THEORY OF THE HYPERFINE STRUCTURE OF THE ESR LINE
A, R, Kessel!' and V, G, Salimov ' UDC 538.113
An operator is derived for the electric quadrupole —quadrupole interactionbetween the unfilled
shell of a paramagnetic ion and the nucleus of this ion, Calculations are carried out for certain
iron~-group and rare-earth ions, The cases in which this interaction can be reflected in the

hyperfine structure of the ESR spectrum are discussed,

1, Introduction

The hyperfine structure of magnetic-resonance lines reveals extremely interesting information about
the microscopic structure of solids. This structure is also of applied interest, in that it can be used to
select targets for dynamic polarization of nuclei,

All mechanisms for the hyperfine interactions of electrong and nuclei in condensed media which have
been studied have been magnetic in nature, We will show below that an interaction occurs between nuclear
electric quadrupole moments and the atomic electronic shells which should be reflected as a hyperfine
structure of paramagnetic-resonance spectra, if the paramagnetic atoms do not have a purely spin magnetic
moment,

When there is a change in the orientatjon of the electronic magnetic moment (in resonant transitions),
a change occurs in the gradient of the electric field at the nucleus produced by the unfilled electronic shell,
There is also a change in the electric quadrupole energy of the nucleus; the magnitude of this change de-
pends on the orientation of the nuclear quadrupole moment or nuclear spin, The electric-quadrupole hyper-
fine interaction increases in intensity as the contribution of the orbital angular moment to the effective
magnetic moment of the paramagnetic ion, measured by the deviation of the g-factor from 2, increases,
For resonant lines corresponding to transitions within the Kramers doublet, there can be no quadrupole
hyperfine structure, since the electrons at the Kramers sublevels produce the same electric field at the
nucleus, It is thus interesting to consider substances in which paramagnetic ions are in a high-symmetry
crystalline field and for which the low-symmetry field components are so weak that the spacing between
spin levels (which are not sublevels of a single Kramers doublet) corresponds to the rf range (~1 em-ly,
The constant D of the electric-quadrupole interaction is given in order of magnitude by (eerj/ALI (2I-1),
while the constant A of the hyperfine interaction for electrons of the d and f shells is nganr‘s; where
8 and By are the electronic and nuclear magnetons; g and g, are the electronic and nuclear g-factors; I and
Q are the spin and quadrupole moments of the nucleus; and r~2 is the mean reciprocal cube of the radius of
the d or f shell, Withg =2, gy = 1,1 =3/2,and Q ~5-10"% c¢m?, we thus find (A/D) ~10. Since, in addition,
even a slight s-state admixture greatly increases A, we conclude that the inequality A > D is apparently al-
ways satisfied, Estimates show that in favorable cases we have D ~ 100 MHz,

Below we will calculate the operator for the electric-quadrupole hyperfine interaction for iron-group
and rare-earth ions; spin systems having properties favorable for this effect are selected from the para-
magnetic substances which have been studied previously by magnetic-resonance methods or for which wave
functions have been found,

2, The Iron Group

The lower Stark level of an iron-group ion in a cubic field may be a singlet, a doublet, or a triplet,
Tons having a lower singlet or doublet orbital level are not of interest here: in the case of a singlet the
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gradient of the electric field at the nucleus is the same for all the Zeeman sublevels, so there is a contribu-
tion to the ordinary quadrupole energy of the nuclei, but there is no hyperfine interaction; in the case of the
doublet, on the other hand, the lower level turns out to be a singlet or a doublet after the spin-orbit interac-
tion is taken into account, For ions in the sixfold coordination, we are thus left with the possible configura-
tions d!, d?, and d®, which contribute the lower orbital triplets T'y and T'y; in the eightfold coordination the
triplet ground states are those of jons having d3, d4, %, and & configurations [1]. If, after the spin-orbit
splitting of these ground states is taken into account, the magnetic levels have an effectwe spin S* higher
then 1/2, we can expect an electric hyperfine structure in the resonance lines,

The energy associated with the interaction of the nuclear electric-quadrupole moment with the electric
field of the surrounding charges is [2]

Ho= 21(214)(;2 )1 Qq (1) vE~q (x, v, 2),

Qua (1) = criyp=1/ 25 qu== VEXVENR)
Q=3I2—1(+1),

(1)

where IX ,z are the components of the nuclear spin, The VE q(%, ¥, 2) are the components of the tensor
correspondlng to the electric-field gradient, produced by charges at point T (x, y, z); these components are
given by
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We must evaluate the contribution to VE of the entire electronic charge of the d shell; i,e,, we must eval-
uate the matrix elements of the operators VEq with wave functions of the magnetic levels under considera-
tion, According to the Wigner — Eckart theorem [3] these matrix elements are proportional to the matrix
elements of certain combinations of spin operators which transform like VEq under the influence of sym-
metry elements of the crystal,

If all the magnetic levels belong to the same irreducible representation of the cubic group, there will
be only a single proportionality factor, so we can write

VEq"_"—

539Q4(8%), @

where the operators Q,(S*) are constructed from the components of the effective spin S* in precisely the
same manner used to construct Qq ) from the components of the vector I, The coefficient o is found by a
direct evaluation of one matrix element with the wave functions of the magnetic levels,

We consider the case of an ion having the d® configuration (°D ground level) in an octahedral field,
After the crystal field and the spin-orbit coupling are taken into account, the ground state of the ion is found
to be a I'; triplet with the wave functions [4]

Yir= 4 ‘/10
. 1 /

where the first index in [My Mg) denotes the projection of the orbital angular momentum of the d electron,
while the second denotes the projection of the angular momentum of spin S. We can describe these levels
by introducing the effective spin §* = 1; the functions \IrMS « are eigenfunctions of the operator Sk,

+10>+]/ 201, =25 +[£2, 1> —1F2 FT1>},
4

By a direct evaluation of the matrix elements of operators (2) with functions (4) we can show that rela-
tion (3) actually holds and that the value of & is —1/35. Substituting (3) into (1), we find the operator for
the electric-quadrupole hyperfine interaction:

Ho = aDz(—mQu)Q_q(S) G

g=—2
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where
eer_—-‘é

D=—grar—1

Of the paramagnetic ions in this state, only Fe?* has been studied [4]; the form of functions (4) has been
experimentally verified for this ion, However, there is no % interaction in this case, since the Fe nucleus
has a vanishing quadrupole moment,

We turn now to a paramagnetic ion having a d! configuration D ground level) in an octahedral field,
Examples of these states are found in the Ti*, Mn®+, Mo (V), and W (V) ions [5]. After the spin-orbit in-
teraction is taken into account, the lower level is a I'; quartet with the wave functions

1], _ T
Wi3/2=‘l/§‘2, F12 + ]/~3~ —2, F1/2» + 1/—;1&, +1/2, (6)

Vo= Fl£1, F1/2:.

An effective spin of 3/2 and a g-factor of 1 correspond to these levels, Splitting occurs in a magnetic field
because of the admixture to wave functions (6) of the wave functions of excited states, which give g ~1/50
[6]. This effect ariges in the zeroth approximation in terms of wave functions (6); the operator correspond-
ing to the qudrupole hyperfine structure is (5), and the value of @ turns out to be —2/21,

3. The Rare-Earth Group

For the rare-earth ions the spin-orbit energy is much more higher than the energy of the crystal field,
The basic characteristic of these energy levels is thus the total angular momentum J, When the crystal-
fieldlevels are not taken into account, the levels with a given Jare @J + 1)~degenerate, This degeneracy is
removed partially or completely, depending on the symmetry of the crystal field,

a) Let us consider the Dy?* (4f,,, 7I;) ions in the CaF, crystal, The paramagnetic ion is in the electric
field produced by eight F ions at the vertices of a regular cube [7]. The %I, ground level of the free ion is
split by the crystal field into the representations 2T + 2T, + 2Ty + Ty, The lower I'y level is nonmagnetic,
A resonance is observed at the first excited level, I'y, 4,9 cm™ from the ground level, The T’ 4 levels are
characterized by an effective gpin of $* = 1 and have the wave functions

Yo =TF0.9223| =5, £ 0.119] £ 15 £ 0.770 F 3> F0.585| = 7>,

("
¥, =0.636{4> —0.636| — 4> —0.310]8> +0.310|—8».

Calculations in terms of these wave functions yield operator (5) with @ = 0,004 for the quadrupole hyperfine
structure,

The Dy®" ion can also be added to the CaF, crystal [8], In this case the free-ion state SH,; y: is split
by the crystal field into the representations T'y + Ty + 2I'3. The lower level is a T’y quartet corresponding
to an effective spin of 3/2, When the magnetic field is along the [100] direction, three lines are observed,
having g-factors g; = 2,63 + 0,05, gy = 5.48 + 0,15, and g3 = 14 = 1. These g-factors are reproduced by the
wave functions

—
—
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Carrying out calculations analogous to those described above for functions (8), we find Hamiltonian (5) with
a = 0,054,

b) We turn now to the case of the Ho®" jon (%) in the axisymmetric electric field of an yttrium ethyl-
sulfate single crystal. Baker and Bleaney [9] have established that the two lower levels of the Ho3t ion have
the wave functions

Wir=0.933£ 7 +0.342| £ 1» +0.111] F5 »

:

1 1 1
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and can be characterized by an effective spin of S* = 1 and the
spin Hamiltonian

H=D [sg — %s (S+ 1)} + g BH.S, + g, B(H,S, + H,S,)

L AS,IL B(S,L,+5,1,) +P[/g ——;1(1+ 1)], (10)

where D = 5,8 cm ™! ig the zero-gplitting energy; A and B are
the constants of the anisotropy magnetic hyperfine-structure
interaction; g|| and g, are the effective g-factors; and P is the
constant of the ordinary electric-quadrupole interaction, Baker
and Bleaney emphasize that P in Hamiltonian (10) is not the
same for the |+1: and |0 levels, so they introduce P and Py,

Fig.1, Energy levels of Tb3" in a Calculation of the matrix elements of tensor (2) corresponding
BaF, single crystal as functions of to the electric-field gradient in terms of wave functions (9) and
magnetic field Hy, applied along the substitution of these elements into (1) yield the interaction of
trigonal symmetry axis, The arrows the nuclear quadrupole moment with f-shell electrons:

show the individual hyperfine transi- e . .
tions within the four ESR lines [10], Ho=H g+ eH g, H'y=00T1DQ"(1),
H g =D{0.056 Q°(S) Q°(/) — 0.049 [Q! (S) G~ (/) - Q—1(S)Q (1]

+0.017[Q2(8) Q=2(1) + Q=2(S) Q*()[}. (11

Here <% is the ordinary energy, and <%, is the hyperfine-structure energy, Hamiltonian (11) offers a
natural explanation for the experimental difference between P; and P, by treating these gquantities as the
eigenvalues of the operator

F= (L +0.071) D +0.056 DG (S) v

in states |+1> and |0>; term ¢D is due to the electric field of the crystal, and the other terms are
due to the f shell, The difference between P; and P, is wholly due to the f shell, The %2 contribution
to the positions of the resonance lines is of the same order of magnitude as the second approximation of the
magnetic hyperfine-structure interaction, Accordingly, it is meaningful to treat only the first approxima-
tion in €%, In the first approximation, interaction &%, shifts the resonant frequency only for the [1) <~ |0>
transition in a strong magnetic field (cases d and e) [9]. The term 30,056 DQ,{) (1) must be added to the
expression for the resonant frequency in (1), In all other cases the ¢% interaction is an additional source
of line broadening,

c¢) We turn finally to the Th3* @F¢'F,) in a BaF, single crystal, It has been shown by ESR methods
[10] that Tb3* ions are in a trigonal field in this case and that the lower levels are two doublets 4,23 cm™!
apart, In weak magnetic fields two resonant lines with hyperfine structure are observed, corresponding
to transitions between the sublevels of a given doublet (line groups T and ITj, In intense fields we find two
more groups of lines @I and IV), corresponding to trangitions between sublevels of différent doublets, There
are four components in each line, in accordance with the nuclear spin of I = 3/2,

In an interpretation of the experimental data it was found [10] that in the absence of a magnetic field
the wave functions of the doublets are

Wyr=F0815|F5>—0561]F 2> F0.120| + 1 +0.082| 4>,
Wio=F0084|+5>40.091|2) £0.366] F 1) +0.922| F 4,

(13)

where |m> is the state having a total angular momentum of J = 6 and a projection of J 7 =m, The behavior
of the levels in a magnetic field is described roughly by the Hamiltonian [10]

@Zf B(L, +2S,)H,, +al,], (14)

(Fig.1). Here L, is the z component of the orbital angular momentum, and the z axis coincides with the
symmetry axis of the crystal field, Line groupsI and II are described well (and simply) by Hamiltonian (14).

The magnetic fields Hy, at which the hyperfine components of lines III and I'V are observed at a fixed
frequency of v = 37,47 kMHz are shown in the second column of Table 1; the third column shows the corre-
sponding resonant frequencies, obtained by diagonalizing Hamiltonian (14).
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TABLE 1

Line group JE v

6796 8465 | 8740 | 8993 l 9233
37,53 37,04 | 37,32 37,41 | 37,40

6279 6555
37,42 37,33

i !

Hyy, G 6014
v, kMHz 37,42

The deviations of these frequencies from the working spectrometer frequency of v = 37,47 kMHz are
apparently due to the hyperfine-interaction terms neglected in (14), The Hamiltonian for these hyperfine
interactions can be written as

Ay = Lty — —2¥ L 9,00, 15
Yy U Tgr@r—) T T R (19)
where the first term is the part of the magnetic-dipole hyperfine interaction not taken into account in Hamil-
tonian (14), and the second term is the part of the Hamiltonian corresponding to the electric-quadrupole hy-
perfine interaction (5) which contributes to the line position in the first approximation, Calculations anal-
ogous to those above yield @ = 0,01, Hence, substituting in e = 4,81071% esu, @ = 0.5-10724 cm?, I = 3/2,
and < 1/r%) = 6810724 cm ™3, we find oD = —(e*Qa /41 21— 1)) « (L/r?)> tobe ~1MHz, Characteristically, the
quadrupole interaction contributes only to the positions of the ITII and IV components, Evaluation of the ma-
trix elements of the operator Qg(J) in terms of the wave functions of the perturbed levels reveals that the
quadrupole interaction changes sign in the transition from group III to group IV; the correction to the transi-
tion frequencies for group III is found to be —4,9{3m%—J(J + 1)} MHz, while that for group 1V is + 0,5 {3m?
~J(J + 1)} MHz,

However, the quantitative validity of these values is somewhat dubious, since the calculations are
based on approximation wave functions (since the exact crystal potential is not known), and we do not have
an accurate value for quadrupole moment Q,

The corrections to the transition frequencies in the second approximation in the magnetic part of
Hamiltonian (15) and in the first approximation in the electrical part have the general form

A=FUU+1)—m(m-+1)} +K{8m>— ([ + 1)} ‘ (16)

where F and K are certain coefficients formed from the matrix elements of operators consisting of the com-
ponents of total angular momentum J evaluated in terms of the wave functions of the levels of different dou-
blets, These coefficients depend on magnetic field Hy, and differ in value for groups III and IV,

We will treat coefficients F and K as certain free parameters and determine them by the method of
least squares, assuming that the experimental errors obey a normal distribution law, Setting K = 0 in (186),
we find

Fry=156 MHz. F;y= 26,4 MHz, (17

Analogously, for K = 0 we find
Frr=11 MHz,. F;y = 39.7 MHz, Ky = — 13 MHz, Ky = 374 MHz. (18)

The rms deviation of the theoretical resonant frequencies from the experimental values is 20% less for
parameters (18) than for parameters (17). We note that coefficient K changes sign, but F does not, in the
transition from group II to group IV, in agreement with the previous calculation, A numerical agreement

of the @D and K values can be achieved with Q <1/r®> on the order of 10° em™,
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