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Summary. Computer codes for computation and comparison of RNA secondary structures, the  
Vienna RNA packaoe, are presented, that are based on dynamic programming algorithms and aim at 
predictions of structures with minimum flee energies as well as at computations of the equilibrium 
partition functions and base pairing probabilities. 

An efficient heuristic for the inverse folding problem of RNA is introduced. In addition we present 
compact and efficient programs for the comparison of RNA secondary structures based on tree editing 
and alignment. 

All computer codes are written in ANSI C. They include implementations of modified algorithms 
on parallel computers with distributed memory. Performance analysis carried out on an Intel 
Hypercube shows that parallel computing becomes gradually more and more efficient the longer the 
sequences are. 

Keywords. Inverse folding; parallel computing; public domain software; RNA folding; RNA secondary 
structures; tree editing. 

Schnelle Faltung und Vergleich van Sekund~irstrukturen van RNA 

Zusammenfassung. Die im Vienna RNA package enthaltenen Computer Programme ffir die 
Berechnung und den Vergleich van RNA Sekund/~rstrukturen werden prgsentiert. Ihren Kern bilden 
Algorithmen zur Vorhersage van Strukturen minimaler Energie sowie zur Berechnung van 
Zustandssumme und Basenpaarungswahrscheinlichkeiten mittels dynamischer Programmierung. 

Ein effizienter heuristischer Algorithmus ffir das inverse Faltungsproblem wird vorgestellt. 
Darfiberhinaus priisentieren wir kompakte und effiziente Programme zum Vergleich van RNA 
Sekundfirstrukturen durch Baum-Editierung und Alignierung. 

Alle Programme sind in ANSI C geschrieben, darunter auch eine Implementation des Faltungs- 
algorithmus for Parallelrechner mit verteiltem Speieher. Wie Tests auf einem Intel Hypercube zeigen, 
wird das Parallelrechnen umso effizienter je l~inger die Sequenzen sin& 

1. Introduction 

R e c e n t  in teres t  in R N A  s t ruc tu r e s  a n d  func t i ons  was  c a u s e d  b y  thei r  ca t a ly t i c  

capac i t i e s  [1, 2]  as well as by  the  success  o f  se lec t ion  m e t h o d s  in p r o d u c i n g  R N A  
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molecules with perfectly taylored properties [-3, 4] Conventional structure analysis 
concentrates on natural molecules and closely related variants which are accessible 
by site directed mutagenesis. Several current projects are much more ambitious 
(particularly encouraged by ready availability of random RNA sequences) and aim 
at the exploration of sequence-structure relations in full generality [-5-7]. The new 
approach turned out to be successful on the level of RNA secondary structures. In 
order to be able to do proper statistics millions of structures derived from arbitrary 
sequences have to be analyzed. In addtion folding of long sequences becomes more 
and more important as well. Both tasks call for fast and efficient folding algorithms 
available on conventional sequential computers as well as on parallel machines. The 
need arises to compare the performance of sequential and parallel implementations 
in order to provide information for the conception of optimal strategies for given 
tasks. 

The inverse folding problem is one of several new issues brought up by recent 
developments in rational design of RNA molecules: given an RNA secondary 
structure, which are the RNA sequences that form this structure as a minimum free 
energy structure. The information about many such "structurally neutral" sequences 
is the basis for tayloring RNA molecules which are suitable candidates for 
multi-functional molecules. More and more sequence data becoming currently 
available call for efficient comparisons either directly or on the level of their 
minimum free energy structures. Conventional alignment techniques are supple- 
mented by new approaches like statistical geometry [-8] and split decomposition [-9]. 

In this paper we introduce a package for computation, comparison and analysis 
of RNA secondary structures and properties derived from them, the Vienna RNA 
Package. The core of the package consists of compact codes to compute either 
minimum free energy structures [-10, 11] or partition functions of RNA molecules 
[12]. Both use the idea of dynamic programming originally applied by Waterman 
[-13-15]. Non-thermodynamic criteria of structure formation like maximum 
matching (the maximal number of base pairs; [-16] or various versions of kinetic 
folding [,17] can be applied as alternative options. An inverse folding heuristic is 
implemented to determine sets of structurally neutral sequences. A statistics package 
is included which contains routines for cluster analysis, statistical geometry, and 
split decomposition. This core is now available as library as well as a set of stand 
alone routines. 

In a forthcoming version the package will include routines for secondary 
structure statistics [-7] statistical analysis of RNA folding landscapes as well as 
sequence-structure maps [18]. Further options will be available for RNA melting 
kinetics, in particluar for the computation of melting curves and their first 
derivatives [-19]. Extensions of the package provide access to computer codes for 
optimization of RNA secondary structures according to predefined criteria, as well 
as simulations of molecular evolution experiments in flow reactors [20, 21]. 

In Sect. 2 we present the core codes for folding as well as some I/O-routines 
that can be used for stand-alone applications of the folding programs. Section 3 
introduces a variant of the folding program which is suitable for implementation 
on a parallel computer with hypercube architecture. Section 4 is dealing with the 
inverse folding problem. Section 5 describes codes for comparing RNA secondary 
structures as well as base-pairing matrices derived from partition functions. Basic 
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to our routines is a tree representat ion of RNA secondary structures in t roduced 
previously [7]. Some examples of selected applications of the Vienna RNA package  
are given in Sect. 6. 

2. RNA Folding Programs 

A secondary structure on a sequence is a list of base pairs i,j with i < j  such that  for 
any two base pairs i,j and k, l with i ~< k holds: 

i =  k.~.,j = l (1) 
k <j=>i  < k  < l < j .  

The first condi t ion implies that  each nucleotide can take part  in not  more  that  one 
base pair, the second condit ion forbids knots  and pseudoknots .  The latter restriction 
is necessary for dynamic  p rogramming  algorithms. A base pair k, l is interior to the 
base pair i,j, if i < k < l < j .  It is immediately interior if there is no base pair p, q such 
that  i < p < k < l < q < j .  For  each base pair i,j the corresponding loop is defined as 
consisting of i,j itself, the base pairs immediately interior to i,j and all unpaired 
regions connecting these base pairs. The energy of the secondary structure is assumed 
to be the sum of the energy contr ibut ions of all loops. (Note that  a stacked basepair 
constitutes a loop of zero size.) As a consequence of the additivity of the energy 
contributions,  the min imum free energy can be calculated recursively by dynamic 
p rogramming  [10, 11, 13, 14]. 

Experimental  energy parameters  are available for the contr ibut ion of an 
individual loop as functions of its size, of the type of its delimiting basepairs, and 
partly of the sequence of the unpaired strains. These are usually measured for 
T = 37 °C and 1M solidum chloride solutions [22, 231. For  the base pair stacking 

Table 1. Pseudo Code of the minimum free energy folding algorithm 

for(d=1...n) 
for(i=l...d) 

j =i+d 
C[i,j] = SIN( 

Hairpin (i, j ), 
MIN( i<p<q<j : Interior(i,j;p,q)+C[p,q] ), 
MIN( i<k<j : FM[i+l,k]+FM[k+i,j-l]+cc ) ) 

F[i,j] = SIN( C[i,j], SIN(i<k<j : F[i,k]+F[k+l,j])) 
FM[i,j]= MIN( C[i,j]+ci, FM[i+l,j]+cu, FM[i,j-l]+cu, 

SIN( i<k<j : FM[i,k]+FM[k+l,j] ) ) 
free_energy = F[l,n] 

R e m a r k .  F [ i , j ]  denotes the min imum energy for the subsequence consisting of bases i 
through j. C [ i , j ]  is the energy given that  i and j. pair. The  array FM is introduced for 
handling multiloops. The  energy parameters  for all loop types except for multiloops are 
formally subsumed in the function I n t e r i o r  ( i ,  j ; p,  q) denoting the energy contribution 
of a loop closed by the two base pairs i - j  and p-q. We have assumed that  multi-loops 
have energy contribution F=ee+¢i*I+eu*lJ, where I is the number  of interior base pairs 
and U is the number of unpaired digits of the loop. The  time complexity here is O(n4). It 
is reduced to O(n s) by restricting the size of interior loops to some constant,  say 30. 
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the enthalpic and entropic contributions are known separately. Contributions from 
all other loop types are assumed to be purely entropic. This allows to compute the 
temperature dependence of the free energy contributions: 

AGstac k = A H 3 7 , s t a c k -  TAS37,stack AGloop = - TAS37,1oo p. (2) 

We use a recent version of the parameter set published by [22], which was supplied 
in an undated version by Danielle Konings. In the current implementation we do 
not consider dangling ends. The essential part of the energy minimization algorithm 
is shown in Table 1. 

The structure (list of base pairs) leading to the minimum energy is usually 
retrieved later on by "backtracking" through the energy arrays. 

The partition function for the ensemble of all possible secondary structures can 
be calculated analogously [12] 

Q z 

A pseudocode is given in Table 2. 

aG(S) 
E e RT. (3) 

all  s t ruc tures  S 

Clearly the algorithm of Table 2 does not predict a secondary structure, but one 
can calculate the probability Pkt for the formation of a base pair (k,/): 

b 

Pkt -Q'k-IQklQI+I'" k E t- (4) 
P uQ~l EIntedor ( i,j; k, l) 

Q ,,J 
i<k<l<j  

'Ecc'Eci .,~ ~PiJ[Ecuk-i-'Q['+"J-' +Qm+ 1,k-1  EcoJ-l-1-'i-Qim+l,k-l Qlm+l,j-1]' 
i<k<l<j  

where the symbols are defined in the caption of Table 2. In this case the backtracking 
has time complexity C(n 3) just as the calculation of the partition function itself. 

Table 2. Pseudocode for the calculation of the partition function 

for(d=l...n) 
for(i=l...d) 

j =i+d 
QB[i,j] = EHairpin(i,j) + 

SUM( i<p<q<j : EInterior(i,j;p,q)*QB[p,q] ) + 
SUM( i<k<j : QM[i+I,k-I]*QMI[k,j-I]*Ecc ) 

QS[i ,j] = 
SUM( i<k<j : (Ecu^(k-i)+QS[i,k-1])*QSl[k,j]) 

qSl[i,j] = SUM( i<k<=j : QB[i,k]*Ecu'(j-k)*Eci ) 
[i~j 2 = i + QB[i, i] + 

Q or,( i<p<q<j : Q[i,p-I]*QB[p,q] ) 
partition_function = Q[l,n] 

R e m a r k .  Here Ez:=exp(-z/RT) denotes  the  Bol tzmann  weights cor responding  to the 
energy contr ibut ion z. q [ i , j ]  denotes  the pa r t i t ion  function Q~j of the  subsequence i 
through j .  The  array QM conta ins  the  par t i t ion  funct ion Q~j of the  subsequence subjec t  
to the  fact tha t  i and j form a base pair .  Q14 and  QPI1 are used for handl ing  the mul t i loop 
contr ibut ions ,  x y means  x ~. For deta i l s  see [12]. 
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Both folding algorithms have been integrated into a single interactive program 
including postscript output of the minimum energy structure and the base pairing 
matrix. 

The program requires 6 n 2 bytes of memory for the minimum energy fold and 
10 n 2 bytes for the calculation of the partition function on machines with 32 bit 
integers and single precision floating points. In order to overcome overflows for 
longer sequences we rescale the partition function of a subsequence of length I by a 
factor (~t/,, where Q is a rough estimate of the order of magnitude of the partition 
functions: 

(~ = e x p ( - 1 8 4 . 3  + 7.27(T-RT 37)) . (5) 

The performance of the algorithms reported here is compared with Zuker's [24] 
more recent program mflod 2.0 (available via anonymous ftp from n rcbsa, b io. n rc.ca) 
which computes suboptimal structures together with the minimum free energy 
structure in Table 3. The computation of the minimum free energy structure 
including the entire matrix of base pairing probabilities is considerably faster with 
the present package (although we do not provide information on individual 
suboptimal structures). Secondary structures are represented by a string of dots and 
matching parentheses, where dots symbolize unpaired bases and matching pare- 
ntheses symbolize base pairs. An example is seen in the sample session shown in 
Fig. 1. 

Because of the simplifications in the energy model and the uncertainties in the 
energy parameters predictions are not always as accurate as one would like. It is, 
therefore, desirable to include additional structural information from phylogenetic 
or chemical data. 

Our minimum free energy algorithm allows to include a variety on constraints 
into the secondary structure prediction by assigning bonus energies to structures 
honoring the constraints. One may enforce certain base pairs or prevent bases from 
pairing. Additionally, our algorithm can deal with bases that have to pair with an 
unknown pairing partner. A sample session is described in Fig. 2. 

Table 3. Performance of implementations of folding 

algorithms. CPU time is measured on a SUN SPARC 

2 Workstation with 32M RAM. Data are for random 

sequences 

n CPU time per folding [s] 

RNAfold 1.0 mfold 2.0 

MFE MFE + PF 

100 2.0 6.2 24.5 

200 10,9 34.7 129.6 

300 32.2 97.4 354.4 

500 96.6 312.4 1258.3 

690 228.1 743,9 3105.1 
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tram> R|Afold -T 42 -pl 

Input string (upper or lower case); @ to quit 

......... I ......... 2 ......... 3 ......... 4 ......... 5 ......... 6 ......... 7 ......... 

OUGGAGUACACAACCUGUACACUCUUUC 
length = 28 

UUGGAGUACACAACCUGUACACUCUUUC 
. . ( ( ( ( ( . . ( ( ( . . . ) ) ) . . ) ) ) ) ) . . ,  
minimum free energy = -3.71 

. . ( ( ( ( ( [ [ (  . . . . .  ) ) ) . . ) ) ) ) ) . . .  

free energy of ensemble = -4.39 

frequency of mfe structure in ensemble 0.337231 

a 

b 

U U G G A G U A C  A C  A A C  C U G U A C  A C  U C U U U C  

vl i .'~ i i i i i i i i  i i i i  i i i i i  i 1"2~i i i  i~ 
< U . L  : X . . . . . . . . . . . . . . . .  m . " " + '> 

=X'." i f :  X . . . . . . . . . . .  =" "m" . . . . . .  
<:  i i . ' . "  i i X . . . . . . . . .  " . . . . . . . . . . .  > 

< i i l l  i i i i  X . . . . .  =+ +'' . . . . . . . . .  > 

, < ,  - + + + . + + . + + + + + + . + + + . . . . + . . . ~ > ,  

{ , , ~  • + • + . . . .  + + + . + . + . , . . . . .  + + + . , . ~  

[ . ~  ' . . + . . . . + . + . . . . . . . . . . .  . . . . . .  ( ~  

~ ) ,  + + . . . . , + + + ~ + . + + + . . . . .  . . . , ~  

~ : i i i i i i i i  + . i i i . ' i i i i i i i i i i i ~  

~ . ) ~  + ÷ * ÷ + ÷ ÷ ÷ ÷ + ÷ * ÷ ÷ + + * ÷ ÷ ÷ ÷ + + ~ l " ~  

r . )  ~ + ÷ + + + + ÷ + + ÷ + + + ÷ " + + + * ÷ + + ÷ ~ 1 ~  

iiiiiiiiiiiiiiiiiiii!iiii  ~ ,  ÷ . + + . . . .  ÷ ÷ + . , + . ÷ ÷ + ÷ + + + + + . ~ 

u l  n 
U U G G A G U A C A C A A C C U G U A C A C U C U U U C  

Fig. 1. Interactive example run of RNAfold for a random sequence. When the base pairing probability 
matrix is calculated by symbols ,, [ { } ( ) are used for bases that are essentially unpaired, weakly 
paired, strongly paired without preferred direction, weakly upstream (downstream) paired, and 
strongly upstream (downstream) paired, respectively. Apart from the console output, a, the two 
postscript files rna.ps, b, and dot.ps, c, are created. The lower left part of dot.ps shows the minimum 
energy structure, while the upper right shows the pair probabilities. The area of the squares is 
proportional to the binding probability 



Fast Folding and RNA Secondary Structures 173 

Input string (upper or lower case); @ to quit 

......... 1 ......... 2 ......... 3 ......... 4 ......... 5 ......... 6 ......... 7 ......... 

CACUACUCCAAGGACCGUAUCUUUCUCAGUGCGACAGUAA 

. ((  . . . . . . .  << . . . . . . . . . .  II . . . . . . . . . . . .  ) ) . .  
length = 40 

CACUACUCCAAGGACCGUAUCUUUCUCAGUGCGACAGUAA 
. ( ( ( ( ( ( . . ( ( ( ( (  . . . . .  ) ) ) ) ) . . . ) ) )  . . . . .  ) ) ) . .  
minimum free energy = 0.83 

a) 

CACUACUCCAAGGACCGUAUCUUUCUCAGUGCGACAGUAA 
( ( ( (  . . . . .  ( ( ( ( (  . . . . .  ) ) ) > ) . . . ) ) ) )  . . . . . . . . .  

minimum free energy = -1.52 

b) 

Fig. 2. a Example Session of RNAfold -C. The constraints are provided as a string consisting of dots 
for bases without constraint, matching pairs of round brackets for base pairs to be enforced, the 
symbols ' < '  and ' > '  for bases that are paired upstream and downstream, respectively, and the pipe 
symbol '[' denoting a paired base with unknown pairing partner; b shows minimum free energy 
structure without constraints for comparison 

3. Parallel Folding Algorithm 

We provide an implementa t ion  of the folding algori thm for parallel computers.  In 
the following we present a parallelized version of the min imum energy folding 
algori thm for message passing systems. Since all subsequences of equal length 
can be computed  concurrently,  it is advisable to compute  the arrays F, C and FM 
(defined in Table 1) in diagonal  order, dividing each subdiagonal  into P pieces. 
Figure 3 shows an example for 4 processors. Our  algori thm stores the arrays F and 
FM both  as columns and rows, while the C array is stored in diagonal  order. The 
maximal  memory  requirement  occurs at d = n/2, where we need n2/(2P) integers 

Fig. 3. Representation of memory usage by 
the parallel folding algorithm. The triangle 
representing the triangular matrices F, C, and 
FM, respectively, is divided into sectors with 
an equal number of diagonal elements, one for 
each processor. The computation proceeds 
from the main diagonal towards the upper 
right corner. The information needed by pro- 
cessor 2 in order to calculate the elements of 
the dashed diagonal are highlighted. To com- 
pute its part of the dashed diagonal processor 
2 needs the horizontally and vertically striped 
parts of the arrays F and FM, and the shaded 
part of the array C. The shaded part does not 
extend to diagonal, because we have restricted 
the maximal size of interior loops 
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~ 40 
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Fig. 4. Performance of parallel algorithm for random sequences of length 50 C), 100 D, 200 ~ ,  400 ~ ,  
700 <1, 1000 V. Efficiency is defined as speedup divided by the number of processors. The dotted line 
is 1/n corresponding to no speedup at all 

each for F and FM, while the array C needs only d0(n) storage. Since the length of 
the rows and columns increases, one needs to reorganize the storage after each 
diagonal. If one allocates twice the min imum memory,  storage has to be reorganized 
only once and the total requirement is the same as for the sequential algorithm. After 
completing one subdiagonal  each processor has to either send a row to or receive 
a column from its right neighbour,  and it has to either receive a row from or send 
a column to its left neighbour.  

Since we do not store the entire matrices, we cannot  do the usual backtracking 
to retrieve the structure corresponding to the min imum energy. Instead, we write 
for each index pair (i,j) two integers to a file, which identify the term that  actually 
produced the minimum.  The backtracking can then be done with (9(n) readouts.  
All in all we need (9(n) communica t ion  and I /O steps each transferring (9(n) integers, 
while the computa t ional  effort is (9(n3). The communica t ion  overhead therefore 
becomes negligible for sufficiently long sequences. 

On the Intel Ipsc/2 the advantage of storing F and FM in rows and columns 
outweighs the I /O overhead for sequences longer than some 200 nucleotides. The 
efficiency of the parallelization as a function of sequence length and number  of 
processors can be seen in Fig. 4. 

The parti t ion function algori thm can be parallelized analogously. 

4. Inverse Folding 

Inverse folding is highly relevant for two reasons: (1) to find sequences that  form a 
predefined structure under  the min imum free energy criterium, and (2) to search for 
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sequences whose Boltzmann ensembles of structures match a given predefined 
structure more closely than a given threshold. The first aspect is directly addressed 
by the inverse folding algorithm presented here. The second issue is somewhat more 
realistic. In the case of compatible sequences, that is sequences which can form a 
base pair wherever it is required in the target structure, we shall often find the desired 
structure among suboptimal foldings with free energies close to the minimal value. 
Matching base pairing probabilities can be approached by the same inverse folding 
heuristic using the base pairing matrices of the partition function algorithm rather 
than minimum free energy structures. 

Only compatible sequences are considered as candidates in the inverse folding 
procedure. Clearly, a compatible sequence can but need not have the target 
structure as its minimum free energy structure. 

Our basic approach is to modify an initial sequence I0, such as to minimize 
a cost function given by the "structure distance" f ( I )=  d(S(I),J-) between the 
structure S(I) of the test sequence ! and the target structure Y.  A set of possible 
distance measures is discussed in Sect. 5. The actual choice of this distance measure 
is not critical for the performance of the algorithm. 

This procedure requires many evaluations of the cost functions and thereby 
many executions of the folding algorithm. Instead of running the optimization 
directly on the full length sequence, we optimize small substructures first, proceeding 
to larger ones as shown in the flow chart (Fig. 5). This reduces the probability of 
getting stuck in a local minimum, and more important, it reduces the number of 
foldings of full length sequences. This is possible because substructures contribute 
additively to the energy. If J-  is an optimal structure on the sequence S and contains 

FIND HAIRPIN I 
], SUBSTRUCTURE := HAIRPIN 

I 
_ _ _ _ ~  ELONGATE SUBSTRUCTURE BY ] 

1 BP 
I 

[ FI~D SUBSEQUENCE [ ~  

ADD EXTERNAL BASES TO 
COMPONENT 

I 
FIND SUBSEQUENCE 

CONCATENATE COMPONENTS 
FIND SEQUENCE TO FULL STRUCTURE 

i, 

ELONGATE SUBSTRUCTURE 
TO INCLUDE EXTERIOR BP OF 
THE MULTILOOP 

Fig. 5. Flow chart of the inverse 
folding algorithm 
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1000 

100 
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a )  

E 
V- 

10 

1 i i i 

150 0 1 O0 150 200 250 
Length 

Fig. 6. Performance of inverse folding. Full line: T = 4"10-6n 3.s 

tram> RNAinverse -Fm -R -3 

Input structure ~ start string (lower case letters for const positions) 

@ to quit, and 0 for random start string 

......... 1 ......... 2 ......... 3 ......... 4 ......... 5 ......... 6 ......... 7 ......... 
( ( ( ( ( ( ( . . ( ( ( (  . . . . . . . .  ) ) ) ) . ( ( ( ( (  . . . . . . .  ) ) ) ) )  . . . . .  ( ( ( ( (  . . . . . . .  ) ) ) ) ) ) ) ) ) )  ) )  . . . .  

o 
length = 76 

CUAUACUACGAGGAUAAUCUGCCUUUUGCCAAAGAGGGUGGCAUUUCAUCAGCUCCGAAUGCUGAGGUAU AGCGAA 20 
AGCUCUGAUAUCUCUACGAAUAGAUCCUUIJAUAUCUCUUAAAGCGUGUCUGGAAGAUAACUCCAGCAGAG CUUGUG 25 

UUCUCCUGUAGUCGACUUUAGGACUCGAGGCCGUAUUUGCCUCACGGAAAUGUUUACAAUGCAUUAGGAG GAGUGC 29 

A 

tram> RNAinverse -Fp -R 3 

Input structure & start string (lower case letters for const positions) 

© to quit, and 0 for random start string 

......... I ......... 2 ......... 3 ......... 4 ......... 5 ......... 6 ......... 7 ......... 
( ( ( ( ( ( ( . . ( ( ( (  . . . . . . . .  ) ) ) ) . ( ( ( ( (  . . . . . . .  ) ) ) ) )  . . . . .  ( ( ( ( (  . . . . . . .  ) ) ) ) ) ) ) ) ) )  ) )  . . . .  

0 
length = 76 

GCUAGCGUUGGGCUUUUUUUCGCCCUGCCGCAAAACCCGCGGCUUCUCGCUACAUCUCUCGUAGCCGCUA GCAAAA 50 
(0.844786) 
GCGUUACAAGCGCAAUCCCCCGCGCAGCGUCAAAACCCGACGCCAACAGCUACAAAACCCGUAGCGUAAC GCAAAA 55 

(0.859519) 
GCGCGCCAAGCGCAAAAAAAAGCGCAGCCGCAAAACACGCGGCAAAAAGCGaCAaAAAAAaCCGCGGCGC GCAAAA 49 
(o.sso4s) 

B 

Fig. 7. Sample session of RNAinverse. A Minimum free energy. B Partit ion function. Data  on the 

natural tRNA ph~ sequence for comparison: the clover leaf structure occurs only with a probability of 

0.172511 and with even smaller probabilities for the three sequences found by the RNAinverse 

-Fro (0.0891717, 0.0329602, and 0.0335713, respectively) 
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the base pair (i, j) then the substructure J i 4  must be optimal on the subsequence 
Si4. It is likely then, but by no means necessary, that the converse also holds: A 
structure that is optimal for a subsequence will also appear with enhanced 
probability as a substructure of the full sequence. 

For the actual optimization (denoted by 'FindStructure' in Fig. 5) we use the 
simplest possibility, an adaptive walk. In general, an adaptive walk will try a random 
mutation, and accept it if the cost function decreases. A mutat ion consists in 
exchanging one base at positions that are unpaired in the target structure J ,  or in 
exchanging two bases, while retaining compatibility, if their corresponding 
positions pair in Y-. If no advantageous mutat ion can be found, the procedure stops, 
and restart again with a new initial string I 0. Optionally, we can restrict the search 
to bases that do not pair correctly. This slightly increases the probability that no 
sequence can be found, but greatly reduced the search space (Figs. 6 and 7). 

Sequences found by the inverse folding algorithm will often allow alternative 
structures with only slightly higher energies. To find sequences with clearly defined 
structures, the partition function algorithm can be used to maximize the probability 

1 
P (¢-) = ~ exp ( - A G ( J ) / R  T) (6) 

of the desired structure in the ensemble. This procedure is much slower, since the 
optimization is done with the full length sequence. 

5. Comparison of Secondary Structures 

RNA secondary structures can be represented as trees [11,25,26]. The tree 
representation was used, for example, to obtain coarse grained structures revealing 
the branching pattern or the relative positions of loops. More recently we proposed 
a tree representation at full resolution [73. A secondary structure Sk is converted 
one to one into a tree T k by assigning an internal node to each base pair and a leaf 
node to each unpaired digit (Fig. 8). The conversion starts with a root which does 
not correspond to a physical unit of the RNA molecule. It is introduced to prevent 
the formation of a tree forest for RNA structures with external elements (For details 
of the interconversion of secondary structures and tree see also [-73). 

As shown in 1-73 the trees Tk can be rewritten as homeomorphically irreducible 
trees (HITs), see appendix B. The transformation from the full tree to the HIT retains 
complete information on the structure. Secondary structure, full tree as well as HIT 
are equivalent. 

Tree editing induces a metric in the space of trees (see Appendix A), and in the 
space of RNA secondary structures. A tree is transformed into another tree by a 
series of editing opterations with predefined costs [27, 28]. The distance between 
two trees d(Tj, Tk) is the smallest sum of the costs along an editing path. The 
parameters used in our tree editing are summarized in Appendix A. The editing 
operations preserve the relative traversal order of the tree nodes. Tree editing can 
therefore be viewed as a generalization of sequence alignment. In fact, for trees that 
consist solely of leaves, tree editing becomes the standard sequence alignment. A 
sample session computing the tree distance between two arbitrarily chosen 
structures is shown in Fig. 9. 
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Fig. 8. Interconversion of secondary structures and trees. A secondary structure graph (A) is equivalent 
to an ordered rooted tree (B). An internal node (black) of the tree corresponds to a base pair (two 
nucleotides), a leaf node (white) corresponds to one unpaired nucleotide, and the root node (black 
square) is a virtual parent to the external elements. Contiguous base pair stacks translate into "ropes" 
of internal nodes and loops appear as bushes of leaves. Recursively traversing a tree by first visiting 
the root, then visiting its subtrees in left to right order, finally visiting the root again, assigns numbers 
to the nodes in correspondence to the 5'-3' positions along the sequence (Internal nodes are assigned 
two numbers reflecting the paired positions) 

Cram> RIAdistance -D~hwcHWC -B 

Input s t ruc ture ;  @ ¢o quit  
. . . . . . . . .  1 . . . . . . . . .  2 . . . . . . . . .  3 . . . . . . . . .  4 . . . . . . . . .  S . . . . . . . . .  6 . . . . . . . . .  7 . . . . . . . . .  

( ( . ( ( ( ( ( ( (  . . . . .  ) ) ) ) ) ) ) . ) )  . . . .  ( ( . . ( ( ( (  . . . . .  ) ) ) ) . ) ) .  

. . . . .  ( ( ( ( . . ( ( ( (  . . . . . . . . . .  ) ) ) ) . ) ) ) >  . . . . .  ( ( (  . . . .  ) ) ) .  

f :  2 6  

( . . . . .  ( . ( ( ( - - ( ( ( (  . . . . .  - . . . .  ) ) ) ) - ) ) ) . ) )  . . . .  ( C , . ( ( ( (  . . . . .  ) ) ) ) . ) ) .  

- .  . . . .  ( ' ( ( ( . . ( ( ( (  . . . . . . . . . .  ) ) ) ) . > ) ) ' ) - . . . . - - , - - ( ( (  . . . .  - ) ) ) - . - - -  

h :  3 2  

( . . . .  ((U1)((US-)PT)(UI)P2)(U4)((U2)((US)P4)(UI)P2)(UI)RI) 
( ( U 5 ) ( ( U 2 ) ( ( U I O ) P 4 ) ( U 1 ) P 4 ) ( U 5 )  . . . . .  ( ( U 4 ) P 3 ) ( U 1 )  . . . . . . .  R1) 
~ :  3 4  

( ( ( ( ( ( H S - ) S T ) I 2 ) S 2 ) ( ( ( ( H S ) S 4 ) I 3 ) S 2 ) E 5 - ) R 1 )  

((((((HIO)S4)I3)S4)--((H4)S3) ...... EII)RI) 
c: 3 
( ( ( ( ( ~ l ) s l ) n ) s l ) ( ( ( ( H 1 ) s l ) i 1 ) s l > ~ l )  

( ( ( ( ( H 1 ) S 1 ) I 1 ) S 1 ) - - ( ( H 1 ) S 1 )  . . . . . .  R 1 )  

H: 31 

(RI ...... (P2(UIU1)(PT(U5US)PT)(UIU1)P2)(U4U4)(P2(U2U2)(P4(USUS)P4)(UIU 1)P2)(UIUI)R1) 

( R I ( U S U S ) ( P 4 ( U 2 U 2 ) ( P 4 ( U 1 U 1 ) P 4 ) ( U 1 U 1 ) P 4 ) ( U S U S )  . . . . . . . . .  ( P 3 ( U 4 U 4 ) P 3 )  . . . . . . . . .  ( U 1 U 1 ) R 1 )  

g :  3 2  

(RI(ES-(S2(I2(ST(H5H5)ST)I2)S2)(S2(I3(S4(H5Hf)S4)I3)S2)E5)-R1) 
(RI(EII(S4(13(S4(HIH1)S4)I3)S4) ...... (S3(H4H4)S3) ...... Eli)R1) 
C: 3 
(a(S(I(S(HX>S>I>S)(S(I(S(XK)S)r)S)R) 
(R(S(I(S(HH)S)I)S) .... (S(HN) .... S)a) 

Fig. 9. Interactive sample session of RNAdistance. For this example we have used two random 

sequences folded by RNAfold 
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An alternative graphical method for the comparison of RNA secondary 
structures [29-31]  encodes secondary structures as linear strings with balanced 
parentheses representing the base pairs, and some other symbol coding for unpaired 
positions. 

Tree representations in full resolution make it often diffcult to focus on the major 
structural features of RNA molecules since they are often overloaded with irrelevant 
details. Coarse-grained tree representations were invented previously to solve this 
problem [25]. 

Base pairing probabil i ty matrices may also be compared by an alignment-type 
method [32]. Since a secondary structure is representable as a string (see Fig. 9), 
comparison of structures can be done by standard string alignment algorithms (see, 
e.g., [33]). This approach has been generalized to structure ensembles in [32]. We 
compute  for each position i of the sequence the probabili ty to be upstream paired, 
downst ream paired or unpaired. 

Pl = Z Pis 
j>i (7) 

pl = Ep,  
j< i  

The probabil i ty that the base at position i is unpaired is p~ = 1 - pl _ p). 

A reasonable definition for the distance of two such vectors, P(S1) and P(S2), uses 
again an alignment procedure at the level of the vectors p(, p) and p°. We then define 
the distance measure for an aligned position (i,j) by 

o-(i,j) = 1 -  x/p)(~l)p}(~e) + x/pl(~l)p~(~2)+ x/P,( OPj( e)" (8) 

and 6(i) = 0 for inserted or deleted positions. The distance of two structure ensembles 

Table 4. Free energies of 16sRNA from yeast. The phylogenetic 
structure decomposes into six components 

Bases MFE Phylogenetic structure 
completed "as is" 

1-556 -130.63 -97.76 - 77.14 
557-883 -89.18 -70.64 -61.31 
884-920 - 6.55 -6.55 -3.76 
921-1396 -111.66 -68.70 -37.68 

1397-1497 -21.00 - 18.15 - 18.15 
1498-1542 - 15.11 -14.11 -13.91 

E -374.13 -275.91 -211.95 

1-1542 -379.22 -279.48 -211.95 

The forth component, bases 921-1396, shows the largest 
deviations. This region contains large multiloops. It seems that 
in general local interactions are predicted more reliably than 
long range base pairs 
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is given by the minimum total edit costs as in an ordinary string alignment (The 
numerical value of this distance is twice the distance measure defined in [32]). 

6. Applications 

6.1 Long RNA Molecules 

16sRNA, yeast 

Chain length: 1542 nucleotides. 
Performance: 42 rain on an IBM-RS6000/550 with 64 Mbyte. 

Minimum free energy structure contains 259 (58%) of the 441 base pairs 
predicted by a phylogenic structure (5 uncommon base pairs, and the 5 pairs forming 
a pseudo-knot are not counted). The cummulated pairing probability of the bases 
in the phylogenetic structure is about 54%. The cumulated pairing probability of 
the bases in the minimum free energy structure is 73%. The phylogenetic structure 
"as is" amounts to a free energy of - 2 1 2  kcal/mol as compared to - 3 7 9  kcal/mol 
for the minimum free energy structure. The difference of more than 300 R T indicates 
that the phylogenetic structure cannot be complete. We did a minimum free energy 
folding of the sequence subject to the base pairs prescribed by the phylogenetic 
structure using RNAfold -C. One finds - 279.5 kcal/mol. This is still far away from 
the minimum free energy structure. The omitted interactions due to the pseudoknot 
and the uncommon base pairs cannot account for more than some 20 kcal/mol in 
the worst case. We are aware of the following possible explanations for the gap of 
about 100 RT: 

• The energy model for secondary structures is totally wrong. 
• 16sRNA is selected for its biochemical function which is not preformed by the free 

RNA, but by its complex with protein. The phylogenetically determined "structure" 
may then be completely different from the minimum free energy structure. 

Q/3 RNA 

Chain length: 4220 nucleotides. 
Performance: 9.5 h on an IBM-RS6000/560 with 256 Mbyte. 

Folding of long RNA sequences can be extended up to chain lengths of about 
5000 nucleotides. The entire Qfl-genome (Fig. 10) was folded as a test case of an 
example of an entire viral genome. We do not imply that the real secondary structure 
of Qfl RNA is identical with its minimum free energy structure. Kinetic effects are 
highly important for long sequences. 

The secondary structure obtained appears to be partitioned into three parts: 
(0-861), (862-3003), and (3004-4220). The middle part contains a large loop and 
other gross features which are also revealed by electron microscopy [34]. 

6.2 Heat Capacity of RNA Secondary Structures 

The heat capacity can be obtained from the partition function using 

Cp= - T c32G a n d  A G =  - - R T l n Q .  
~ T  2 '  

(9) 
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Fig. 10. The base pairing prob- 

abilities for the entire Q/Y genome 
(4420 nucleotides) 
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Fig. 11. Heat Capacity of the tRNA-phe from yeast calculated using RNAheat -Tmax 120-h 0 1-m5 

The numerical differentiation is performed in the following way: We fit the 
function F(x) by the least square parabola y = cx2+ bx + a through the 2m + 1 
equally spaced points X o -  mh, x o - ( m -  I )h , . . . ,  Xo,. . . ,  x o + mh. The second deri- 
vative of F is then approximated by F "(Xo) -- 2c. Explicitly, we obtain 

F"(x0)= ~ 3 0 ( 3 k 2 - m ( m +  l)) F ( x o + k h  ). (10) 
k= , , rn (4~- - l ) - (m+ i ) ~ m +  3) 

As an example we show the heat capacity of tRNA t extphe from yeast (Fig. 11). 
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Fig. 12. The structure density surface (SDS) for RNA sequences of length n = 100 (upper). This surface 
was obtained as follows: (1) choose a random reference sequence and compute its structure, (2) sample 
randomly 10 different sequences in each distance class (Hamming distance 1 to 100) from the reference 
sequence, and bin the distances between their structures and the references structure. This procedure 
was repeated for 1000 random references sequences. Convergence is remarkably fast; no substantial 
changes were observed when doubling the number of reference sequences. This procedure conditions 
the density surface to sequences with base composition peaked at uniformity, and does, therefore, not 
yield information about strongly biased compositions. Lower part: Contour plot of the SDS 
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6.3 Landscapes and combinatory maps 

Statistical features of the relations between sequences, structures and other 
properties of RNA molecules were studied in several previous papers [5-7,  19, 32]. 
We ment ion  here free energy landscapes and structure maps as two representative 
examples. Relations between sequences I and derived objects ~#(I) (which may be 
numbers  like free energies, or structures, or trees, or anything that  might  be relevant 
in s tudying RNA molecules) are considered as mappings  from one metric space (the 
sequence space f )  into another  metric space (~), 

( f ;  I; dh) =~ (~¢; G; dg). (1 l) 

The existence of a distance measure d~ inducing a metric on the set of objects f#(I) 
is assumed. In the trivial case ~ is IR. We are then dealing with a "landscape" which 
assigns a value to every sequence (a free energy, or an activation energy, for example). 
In general both  spaces will be of combinator ia l  complexity and we coined the term 
"combinatory  maps"  for these mappings.  In order to facilitate illustration and 
collection of data  for statistical purposes a probabil i ty density surface is computed  
which expresses the condit ional  probabili ty that  two arbitrarily chosen sequences 
I i Ij of H a m m i n g  distance dh(i,j)= h form two objects fgi and ~fj at a distance 
dg(i,j) = ~: 

Pg(?lh) = Prob  (do(i,j) = 7[dh(i,j ) = h). (12) 

In the case of free energies we have 7 = Ifj -f~l ,  in case of the structure density surface 
(SDS) [-7, 18] ? is the tree distance between the two structures obtained from the 
two sequences I i and | j .  An example of a typical probabil i ty density surface of RNA 
secondary structures is shown in Fig. 12. These structure density surfaces may 
be used to compute  various quantities. Autocorrelat ion functions, for example, are 
obtained by a straightforward calculation [6, 7]. 

Fig. 13. Schema of the folding of an RNA hybrid 
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6.4 R N A  Hybridisation 

The  folding a lgor i thm can be general ized in a s t ra igh t forward  way to co m p u te  the 
s t ructure  result ing f rom the hybr id i sa t ion  of several R N A  strands. This is done  by 
conca tena t ing  the, say, N s t rands in all possible permuta t ions .  Any such pe rmuta -  
t ion is folded a lmost  as usual. The  only  difference concerns  " loops"  or  a "s tacked 
pa i r"  which conta in  end- to -end  junc t ions  of  individual  s trands,  and which are 
t rea ted  as app rop r i a t e  external  elements. The  s t ruc ture  with the least free energy 
a m o n g  all op t imal  s tuctures  co r r e spond ing  to the N! sequence pe rmuta t ions  is the 
op t imal  hybr id  structure.  In Fig. 13 we show an example  for N = 2. 

6.5 Other Applications 

We me n t ion  invest igat ions  based on  o the r  cri teria for R N A  folding as, for example,  
m a x i m u m  match ing  of bases or  var ious  kinetic folding a lgor i thms which can be 
readily i nco rpo ra t ed  into the package.  R N A  mel t ing kinetics has been studied as 
well by  the statistical techniques  men t ioned  here  1-19]. 

In con t inua t ion  of  previous  work  [20, 21] we s tar ted  s imulat ions  exper iments  
in molecu la r  evo lu t ion  which aim at a bet ter  unde r s t and ing  of  evo lu t iona ry  
op t imiza t ion  processes on  a molecu la r  scale. Studies of this k ind  are becoming  
re levant  for  the design of  efficient exper iments  in appl ied molecu la r  evolu t ion  

[35, 36]. 
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Appendix A: Edit Distances and Edit Costs 

Let x, y, z be rooted ordered plane trees with labelled and weighted nodes. The labels are taken from 
some alphabet s~¢, the weights are non-negative real numbers. Denote the set of all such trees by ~--e. 
(For the relation of trees and secondary structures see Fig. 5 and Appendix B.) 

We define elementary edit costs c5 for inserting or deleting a vertex with label a s d  and O'ba - q -  O'ba 
for replacing a vertex with label a by a vertex with label b. We require 

6, >0  and cr~,=0 V a E d  
cr.b > 0 V a e b  (A.1) 

ffab ~ ffac ~- acb V a, b, cs~  ¢ 

The last line implies, that if substitution of a and b is allowed, than its cost is at most the cost for first 
deleting a and then inserting b. 

Denote a vertex with label as sJ and weight v i> 0 by [a, v]. We then define the weighted edit costs: 

A([a, v]) = vf a 
(A.2) 

{fa if v>/w 
Z{[a'v]'[b'w])=min(v'w)aab+[v--wl fib if V<~W 
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for insertion/deletion and substitution, respectively. The tree edit distance dj-(x, y) of any two trees 

x, y e J - ~  is defined as the minimum total edit cost needed to transform x into y, such that the partial 

order of the tree remains untouched. For  a description of tree editing in general, and of its implementa- 

tion as a dynamic programming algorithm see, e.g., [26, 271. It is easy to see that dy is a metric on 

Y~¢ for any alphabet d .  

Any tree xeJ~¢ can be transformed into a linear parenthesized representation by appropriately 

traversing the tree. (A leaf is represented by both an open and closed parenthesis.) This representation 

is string-like in the sense that one may interpret each parenthesis as a generalized character j  of a string 

2. Each character is defined by its label, its weight, and its "sign", that is, whether it is an open or a 

closed parenthesis, ~ = [a, v, p] with aeA, v >1 O, and p = '('or')'. It is easy to see that such a generalized 

string can be represented as a tree, provided it contains only matching parentheses and weights and 

labels coincide for pairs of matching parentheses. 

We define the generalized string edit distance ds(2, ~) of two generalized strings 2 and 37 as the 

minimum total edit cost needed to transform 2 into 37, where the edit costs for each step are given by 

A([a,v,p]) = A([a, v]) 

~([a,v,p],[b,w,q])=~E([a,v],[b,w]) if p = q  (A.3) 

if p C q  

for insertion/deletion and substitution, respectively. This is to say that open parentheses may be 

aligned with open parentheses only, and closed parentheses with closed parentheses only. 

Corresponding to the above two distance measures we have two types of alignments: In case of 

the edit distance for generalized strings it is straight forward. For  the tree edit distance we have to 

transform the aligned trees into their linear representation in order to print them. This implies that 

each inserted or deleted node is complemented by gap characters in two positions, corresponding to 

the left and right bracket, respectively, and that matched nodes give rise to two matches in the linear 

representation. (See Fig. 9 for examples). As a consequence, each alignment of two trees x and y can 

be written as a valid alignment of the corresponding generalized string 2 and )7 exhibiting the same 

edit cost. Hence 

d~(2,37) <~ d j (x ,y )  for all x, y e J u .  (A.4) 

In particular, let x be a subtree ofy. Then d,(~, 37) = d~ (x, y). As a consequence there are arbitrarily 

large trees x and y such that the two distance measures coincide. The cost matrix we use is: 

U P H B I M S E R 

0 1 2 2 2 2 2 1 1 co 

1 0 1 co oo oo oo oo co co U 
2 1 0 co co co co co co co P 

2 co co 0 2 2 2 oo ov co H 

2 co co 2 0 1 2 co co 3o B 

2 co co 2 1 0 2 co ~ co I 

2 co co 2 2 2 0 co ov co M 

1 co co co co co co 0 co co S 
1 co co oo co co oo co 0 oc E 

co co co co co co co co co 0 R 

A p p e n d i x  B: R e p r e s e n t a t i o n  o f  S e c o n d a r y  S truc tures  

The simplest way of representing a secondary structure is the "parenthesis format", where matching 

parentheses symbolize base pairs and unpaired bases are shown as dots (Fig. 14). Alternatively, one 

may use two types of node labels, 'P '  for paired and 'U '  for unpaired; a dot is then replaced by ' (U) ' ,  

and each closed bracket is assigned an additional identifier 'P'. In [7] a condensed representation of 
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a) . ( ( ( ( . . ( ( ( . . . ) ) ) . . ( ( . . ) ) ) ) . ) ) .  
(u)(((((u)(u)((((u)(u)(u)p)p)p)(u)(u)(((u)(u)P)P)P)P)(U)p)p) (u) 

b) (u)(((u2)((u3)p3)(u2)((u2)P2)p2)(u)P2)(u) 
c) (((H)(H)M)B) 

((((((H)S)((H)S)M)S)B)S) 
(((((((H)S)((H)S)M)S)B)S)E) 

d) (((((((H3)S3)((H2)S2)M4)S2)B1)S2)E2) 
e) ((H)(H)M) 

a) (uu ) (p (P (P(P(UU)(UU)(P(P(P(UU)(UU)(UU)P)P)P) ( I r t l ) (uu ) (P (P( lKl )  ( u . . .  
b) (UU) (P2(P2(U2U2) (P2(UaU3)P3) (U2U2) (P2(U2U2)P2)P2) (UU)P2) (UU) 
c) (eCXCHH) CnH)X)B) 

(S(B(S(M(S(HH)S) (S(HH)S)X)S)B)S) 
(E(S(B(S(M(S(HH)S) (S(HH)S)M) S)B)S) E) 

d) (g2 ($2 (B:I. ($2(144($3(H3) $3) ((H2) $2) N4)S2) B1)S2) g2) 
e) (MCHH) (H}I)~) 

Fig. 14. Linear representations of secondary structures used by the Vienna RNA package. Above: Tree 
representations of secondary structures, a) Full structure: the first line shows the more convenient 
condensed notation which is used by our programs; the second line shows the rather clumsy expanded 
notation for completeness, b) HIT structure, c) different versions of coarse grained structures: the 
second line is exactly Shapiro's representation, the first line is obtained by neglecting the stems. Since 
each loop is closed by a unique stem, these two lines are equivalent. The third line is an extension 
taking into also the external digits, d) weighted coarse structure, e) branching structure. Below: The 
corresponding tree in the notation used for the output of the string-type alignments. Virtual roots are 
not shown here. The program RNAdistance accepts any of the above tree representations, the 
string-type representations occur on output only 

the secondary structure is proposed, the so-called homeomorphically irreducible tree (HIT) representa- 
tion. Here a stack is represented as a single pair of matching brackets labelled 'P'  and weighted by the 
number of base pairs. Correspondingly, a contiguous strain of unpaired bases is shown as pair of 
matching bracket labelled 'U' and weighted by its length. 

Bruce Shapiro [25] proposed another representation, which, however, does not retain the full 
information of the secondary structure. He represents the different structure elements by single 
matching brackets and labels them as 'H' (hairpins loop), T (interior loop), 'B' (bulge), 'M' (multi-loop), 
and 'S' (stack). We extend his alphabet by an extra letter for external elements 'E'. Again the 
corresponding trees may be weighted by the number of unpaired bases or base pairs constituting them. 
An even more coarse grained representation considers the branching structure only. It is obtained by 
considering the hairpins and multiloops only [37]. All tree representations (except for the condensed 
dot-bracket form) can be encapsulated into a virtual root (labeled 'R'), see also the example session in 
Fig. 6. 

In order to discriminate the alignments produced by tree-editing from the alignment obtained by 
generalized string editing we put the label on both sides in the latter case. 

Appendix C: List of Executables 

RNAfold [-p[0]] [-T temp] [-4] [-noGU] [ e e set] [-C] 
RNAdistance [ D[fhwcFHWC]] [-X[Plmlflc]] I-S] [-B [file]] 
RNApdist [-Xpmfc] [-B [file]] [-T temp] [-4] [-noGU] [-e e_set] 
RNAheat [-Tmin tl] [-Tmax t2] [-h stepsize] [-m ipoints] [-4] [-noGU] [-ee_set] 
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RNAinverse [-F[mp]] [-a ALPHABET] [ R [repeats]] [-Y temp] [-4] [-noGU] [-e e_set] 
RNAeval [-T temp] [-4] [-e e_set] 

187 

Appendix D: Availability of Vienna RNA Package 

Vienna RNA package is public domain software. It can be obtained by anonymous ftp from the sever 
ftp.itc.univie.ac.at, directory/pub/RNA as ViennaRNA-1.03.tar.Z. The package is written in ANSI C 
and is known to compile on SUN SPARC Stations, IBM-RS/6000, HP-720, and Silicon Graphics 
Indigo. For comments and bug reports please send e-mail messages to ivo@itc.univie.ac.at. 

The parallelized verison of the minimum free energy folding is not part of the package. It can be 
obtained upon request from the authors. 
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