
Appl. Phys. B 38,263-268 (1985) Applied " - -  physics 

Physics B .n,.,., Chemistry 

�9 Springer-Verlag 1985 

Analysis of the Dispersion Relation 
of Nonlinear Slab-Guided Waves 

Part II: Symmetrical Configuration 

U. Langbein, F. Lederer, H.-E. Ponath, and U. Trutschel 

Department of Physics, University of Jena, DDR-6900 Jena, 
German Democratic Republic 

Received 14 May 1984/Accepted 18 January 1985 

Abstract. The dispersion relations of TE-polarized nonlinear guided waves (NGWs) in a 
symmetrical slab configuration (linear slab embedded between two identical media with a 
Kerr nonlinearity) are investigated in detail. Among even and odd NGWs the waveguide 
can support also NGWs, revealing an asymmetrical field pattern. The excitation of these 
NGWs requires a minimum guided power flux indicating a bifurcation of the corresponding 
dispersion curves. 

PACS: 42.82, 42.65 B 

Waveguiding layers with nonlinear substrat and/or 
superstrat regions can support a new type of guided 
waves, i.e. nonlinear guided waves (NGWs) [1-4]. In 
part I of this paper [4] the dispersion relations of these 
NGWs, travelling along an asymmetrical slab con- 
figuration, have been investigated. The present paper 
deals with the symmetrical configuration where both 
the substrat and the superstrat region possess identical 
dielectric properties. Such symmetrical configurations 
have already been considered elsewhere [1, 2]. The 
investigations presented here are consequences of our 
analysis of general asymmetrical configurations in [4]. 
In this way we intend to provide some additional 
aspects to the current discussion concerning NGW 
properties. 
The first section contains a summary of some funda- 
mental properties of NGWs in a symmetrical configur- 
ation. In particular, a symmetry-breaking mechanism 
is pointed out leading to a distinction between the 
totally symmetrical and the broken symmetrical case. 
In the next two sections the different NGW types are 
introduced and their dispersion relations are inves- 
tigated extensively. 
Section 4 deals with the power flux supported by a 
NGW. The relation between this power flux and the 
NGW-propagation constants has been numerically 
calculated. 

1. Fundamental Properties 
of NGWs in Symmetrical Configurations 

We consider a nonlinear slab waveguide, according to 
Fig. 1, where the material relations as well as the 
characteristic transverse field pattern of a NGW are 
indicated. Our notation corresponds to that of [4]. 
Symmetrical configuration means 

gl ~-g3'  a l : a  3 : a ,  (1) 

which implies 

O~ 1 = 0~3 = (f12 --  (.02/C2el) 1/2, (2) 

. ,,~ E2(E2 (x) )  ~ e2 

I, ' / / / / / / / / / / / / / / / / / /  
Fig. 1. Symmetrical waveguide configuration and characteristic 
field pattern E(x) of a NGW 
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where/~ is the propagation constant. The symmetry 
condition (1) does not necessarily imply the equival- 
ence of the effective dielectric coefficients 

a 2 eoNL -- gl + ~ E(o), Q = 1, 3, (3) 

and of the related quantities 

eoNI~ = el tanh (elXo~) 

= "[ - ( f l2 - - (D2/C2goNL)I /2  , ~ = 1, 3 ,  (4) 

as well. For  that reason the dispersion relation 

tany2d = 72(el NL + e3rqL) (5) 
])2 - -  ~1NL~3 NL 

is formally the same as in [4]. 
E(o ), appearing in (3) is the NGW-field strength at the 
interfaces x = 0  (~ = 1) and x = d  (~ = 3), respectively. 
E(o) is related to the parameter Xoo determining the 
situation of the evanescent field maxima with respect 
to the corresponding interfaces 

E(~) = +_ (2/a)~/~a,c/co(coshcqxoe)- 1, ~ = 1, 3. (6) 

We recall that Xoe > 0 designates a virtual evanescent 
field maximum and Xoo<0 a real one. A virtual 
maximum is situated within the slab region where the 
nonlinear evanescent field solution does not apply (Xo 1 
in Fig. 1). 
With respect to both interfaces the parameters intro- 
duced by (3), (4), and (6) are not independent of one 
another. Their mutual dependence is expressed by 
[-Ref. 1, Eq. (15)] which simplifies for our symmetrical 
configuration to 

~INL=e3~L ; a/2E~)=a/ZE~3 ) (7a) 

and 

elNL+%NL=gl +e2;  a/2(E~ll+E~3))=%--gl .  (7b) 

Both relations are valid within the ranges 

gl < eoNL <= 52, 0 < a/2E{o ) < g 2 - -  gl  (8)  

only. 
Relation (7a) represents the totally symmetrical case, 
where the symmetrical choice of the material para- 
meters is also reflected by the effective dielectric 
coefficients %NL, see dotted line in Fig. 2, and the field 
pattern as well. If this case applies the waveguide will 
support NGWs with even or odd symmetry of their 
transverse field pattern E(x), see next section. 
According to (7b) NGWs with an asymmetrical field 
pattern (a-NGWs) are also permitted for a symmetrical 
nonlinear waveguide. This remarkable symmetry- 
breaking mechanism of symmetrical nonlinear 
waveguides was first mentioned by Achmedijev [2]. 
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Fig. 2. Mutual dependence of elN L and e3Ni~ according to (7a) 
(dotted line) and (7b) (broken line for e~ NL < % NL, solid line for 

1 NL > 'g3 NL); gl = g3 = 2.25; e 2 = 2.50 

The second diagonal in Fig. 2 illustrates 
relation (7b). 
The solid line applies for elNL>%NL (Eo21 >Eo23), the 
broken line is valid for %NL > elNL (Eo23 > Eo20 �9 At the 
intersection point of both diagonals in Fig. 2 

51NL ~ ~3NL 

__ ~1 "~-g2 a/2E~l)=a/2E~3)= 1 / 2 ( e 2 - - g l )  (9)  
2 ' 

both cases (7a) and 7b) coincide: 

2 .  T h e  T o t a l l y  S y m m e t r i c a l  C a s e  

In this case ~INL = ~3NL holds and the general NGW-  
dispersion relation (5) splits into two parts 

tan (72/2d) = ~1 NL/~ 2, (10) 

cot(72/2d) = -- ~1NIJT2, (1 1) 

where 

72 = (co2/c2~2 - f12)1/2, (12a) 

( / )2/C2glNL < j~2 ~ 0)2/C252 " (12b) 

Equation (10) represents the dispersion relation for 
even NGWs (e-NGW); (11) is the dispersion relation 
for odd NGWs (o-NGW). The corresponding field 
pattern can be easily derived from [Ref. 1, Eq. (7)3 
using (7a), (10) or (11), respectively 

E3(X ) = -t- E(1)[cosh 0q (x - d) 

+ ~1NL/~I sinh cq (x - d)] - 1, (13a) 

COS 
sin {72( d / 2 - x ) }  

Ez(x) = E(11 , (13b) 
cos (72d/2} 
s i n  

El(x)=E(1)[coshohx_cqNiJCq s inh~lx]-  1. (13c) 
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Fig. 3. Dispersion curves for two low-order e-NGWs. Fixed 
parameters: ~ = ~3 = 2.25; ~z = 2.50. Varied parameters: e~ NL: 
2.2501(1); 2.30(2); 2.35(3); 2.40(4). The associated field pattern 
are schematically drawn 
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Fig. 4. Lowest-order dispersion curves for o-NGWs; notation 
and parameters as in Fig. 3 

The upper sign in (13a) and the cos-function in (13b) 
are valid for the e-NGWs; the other ones hold for 
o-NGWs. The symmetry-plane is x=d/2. Due to 
el N,~ = e3 NL, (6a), both NGW-families introduces in [4] 
coincide. There is no longer an invariant evanescent- 
field maximum with respect to one slab interface. 
Every change in the situation of both evanescent field 
maxima takes place simultaneously. 

2.1. Even NGWs 

Figure 3 shows the dispersion curves of two low-order 
e-NGWs. The curves are solutions of (10) and illustrate 
the /~-dependence on the film parameter 
V=co/cd(ez-gl) a/2. The effective dielectric constant 
sl ~L is varied. Curves with common numbers belong to 
the same el~L determining the lower/Mimit, see (12b). 
The transition points, where the evanescent field 
maxima cross the slab interfaces, are indicated by small 
circles. Their situation in the V-scale is given by [Ref. 1, 
Eqs. (18) and (19)] which simplify to 

Vu(T)---- #TZ [(e2-- gl)/(e2-- ~INL)] a/z , # = 0 , 2 , 4  ..... 
(14) 

in the totally symmetrical case. 
The lowest order waves # = 0 terminate at v (r) = 0, i.e. ,# 
they reveal a zero cut-off like in linear waveguide 
optics. The dispersion curve for elNL=82 is given by 
~= co/ce~/2. This horizontal line represents the com- 
mon asymptotic limit (V~ ~ )  for all other dispersion 
curves at the same time. 

2.2. Odd NGWs 

The dispersion curves for o-NGWs are similar to those 
of the e-NGWs. Their transition points are also 
determined by (14) but for # = 1, 3, 5 . . . .  Only the lowest- 

order wave # =  1 plays an extraordinary role. Some 
dispersion curves of this wave are shown in Fig. 4. 
These curves do not turn back to V--+ ~ after having 
passed their transition points but acquire the upper 
fl-limit for finite V-values 

V = ffdd = 2E(e2 - gl)/(e2 - el NL)] ~/2. (15a) 

An o-NGW driven at this limit reveals the same 
dispersion relation 

/~Z : oJZ/cZe2 (15b) 

like a plane wave travelling in the unbounded slab 
material. For  that reason we call it "pseudo-bulk 
wave". Beyond the limit (15b), i.e. for/~z> o~2/cZe2, the 
sine-function in the inner field solution (13b) transfers 
into a sinh-function since 72 becomes imaginary. The 
resulting N G W  is known as "nonlinear surface pola- 
riton" [1, 2] not to be treated in this paper. In this 
respect the pseudo-bulk wave represents an intermedi- 
ate state between a lowest-order o-NGW and a 
nonlinear surface polariton. The corresponding inter- 
mediate field pattern Ez(x) in the slab region is a 
strictly linear one; proceed 72-+0 in (13b). 

3. The Broken Symmetrical Case 

In this case (7b) holds, indicating the existence of an 
asymmetrical field pattern. Since our symmetrical 
geometry leads to field equations that are invariant to 
the coordinate transformation x ~ - ( x - d ) ,  every 
a-NGW is degenerated. A given a-NGW has a coun- 
terpart with a mirror-symmetric field pattern but with 
the same propagation constant ]~. This ]%degeneration 
is also reflected by the invariance of the dispersion 
relation (5) and (7b) with respect to an exchange 
elNL +"> '~3NL" Consequently, we can restrict ourselves 
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Fig. 5. Dispersion curves for a-NGWs belonging to Family A; 
notation and parameters as in Fig. 3 
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1.58 

1.54 

p �9 

+ v 
Fig. 6. Same type of dispersion curves as in Fig. 5 but for NGW 
Family B 

to a-NGWs which belong to the broken half-diagonal 
in Fig. 2, i.e. to e3NL>elNL. The solid half diagonal 
belongs to a-NGWs with the same dispersion relation 
but with mirror-symmetric field pattern. 
Figures 5 and 6 show numerical solutions of the 
dispersion relation (5) of the type fl(V). Only the 
interesting low-order a-NGWs are indicated. Due to 
(4) and (7b) the permitted//-range is given by 

O)2/C2e~+L ) < [3 2 < oo2/c2e2 , (16) 

where 

e(+)- Max e0UL> 1/2(g 1 +e2). (17) N L - -  
0=1,3 

Figure 5 illustrates the dispersion curves for two 
members of Family A. These a-NGWs reveal an 
invariant virtual evanescent field maximum, see [4] for 
details. 
In contrast to the asymmetrical configuration [Ref. 1, 
Fig. 3] the set of curves for a-NGWs with an invariant 
evanescent field maximum above the slab region 
coincides with the corresponding set for a-NGWs with 
an invariant field maximum below the slab region�9 The 
pseudo-bulk limit, determined by [Ref. 1, Eq. (22)] of 
the lowest-order wave is clearly seen�9 
Figure 6 belongs to the lowest-order members of 
Family B which reveal an invariant real evanescent 
field maximum above or below the slab region�9 All 
transition points are determined by [Ref. 1, Eqs. 
(18)-(20)]. 

U. Langbein 

4. The Power Flux Supported by a NGW 

The power flux pNL perpendicular through a stripe of 
unit width (with respect to the y-coordinate) in an 
asymmetrical configuration was derived in [4]. In the 
totally symmetrical case [Ref. 1, Eqs. (24) and (25)] 
modify to 

pNL = eo(~l NL-- ~i)fl 

NL 2 2 �9 deff(1 + ~1NL/~2) "~- 2~1NL(~I -- ~1NL)_7 (18a) 2 
~2(~1 "F- ~1NL) J 

where 

4 
d ~  = d + (19a) 

~1 "~ 0~INL 

and 

Po = 1/4po co" 2/a (20) 

denote an effective slab thickness and a normalization 
constant, respectively. 
The broken symmetrical case provides instead of (18a) 
and (19a) 

p S L  = Po(~l NL --  g l ) f l  

N L  ~INL(0~I - -  0~INL) 
�9 0~INL/~2) -  {- ,- j ,I((Xl.+0~INL ) 

deff(1 + z 2 (18b) 

(ez - SlNL)% NL(e X -- e3 NL) 1 (19b) 
4 J'  

d ~  = d + 2/(e 1 + c~1 NL) + 2/(C~ 1 + e3 NL)- (19b) 

Equations (18)(20), (7b) and the appropriate disper- 
sion relations (5), (10), (11) have been used to illustrate, 
in Figs. 7 and 8, the relation between pNL and our 
crucial parameter a/2E~l) for fixed film parameters V. 
In Fig. 7 V = 4 is assumed where only the lowest-order 

10 
pNL 

Po ,. A~..~-/-f 
I 5 f 

0 0.1 0.'2 5 
0 2 ,,- ~-Em. 

Fig. 7. Mutual dependence between the field strength at the 
boundary x =0; a/2E{1) and the normalized power flux pNL/p o 
for a given film parameter V=4, gl, e2 as in Fig. 2; E: e-NWG, 
O: o-NGW, A, B: a-NGW of Family A and B, respectively; the 
subscribed numbers designate the wave number p; small circles, 
spots, squares, and lines indicate transition, bifurcation, family 
transition, and pseudo-bulk limit points, respectively 



Dispersion Relation of Nonlinear Slab-Guided Waves. II 267 

A o / - -  \ ,  

/ )  
0 ~ ,  E z _  

0.1 0.25 
o 2 

- - , . -  2-EI1~ 

Fig. 8. Same type of curves as in Fig. 7 but for V= 8 

1,54 . o 

1.so ~ ~b pNL 
Po 

Fig. 9. Effect of the normalized power flux PNL/P o on the 
propagation constant/~ for a fixed film parameter V = 4; notat ion 
and parameters as in Fig. 8 
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Fig. 10. Same type of curve as in Fig. 9 but  for V = 8  

NGWs of every type can be excited, see Figs. 3-6. The 
dark spots indicate bifurcation points where the 
a-NGW-curves (broken lines) branch off from the 
e-NGW and o-NGW curves, respectively. The com- 
mon a/2E~l)-coordinate of these points is determined 
by (9). All curves terminate at their pseudo-bulk limit. 
The degeneration of a-NGWs gives rise to a second 
pair of (broken) curves starting also at the bifurcation 
points. Since these curves are mirror-symmetric to the 
indicated ones with respect to the symmetry line (9), 
they have been omitted for the sake of clearness. The 
small circles at the a-NGWs designate transition 
points. In contrast to the single interface configuration 
used by Kaplan [-5] these points do not play an 
extraordinary role. In particular, they do not provide 
any information concerning the stability of the NGWs 
under consideration, as it was assumed in [6]. 
In Fig. 8 V = 8 is assumed permitting the excitation of 
some additional NGWs. All features, discussed for 
Fig. 7, appear again. The small square designates a 
"family transition point", where the a-NGW (#= 1) 
changes from Family A to Family B. The a/2E~l) 
coordinate of this point is also given by (9). Addition- 
ally, the e-NGW-curve (ff = 2) appears. 
Up to now elNL (or a/2E~l)) played the role of the 
crucial parameter in describing the effct of the non- 
linearity in our waveguide configuration. This para- 
meter was useful in the interpretation of the new 
formulas. It permitted also a comparison with the 
familiar linear waveguide problem. On the other hand, 
there is no reason to prefer a parameter which is 
associated with a single interface in a slab configur- 
ation. Eventually, the question arises which 
parameter(s) can be controlled in a definite experiment. 
In this connection, the power flux supported by a 
NGW appears to be at least a more physical quantity 
than ~INL- The replacement of elNL by pNL to be the 
primary nonlinear parameter was performed numeri- 
cally in Figs. 9 and 10, where the effect of pNL on the 
propagation constant is illustrated. Generally, the 
same features like in Figs. 7 and 8 can be stated. Note 
that the broken curves are valid for both degenerated 
a-NGWs, the field pattern of them are mutually 
mirror-symmetric. The limiting case of the linear 
waveguide is covered by pNL = 0. The agreement with 
Achmedijev's results is obvious. In [-2] the inverse 
relation pNL(fl) was calculated. The corresponding 
analytical relation can be derived from (18a) and (18b) 
by substituting atNL with the help of the appropriate 
dispersion relations. 

5. Conclusions 

The symmetrical nonlinear slab configuration permits 
TE-polarized even, odd and asymmetrical NGW so- 
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lutions being subject to different dispersion relations. 
The a-NGWs are degenerated. They form pairs the 
members of which reveal a common propagation 
constant but mirror-symmetric field pattern. The 
a-NGWs can be excited above a certain PNL-threshold 
only. This threshold indicates bifurcation points in the 
//(pNL) diagram where the a -NGW curves branch off 
from the e- or o -NGW curves, respectively. The e/o- 
N G W  curves start at pNL=0 implying vanishing 
nonlinearity. The 3(V)-dispersion curves reveal a zero 
cut-offfor the lowest-order e-NGWs. The lowest-order 
members of the remaining N G W  types terminate at 

their pseudo-bulk limit, which indicates the transition 
from N G W  solutions to nonlinear surface polaritons. 
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