
T H E O R Y  O F  T H E  H Y P E R F I N E  S T R U C T U R E  O F  T H E  ESR L I N E  

A .  R .  K e s s e l '  a n d  V.  G.  S a l i m o v  UDC 538.113 

An operator  is derived for  the e lectr ic  quadrupole-quadrupole  in teract ionbetweenthe unfilled 
shell of a paramagnet ic  ion and the nucleus of this ion. Calculations are  ca r r i ed  out for cer ta in  
i ron-group and r a r e - e a r t h  ions. The cases  in which this interaction can be ref lected in the 
hyperfine s t ruc ture  of the ESR spect rum are discussed.  

i .  I n t r o d u c t i o n  

The hyperfine s t ruc ture  of magnet ic - resonance  lines reveals  ext remely  interesting information about 
the microscopic  s t ruc ture  of sol ids.  This s t ruc ture  is also of applied interest ,  in that it can be used to 
select  targets  for dynamic polar izat ion of nuclei.  

All mechanisms for  the hyperfine interactions of e lectrons and nuclei in condensed media which have 
been s tudiedhave been magnetic in nature.  We will show below that an interaction occurs  between nuclear  
e lect r ic  quadrupole moments  and the atomic electronic shells which should be ref lected as a hyperfine 
s t ruc ture  of pa ramague t ic - resonance  spect ra ,  if the paramagnet ic  atoms do not have a purely spin magnetic 
moment .  

When there  is a change in the or ientagon of the electronic magnetic moment (in resonant transi t ions) ,  
a change occurs  in the gradient  of the electr ic  field at the nucleus produced by the unfilled electronic shell.  
There  is also a change in the electr ic  quadrupole energy of the nucleus; the magnitude of this change de-  
pends on the orientation of the nuclear  quadrupole moment or  nuclear  spin. The e lect r ic-quadrupole  hyper -  
fine interaction increases  in intensity as the contribution of the orbital angular moment to the effective 
magnetic moment of the paramagnet ic  ion, measured  by the deviation of the g- fac tor  f rom 2, inc reases .  
For  resonant  lines corresponding to t ransi t ions within the Kramers  doublet, there  can be no quadrupole 
hyperfine s t ruc ture ,  since the electrons at the Kramer s  sublevels produce the same electr ic  field at the 
nucleus.  It is thus interest ing to consider  substances in which paramagnet ic  ions a re  in a h igh- symmet ry  
crysta l l ine  field and for  which the l ow-sym met ry  field components a re  so weak that the spacing between 
spin levels (which are  not sublevels of a single Kramers  doublet) cor responds  to the rf  range ("1 era-l) .  
The constant D of the e lect r ic-quadrupole  interaction is given in order  of magnitude by (e2Qr~/4I (2I-1) ,  
while the constant A of the hyperfine interaction for  e lect rons  of the d and f shells is gBgnfinr-'~; where 
fl and fin are the electronic and nuclear  magnetons; g and gn are  the electronic and nuclear  g - fac to rs ;  I and 
Q are the spin and quadrupole moments of the nucleus; and r -3 is the mean rec iproca l  cube of the radius of 
the d or f shell .  With g = 2, gn = 1, I = 3/2, and Q ~ 5 �9 10 -25 em 2, we thus find (A/D) ~ 10. Since, in addition, 
even a slight s - s ta te  admixture great ly  increases  A, we conclude that the inequality A > D is apparently a l -  
ways satisfied.  Es t imates  show that in favorable cases  we have D ~ 100 MHz. 

Below we will calculate the opera tor  for the e lec t r ic-quadrupole  hyperfine interaction for i ron-group 
and r a r e - e a r t h  ions; spin sys tems  having proper t ies  favorable for this effect are  selected f rom the p a r a -  
magnetic substances which have been studied previously  by magnet ic - resonance  methods or for  which wave 
functions have been found. 

2 .  T h e  I r o n  G r o u p  

The lower Stark level of an i ron-group ion in a cubic field may be a singlet, a doublet, or a tr iplet .  
Ions having a lower singlet or doublet orbital  level are  not of interest  here:  in the case of a singlet the 
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gradient of the e lec t r ic  field at the nucleus is the same for  all the Zeeman sublevels ,  so there  is a contr ibu-  
tion to the ordinary  quadrupole energy of the nuclei ,  but there  is no hyperf ine interaction;  in the case  of the 
doublet, on the other hand, the lower level  turns out to be a singlet or a doublet a f te r  the spin-orbi t  i n t e r ac -  
tion is taken into account.  For  ions in the sixfold coordination,  we a re  thus left with the possible conf igura -  
tions d l, d 2, and d 6, which contr ibute the lower orbi tal  t r ip le ts  F 4 and Fs; in the eightfold coordination the 
t r iplet  ground states a re  those of ions having d s, d 4, d 8, and d 9 configurations [1]. If, a f ter  the spin-orbi t  
splitting of these  ground s ta tes  is taken into account,  the magnetic levels  have an effect ive spin S* higher  
then 1/2, we can expect an e lec t r ic  hyperfine s t ruc tu re  in the resonance  l ines .  

The energy associated with the interact ion of the nuclear  e lec t r ic -quadrupole  moment with the e lec t r ic  
field of the surrounding charges  is [2] 

__ e Q  2 

2I(21--  1) ~ ( -  1 ) q Q q ( 1 ) v E - q ( x ' Y ' Z ) '  
q~- -2  

(1) . / -  Y ~  
Q__+2 ( I ) =  V - 2  ( Ix-+-i ly)2~ V 2  i++, Q+I =-T- V ~ - ~  (I++I z + lzl+ ), 

Qo = 31~--  I(1 § 1), 

where  I x . z a re  the components of the nuclear  spin. The VEq (x, y,  z) a re  the components of the t ensor  
, , V ,  

corresponding to the e lec t r i c - f i e ld  gradient ,  produced by charges at point r~x, y, z); these components a re  
given by 

vE ~ e 3 z ~ - - r  ~ 3e (x + i y ) z  
= .  _ _  , v E + _ j  - -  - -  , 

2r 3 r ~ V 6 r  3 r ~ 

3e (x + iy)2 
rE+2 = -- 2 ] / 6 r  ~ ' "  r 2 (2) 

We must evaluate the contribution to ~TE~ of the ent i re  e lect ronic  charge of the d shell; i .e . ,  we must eva l -  
uate the mat r ix  elements  of the operator 's VEq with wave functions of the magnetic levels  under cons ide ra -  
t ion. According to the W i g n e r - E c k a r t  theorem [3] these mat r ix  e lements  a re  propor t ional  to the mat r ix  
e lements  of cer ta in  combinations of spin opera tors  which t r an s fo rm  like VEq under the influence of sym-  
met ry  elements  of the c rys ta l .  

If all the magnetic levels  belong to the same i r reduc ib le  represen ta t ion  of the cubic group,  there  will 
be only a single proport ional i ty  fac tor ,  so we can wri te  

vE  q -= e ~0~ (S*), 
2 r  3 . . . .  (3)  

where  the opera tors  Qq(S*) a re  cons t ructed  f rom the components of the effective spin S* in p r ec i s e ly  the 
same manner  used to construct  Qq(I) f rom the components of the vector  I. The coefficient  a is found by a 
direct  evaluation of one mat r ix  e lement  with the wave functions of the magnetic leve ls .  

We consider  the case  of an ion having the d 6 configuration (SD ground level) in an octahedral  field. 
After  the c rys ta l  field and the spin-orbi t  coupling a re  taken into account,  the ground state of the ion is found 
to be a F 5 t r ip le t  with the wave functions [4] 

~F_+~= ~: _ + 1 , 0 ) ~  { 2 ] _ + 1 , _ 2 ) + [ - b 2 , - F 1 ) _ l : ~ 2 ,  ~ 1 ) } ,  

(4) 
t~'o-- V ~ { 1 2 , 0  > -  [--2,0 > }-t-]//~1~{ [ i ,i  > - I - - 1 , - - 1 > } ,  

where  the f i r s t  index in [MLMs) denotes the project ion of the orbi tal  angular momentum of the d e lec t ron ,  
while the second denotes the projec t ion  of the angular momentum of spin S. We can descr ibe  these levels 
by introducing the effective spin S* = 1; the functions @Ms * a re  eigenfunctions of the opera tor  S~. 

By a d i rec t  evaluation of the mat r ix  e lements  of opera tors  (2) with functions (4) we can show that r e l a -  
tion (3) actually holds and that the value of a is - 1 / 3 5 .  Substituting (3) into (1), we find the opera tor  for  
the e lec t r ic -quadrupole  hyperf ine interaction:  

2 
= aD ~ (-- l)q Qq (I) Q_q (S*), (5) 

q = - - 2  
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where  

D = e~Qr-3 
41 (21 --  1)" 

Of the pa ramagne t i c  ions in this s ta te ,  only Fe 2+ has been  studied [4]; the f o r m  of functions (4) has  been 
exper imenta l ly  ver i f ied  for  this ion. However ,  the re  is no a /~  in te rac t ion  in this case ,  s ince the Fe nucleus 
has  a vanishing quadrupole moment .  

We turn  now to a pa ramagne t i c  ion having a d 1 configurat ion (2D ground level) in an octahedral  f ield.  
Examples  of these  s ta tes  a r e  found in the Ti  s+, Mn 6+, Mo (V), and W (V) ions [5]. After  the sp in-orb i t  in-  
t e rac t ion  is taken into account,  the lower  level  is a F 8 quar te t  with the wave functions 

W + s / 2 = - - V ~ -  2 , -T-1 /25+  1 / ~  --2,-T-1,/2~ +_ / ~ - _ _ _ 1 ,  + 1 / 2 , ,  (6) 

T+_,/2 = ~ 1 +  1, T- 1/2 ~. 

An effect ive spin of 3/2 and a g - f ac t o r  of 1 co r r e spond  to these  l eve l s .  Splitting occurs  in a magnet ic  field 
because  of the admixture  to wave functions (6) of the wave functions of exci ted s t a tes ,  which give g ~ 1/50 
[6]. This  effect  a r i s e s  in the zero th  approximat ion  in t e r m s  of wave functions (6); the ope ra to r  c o r r e s p o n d -  
ing to the qudrupole hyperf ine  s t ruc tu re  is (5), and the value of a turns  out to be - 2 / 2 1 .  

3 .  T h e  R a r e - E a r t h  G r o u p  

For  the r a r e - e a r t h  ions the sp in -orb i t  energy  is much more  higher  than the energy  of the c r y s t a l  f ield.  
The bas ic  c h a r a c t e r i s t i c  of these  energy  levels  is thus the total  angular  momen tum J. When the c r y s t a l -  
f ield leve ls  a r e  not taken into account,  the levels  with a given J a r e  (2J + 1) -degenera te .  This  degeneracy  is 
r emoved  par t i a l ly  or comple te ly ,  depending on the s y m m e t r y  of the c ry s t a l  f ield.  

a) Let  us consider  the Dy 2+ (4fl0 , ~I 8) ions in the CaF 2 c rys t a l .  The  pa ramagne t i c  ion is in the e lec t r ic  
f ield produeed by eight F ions at the ve r t i c e s  of a r egu la r  cube [7]. The 5I 8 ground level  of the f r ee  ion is 
spl i t  by the c rys t a l  f ield into the r ep re sen ta t i ons  2F 5 + 2F 4 + 2F 3 + FI.  The  lower  F 3 level  is nonmagnet ic .  
A resonance  is observed  at the f i r s t  excited level ,  F4, 4.9 cm - t  f r o m  the ground level .  The F 4 levels  a re  
c h a r a c t e r i z e d  by  an effect ive spin of S* = 1 and have the wave functions 

T • 1 7 7  •  •  T 0 . 5 8 5 1 ~ 7 > ,  
(7) 

T o = 0 , 6 3 6 [ 4 > - 0 . 6 3 6 1 - 4 ) - - 0 . 3 1 0 1 8 )  + 0 . 3 1 0 1 - - 8 ~ .  

Calculat ions in t e r m s  of these wave functions yield opera to r  (5) with a = 0.004 for  the quadrupole hyperf ine  
s t ruc tu re .  

The Dy $+ ion can a lso  be added to the CaF 2 c r y s t a l  [8]. In this case  the f r e e - i o n  s tate  sills/2 is spli t  
by the c ry s t a l  f ield into the ~representat ions F 6 + r~ + 2F 8. The lower  level  is a F 8 quar te t  co r responding  
to an effect ive spin of 3/2 .  When the magnet ic  f ield is along the [100] direct ion,  th ree  l ines a r e  obse rved ,  
having g - f a c t o r s  gt = 2.63 �9 0.05, g2 = 5.48 • 0.15, and g3 = 14 �9 L These  g - f a c t o r s  a r e  reproduced  by the 
wave functions 

13 +0.1509 5 I 3 [ 11 W• -----0,1353 ,-T- ~ ) ~ -~ > --  0,1322 + ~- ) -[- 0.9703 _ ~- ), 

(8) 

0.0847 15 I 7 0.4994 + 1 0.6606 9 ~+_,,,~ = -v- T '  + o,8541 / -7- T ' - -  - ~ -  > + -+ T " 

Car ry ing  out calculat ions analogous to those desc r ibed  above for  functions (8), we find Hamil tonian (5) with 
= 0.054. 

b) We turn now to the case  of the Ho 3+ ion (518) in the a x i s y m m e t r i c  e lec t r ic  field of an y t t r i um e thyl -  
sulfate  single c ry s t a l .  Baker  and Bleaney [9] have es tabl i shed that the two lower levels  of the Ho ~+ ion have 
the wave functions 

W+I =0.933] ~ 7  ~ +0.3421 + 1 ~ +0,111/--~5 ~, 

1 1 - - 6 ~  0 >  = _ + J [ _  
(9) 
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Fig.  1. Energy levels  of Tb S+ in a 
BaF 2 single c rys ta l  as functions of 
magnetic field H0z applied along the 
t r igonal  s y m m e t r y  axis .  The a r rows  
show the individual hyperfine t r a n s i -  
tions within the four ESR lines [10]. 

Here  J ~  is the ordinary  energy,  and 

and can be cha rac t e r i zed  by an effective spin of S* = 1 and the 
spin Hamiltonian 

~ =  DIS~--Is(s3 + 1)] + gl,~HzSz + g.j_~(HxS ~ -}- HySy) 

-}-ASzI~-}-B(Sf l*+Syly)-bP[ I ~ - 1 I ( I 3  +1 )1  , (10) 

where  D = 5.8 cm -1 is the zero-sp l i t t ing  energy;  A and B are  
the constants of the anisotropy magnetic hyper f ine - s t ruc tu re  
interaction;  gll and g• a re  the effective g- fac tors ;  and P is the 
constant of the ordinary  e lec t r ic -quadrupole  in teract ion.  Baker  
and Bleaney emphasize  that P in Hamiltonian (10) is not the 
same for  the 1"1> and 10~ levels ,  so they introduce Pland P0~ 
Calculation of the mat r ix  e lements  of t ensor  (2) corresponding 
to the e lec t r i c - f i e ld  gradient  in t e r m s  of wave functions (9) and 
substitution of these  e lements  into (1) yield the in teract ion of 
the nuclear  quadrupole moment with f - she l l  e lec t rons :  

~ = af///'q + e~"O , eX/"Q = O,O71DQO (1), 

e / ~  = D {0.056 Q~ Qo(I) - 0.049 [O' (s) Q- '  (I) -}- Q-' (s)@ (I)1 

-}- 0.017 [Q~(S) Q-~(1) -}- Q--~ (S) Q~(/)]}. (11) 

e/~" 0 is the hype r f ine - s t ruc tu re  energy.  Hamiltonian (11) offers  a 
natural  explanation for  the exper imenta l  difference between P1 and P0 by t rea t ing  these  quantit ies as the 
eigenvalues of the opera tor  

A A 
eY= (~. + 0.071) D + 0.056 DQ ~ (S) (12) 

in s tates  1+1> and 10>; t e r m  ~D is due to the e lec t r ic  f ield of the c rys ta l ,  and the other t e r m s  a re  
due to the f shel l .  The dif ference between Pi and P0 is wholly due to the f shell .  The e)~  contribution 
to the positions of the resonance  l ines is of the same o rde r  of magnitude as the second approximation of the 
magnetic hyper f ine - s t ruc tu re  in teract ion.  Accordingly,  it is meaningful to t r ea t  only the f i r s t  approxima-  
tion in ~ .  In the f i r s t  approximation,  in teract ion OZfQ shifts the resonant  f requency only for  the I1 ~ ---~ 10~ 
t rans i t ion in a s t rong magnetic field (cases d and e) [9]. The t e r m  3 �9 0.056 DQ0(I ) (1) must  be added to the 
express ion  for  the resonant  f requency in (1). In all other  cases  the e/T~ in teract ion is an additional source  
of line broadening.  

c) We turn finally to the Tb ~+ (4Fs?F6) in a BaF 2 single c rys ta l .  It has been shown by ESH methods 
[10] that Tb s+ ions are  in a t r igonal  field in this case  and that the lower levels  a re  two doublets 4.23 cm -1 
apar t .  In weak magnetic fields two resonant  l ines with hyperf ine s t ruc tu re  are  observed,  corresponding 
to t ransi t ions between the sublevels of a given doublet (line groups I and II). In intense fields we find two 
more  groups of l ines (Ill and IV), corresponding to t rans i t ions  between sublevels of different  doublets.  The re  
are  four components in each line, in accordance  with the nuclear  spin of I = 3/2.  

In an in terpre ta t ion  of the exper imenta l  data it was found [10] that in the absence of a magnetic field 
the wave functions of the doublets a re  

~F__I =-T-0.815] ~- 5 > --0.561] ~ 2> -7 0.1201 i 1 ~ -+- 0 . 0 8 2 1 !4  ), 
(13) 

W+~=T0.084[_+5~-{-0 .091] !2>  _+0.366]~ 1 ~ -}-0.9221+4~, 

where [m ~ is the state having a total angular  momentum of ff = 6 and a project ion of ffz = m.  The behavior  
of the levels  in a magnetic field is descr ibed  roughly by the Hamiltonian [10] 

A 

~7-F= ~ (L z 4 2Sz)Hoz + aJj  z (14) 

(Fig. 1). Here L z is the z component of the orbital angular momentum, and the z axis coincides with the 
symmetry axis of the crystal field. Linegroups I and H are described well (and simply) by Hamiltonian (14). 

The magnetic fields H0z at which the hyperfine components of lines Ill and IV are observed at a fixed 
frequency of u = 37.47 kMHz are shown in the second column of Table i; the third column shows the corre- 
sponding resonant frequencies, obtained by diagonalizing Hamiltonian (14). 
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TABLE 1 

Line group III IV 

H0z , G 
v, kMHz 

6014 
37,42 

6279 
37,42 

6555 
37,33 

6796 
37,53 

8465 
37,04 

8740 
37,32 

8993 
37,41 

9233 
37,40 

The deviations of these frequencies f rom the working spec t romete r  frequency of v = 37.47 kMHz are  
apparently due to the hyperf ine- in teract ion t e rms  neglected in (14). The Hamiltonian for these hyperfine 
interactions can be writ ten as 

A a e2Q~z 1 
~ y  = -~ {J+l_ 4- J-[+} -- < > Qo (J) Q,) (I), (15) 

4I (21-- li 7 

where the f i rs t  t e rm is the part  of the magnetic-dipole hyperfine interact ion not taken into account in Hamil-  
tonian (14), and the second t e rm is the part  of the Hamiltonian corresponding to the e lect r ic-quadrupole  hy-  
perfine interaction (5) which contributes to the line position in the f i rs t  approximation.  Calculations anal-  
ogous to those above yield c~ = 0.01. Hence, substituting in e = 4.8" 10 -i~ esu, Q = 0.5 �9 10 -24 cm 2, I = 3/2,  
and ~ 1/r  a > = 68 .10  -24 cm -3, we find aD =-(e2Qa/4I  (2I - 1)) < (1/r3)> tobe  ~--1MHz. Character is t ica l ly ,  the 
quadrupole interaction contributes only to the positions of the III and IV components.  Evaluation of the ma-  
t r ix  elements of the operator  Q0(J) in t e rms  of the wave functions of the per turbed levels reveals  that the 
quadrupole interaction changes sign in the transi t ion f rom group III to group IV; the cor rec t ion  to the t r ans i -  
tion frequencies for group III is found to be - 4 . 9 { 3 m 2 - j ( J  + 1)} MHz, while that for group IV is + 0.5{3m 2 
- J r  + 1)} MHz. 

However,  the quantitative validity of these values is somewhat dubious, since the calculations a re  
based on approximation wave functions (since the exact c rys ta l  potential is not known), and we do not have 
an accura te  value for quadrupole moment Q. 

The cor rec t ions  to the t ransi t ion frequencies in the second approximation in the magnetic part  of 
Hamiltonian (15) and in the f i rs t  approximation in the e lect r ical  part  have the general  fo rm 

iv = F{I (I 4- 1)-- m (m 4- 1)} + K{3m 2 -  I ([ 4- 1)}, (16) 

where F and K are  cer tain coefficients formed f rom the matr ix  elements of opera tors  consisting of the c o m -  
ponents of total angular momentum J evaluated in t e rms  of the wave functions of the levels of different dou- 
blets .  These coefficients depend on magnetic field H0z and differ in value for  groups III and IV. 

We will t reat  coefficients F and K as cer ta in  free pa r ame te r s  and determine them by the method of 
least  squares ,  assuming that the experimental  e r r o r s  obey a normal  distribution law. Setting K = 0 in (16), 
we find 

F r o =  15.6 MHz. F m =  26.4 ~-Iz, (17) 

Analogously,  for K # 0 we find 

F m =  11 MHz, ['IV = 397 MHz, K I I I =  ~ 13 M14z, Kiv = 37A MUz. (18) 

The rms  deviation of the theoret ical  resonant frequencies f rom the experimental  values is 20% less for 
pa rame te r s  (18) than for pa ramete r s  (17). We note that coefficient K changes sign, but F does not, in the 
t ransi t ion f rom group III to group IV, in agreement  with the previous calculation. A numerica l  agreement  
of the aD and K values can be achieved with Q (1/r 3 > on the order  of 103 cm -l .  

The authors thank B. M. Kozyrev and A. M. Leushin for discussion of this study, and the authors thank 
A .  A .  Antipin for furnishing unpublished experimental  data. 
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