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The solution of the Einste in  field equations for  the case  of an a r b i t r a r y  ma te r i a l  s y s t e m  is 
analyzed on the bas i s  of the asymptot ic  solutions found by Sachs for  a radia t ive  s y s t e m  devoid 
of s y m m e t r y .  The te t rad  f o r m a l i s m  is used to find the energy  and momentum of the sys t em.  

The te t rad  descr ip t ion  of the gravi ta t ional  field has been used by s eve ra l  inves t iga tors  [1, 2] to find a 
s a t i s f ac to ry  solution of the energy  problem:  at each spat ia l  point the vec tor  h i cha rac te r i z ing  the curv i l inear  
coordinates  is supplemented by an orthogonal bas i s  having te t rad  components  h(a). F r o m  the mutual  p r o j e c -  
tions (Lam6 coefficients)  a me t r i c  t ensor  is const ructed:  

g~j = h i (a) h~ -~). (1) 

Since the t e t rad  components  a r e  given ambiguously  by this re la t ion,  it is impor tant  to introduce auxi l ia ry  
conditions; the Rodichev gauge conditions 

vthl(~ ) = 1 0 .  AI/(~I = 0, (2) 
A Ox I 

where  A = 1, have been used for  this purpose .  

The ambigui ty  in the choice of auxi l iary  conditions spu r r ed  M511er [2] to use  the t e t rads  as specia l  
auxi l ia ry  quanti t ies ,  which impar t  a meaning only to in tegra l  exp re s s ions .  In this manner  the auxi l ia ry  con-  
di t ions,  i .e . ,  t e t rad  gauge conditions,  can be avoided. 

Rodiehev, on the other  hand [1], u ses  t e t rads  as local ly  Loren tz ian  s y s t e m s ,  which move in a g r a v i t a -  
t ional f ield along geodesic  l ines at an acce le ra t ion  equivalent to the field intensi ty.  The t e t r ad  dis tr ibut ion 
t he re fo re  c h a r a c t e r i z e s  the gravi ta t ional  f ield.  

Since the re  a re  two bodies  of opinion on this question,  we will compa re  the cor responding  r e su l t s  for  
this c a se .  Sachs [4] found the f o r m  of the  me t r i c  for  an a r b i t r a r y  ma te r i a l  s y s t e m  devoid of s y m m e t r y  and 
radia t ing gravi ta t ional  waves .  Here  the concept of the ~mass  n of the s y s t e m  was introduced (including the 
m a s s  of the sources  and the gravi ta t ional  field), and this m a s s  was said to dec rea se  as t ime elapsed as a 
r e su l t  of the radia t ion.  

Applying the theory  which he developed,  and using a spec ia l  c l ass  of coord i ra te  s y s t e m s  which a s y m p -  
to t ica l ly  become  Loren tz ian  s y s t e m s ,  MSller  found express ions  for  the energy  and momen tum consis tent  
with those found by Sachs.  

Let us examine the solution f r o m  the Rodichev point of view [1]. In the coordinate  s y s t e m  

x i =  {x, y, z, t], r = ]flx~-t- y~+  z ~ (3) 

the asymptot ic  Sachs solution can be wri t ten  as [3] 

gia = ~ik + Yi~ q- zik -~ 03' (4) 

where  
Yik -~ ~i~ r - l ,  zik ~ ~ikr -~, (5) 
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and a i k  and/3ik a r e  funct ions only of | and r and of the r e t a r d e d  t ime  u = t - r ;  and O n is a t e r m  which fa l l s  
off as r -n  as r - -0~ .  If, fol lowing [3], we in t roduce  

n~ = (n .  0}, 
m~ = {cos 0 cos ?, cos 0 Sin % --- sin O, 0}, 

l t = { - - s i n  % cos ~, O, 0}, (6) 

we find 

4 ~ = ~ - -  nz, t i = m l - ilt, 

(7) 

~i~c = 21C I Z(m~tn~ + 1 ~ l ~ ) + 1  ic I ~(n~,.. + , ~ n . ) -  Re  {(2N + 2 A l c l  ~)(t~p~ + ~G)} + R e  {A* (N sin 0)} PiP,~, (8) 

w h e r e  

O i O •  -} 
O0 sin 0 0~'  

1 ,) = A* (c sin20), 
sin~O 

(9) 

(I0) 

N and c a r e  complex  funct ions  of the v a r i a b l e s  u, 0, ~o; and M is a r e a l  funct ion of these  v a r i a b l e s .  T h e s e  
funct ions  a r e  a l so  r e l a t ed  by  

1 
M o = - - I c o ] 2 + 2 - A o ,  3 N o = - - A K - - ( 4 c c o s O + h c + 3 c A )  co, (11) 

w he re  

1 
A - R e  {A* (~ sin O)}. (12) 

sin0 

He re  the a s t e r i s k  denotes  complex  conjugat ion,  and the "0 n denotes  p a r t i a l  d i f fe ren t i a t ion  with r e s p e c t  to  u. 

The  t e t r a d  componen ts  (for l a rge  r) sa t i s fy ing  (1) and (2} a r e  wr i t t en  in the f o r m  

1 1 ~ ,  3 a ,  
h~(~) ~i~ -- --~-y;~ = ----z2 + 8 Y  Y;--q"% (13) 

1 1 1 r 
h i (a) = ~ia + ~-Y,a  + - ~  Zia - -  " X - Y a r Y i  - -  qia, 

2 Z 0 

where  

1 [Re {c 2 - -  .~ - -  i cds in  0 + c ctg e} (n~t a - -  t in ~) + qia = _~ 

1 {  1 } 
+ --~ R e  % - -  i%/sin 0 + ~ ctg 0 --  -~lCCo ] (nt~ ~ - -  ptn,) 

+ R e { l i ~ - - i c c i g O } ( n i l  " -  l~n~)+ R e { c c t g O - - l - ~ } ( n ~ r n ~ - - r n ,  n~)]. (14) 

Using Eq.  (13), we can c o n s t r u c t  the e n e r g y "  m o m e n t u m  t e n s o r  [1]: 

(15) 

where  

We then  find 

&p~ = C.p + G .  + G . .  (16) 

t~ 4]col ~ (a) -- - -  Pa} LK + 03. (17) 
XF 2 
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Our expression differs f rom that of MSller [3] by a numerica l  fac tor .  The total energy radiated per  

unit t ime by a sphere is 

dH 1 ; 
d t -  2 [c~ (18) 

D 

in agreement  with [3]. 

For  the 4 -momentum enclosed in a sphere of sufficiently large radius r at t ime t we find 

P(a) = - -  v~A(o)., dV~ ~ -- A(o) dS~. 
X 

Following [3], we have 
4k 4), h(a) dSx = -- A(a) ~xr2dO sin 0 &?. 

Using (6), (13), and (17), we can convert  A4(aX)# k to 

_ h v  ' I ~ =  1 [(_4M:_i..2Re{A})~a__Re{V}ta] +03. 
(a) 2zr 2 

If for  sufficiently large  r we set O s equal to zero  and integrate by par t s ,  we find 

We thus find 

(19) 

(20) 

(21) 

p(~) = _ 2~ y ~ % d U  = {Pi, - ~ .  (22) 

Writing relat ions for  the total energy and momentum, we find resul ts  p rec i se ly  equal to the analogous 
express ions  given in [3, 4]: 

Pi= M(u, O, ?)nide, H = m ( a ) = ~  M(u, O, ~)d~. (23) 

0 

C O N C L U S I O N S  

1. Applying the Rodichev theory [1] to the Sachs sys tem [4], we find a total energy and momentum 
which coincide in integral fo rm with the analogous resul ts  of [3] (the resul ts  do not coincide in the differen-  
tial form}. 

2. The ambiguity in the determination of total energy and momentum is completely eliminated by their 
invariance with respect  to  gauge-conserv ing  tetrad rotation.  

In the general  case ,  on the other hand, they are noninvariant with respect  to tetrad rotat ions.  

3. The fact that M611er's resul ts  are  the same as those of [4] and the same as our resul ts  can be a t -  
tributed to the choice of a convenient coordinate sys tem.  In an evaluation of integral  quantities at sufficently 
large  r this coordinate sys tem asymptot ical ly  converts  into a Lorentzian sys tem which is the same as ours,  
so the resul ts  are  the same.  

In our case  the total energy and momentum are  general ly  covariant  tensors ,  so any changes in the 
coordinate grid leave these quantities unchanged. M61Ier's expressions do not have this proper ty .  Fu r the r -  
more ,  M611er himself  [5] pointed out that even the use of the Einstein pseudotensor in an asymptotic Loren-  
tzian coordinate sys tem gives the same value for the 4-momentum as his complex. 

However, the resul ts  will not coincide in the case of the most  general  coordinate t ransformat ions ,  
so the Einstein and MSller expressions may in this case take on any prespecif ied value. 

In conclusion the author thanks V. I .  Rodichev and I.  M. Dozmorov for valuable comments on this 
study. 
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