (a,T + A,) ~aT | (aT + A) (26)

we find ¢* = 8,3-107" (8.3 at. %) for Pd—Au and ¢* = 6,1-1072 (6,1 at. %) for Pd—Ag, These values differ
little from the experimental values given above, offering further support for Eq, (21), We see from (26)
that c* depends strongly on the temperature,

By studying the Hall constant and the electrical resistivity as functions of the temperature and the
concentration of the alloying element along with changes in the gigns of the Hall congtant and the tempera-
ture coefficient of the Hall constant; and by determining the maximum of the Hall constant through the use
of Egs. (11), 21), (16), (18), and (26), using arguments based on the model; we can determine important
parameters of the energy bands, particularly if we supplement this study with study of the heat capacity,
the de Haas—Van Alphen effect, ete.

tHere A is the coefficient in the residual-resistivity equation (6), averaged over all bands participating in
the conduction; this constant is usually determined experimentally.
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Significantly, Eq, (4) is based on the assumption that the electron waves are scattered independently,
and it neglects several interference effects, e.g., the interaction between alloying-element atoms and dis-
locations, that between vacancies and dislocations, and that between alloying-element atoms. In several
cases these interactions produce a nonmonotonic change in the potential energy of the crystal [12], These
effects can be taken into account in matrix element (5) if we discard the original restrictions, We can re-
tain the mathematical formalism here, but we must recall that fax Ki ' and fbKIK' in Eq, (6) change nonmono-
tonically at low concentrations (on the order of 0,1 at, %) of the alloymg element, Since at ¢ ~ 0,001 Eq, (11)
can be written as R =R, + Bc, this nonmonotonic behavior affects the Hall constant through coefficients A;j
[see (8)] in Eq, (12), In this case the pronounced extrema of the Hall constant which have been observed [5-T7,
9-11, ete, ] become understandable, However, analysis of this anomalous behavior lies outside the scope of
this paper and must be taken up separately,
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