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Summary 

An exact result for the electrostatic potential of a phospholipid membrane modeled by a fixed 
charge sheet and diffuse double layer of the Gouy-Chapman theory is given. The dependence of the 
potential with distance is expressed in simple form for positive divalent ions (alkaline earth cations) 
added to monovalent cations and anions in the bathing solution. The result has applications in 
the study of the effect of divalent cations on nerve or muscle excitation and on the formation of 
blood clots. 

Introduction 

Electrostatic interactions near biological membrane surfaces are important for 
many biological phenomena. Two biological examples where electrostatic inter- 
actions are important are nerve excitation and blood clotting reactions. These 
processes are influenced by the surface charge and the concentration of mobile 
ions in the solutions bathing the nerve or phospholipid surfaces. 

In the studies of nerve excitation the increase in the divalent ion concentration 
in the bathing solution of a nerve or a muscle was shown to produce a shift in 
the conductance voltage curves along the positive voltage axis (Frankenhauser 
and Hodgkin, 1957). Attempts to explain this shift have been made (Takata 
et al., 1966; McLaughlin et al., 1970; Gilbert and Ehrenstein, 1970; McLaughlin 
et al., 1971; and Tr~iuble and Eibl, 1974) but agreement on the explanation has 
not yet been reached. The relative importance of the binding of divalent ions to the 
membrane surface or the screening by the divalent ions in the diffuse double 
layer in causing the voltage shift has not been decided but electrostatic inter- 
actions are assumed to be crucial. 

Several early blood clotting studies (Bangham, 1961; Papahajopoulos and 
Hanahan, 1964 and Barton et al., 1970) suggested that varying the surface charge 
of the phospholipids altered the clotting times and that C a  + § was essential 
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in certain reactions. More recently the conversion of prothrombin to thrombin 
has been studied in detail (Gitel et al, 1973) and the role of the negatively 
charged phospholipid vesicles elucidated. The presence of phospholipid vesicles 
greatly accelerates the conversion by binding prothrombin, activated factor X and 
divalent ions (usually Ca + +) to the phospholipid surface. The concentration of 
Ca + + is of interest because the binding of prothrombin to the phospholipid 
varies with Ca + + concentration. 

In both the above phenomena the ionic strength does not correctly predict the 
relative screening effect of the electrostatic force by monovalent and divalent 
counterions near a surface with a large, fixed surface charge. Hence, one must 
find the ionic concentration by using the nonlinear Poisson-Boltzmann equation 
or by generalizing the Gouy-Chapman (Gouy, 1910; Chapman, 1913) theory of 
the diffuse double layer for a 1 - 1 electrolyte. 

The Gouy-Chapman model has been solved exactly for a 1 - 1 electrolyte facing a 
plane sheet of fixed surface charge. If the biological membrane surfaces have a small 
curvature, the membrane may be assumed planar. Corrections to the potential in 
the diffuse double layer for a sphere of small curvature have been given (Abraham- 
Shrauner, 1973 a, 1973 b). In addition an exact result for the potential of two 
parallel, plane fixed charge sheets separated by electrolyte with divalent and 
monovalent cations has been given (Ninham and Parsegian, 1971). The result 
involves Jacobian elliptic functions which are complicated to use. 

Since we have not found any derivations of the potential and the counterion 
concentrations of the Gouy-Chapman model with divalent and monovalent cati- 
ons, we present that result here. In addition some numerical results for the potential 
and Ca + + concentration near a phospholipid vesicle such as is involved in the 
conversion of prothrombin to .thrombin are given. 

The dimensionless potential ~ in electrolyte facing a fixed sheet of charge for a 
2 -  1 - 1 electrolyte is 

c I ) = l n { ( l + 3 K ) t a n h 2 f ~ ( X + F ) l - K } - I n ( l + 2 K ) 2  (1) 

where K is the density ratio of Z =  +2 to Z =  + 1 ions, F is an integration 
constant and X is the dimensionless distance which together with ~ is defined 
below. 

This result for the potential in eq. (1) is evident once it is derived. Nevertheless, 
the result is extremely useful because it is analytically simple, it is quite similar 
in form to the original Gouy-Chapman result for symmetrical electrolytes, it 
applies to a realistic case which includes calcium ions and no tedious integrations 
of differential equations are required. Previous approaches have included approxi- 

d e  
mations on the equation for ~-x  and numerical integration of the differential 

equation. The analytic result is preferrable for the potential if the function 
appears in further calculations. The analytic result for the charge sheet potential 
is a good first approximation near curved surfaces of radius large compared to a 
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Debye length and appears in the next order corrections. The analytic result is 
also preferable when the free energy is calculated since the potential appears in a 
complicated form in the free energy expression. The electrostatic free energy is 
useful in the analysis of calcium binding to protein molecules and phospholipids, 
for example. 

Derivation of the Potential 

We start from the nonlinear Poisson-Boltzmann equation. Our system consists 
of a fixed charge sheet at x =0  to simulate the net negative charge of the phos- 
pholipid membrane. To the right, x>0 ,  is an electrolyte solution containing 
monovalent cations and anions and divalent cations which are alkaline earth 
cations. To the left of the charge sheet, x < 0, is a uniform dielectric to simulate 
the hydrocarbons of the membrane interior (see Fig. 1). 

DIELECTRIC 

j FIXED SURFACE CHARGE 

ELECTROLYTE 

X=O 

X 

Fig. 1. Model system for phospholipid membrane facing electrolyte 

We start from the Poisson-Boltzmann equation in dimensionless variables 

d 2 ~ N 
= _ 1 ~ Z j  r/j e- z~ ~ (2) 

dX2 j=l ' 

where Zj is the charge number, the dimensionless potential ~, the dimensionless 
ion density ~/j and the dimensionless distance X are 

4 ~=q4~ tl~=~, x -  x 
k T '  2 o (3) 

k Te 
with the Debye length Z D given by 2g = - -  Here q is the unit positive charge, 

2q 2 n" 
~b is the electrostatic potential, ni is the number density of the j-th species, n is the 
number density of the monovalent cation and e is the permitivity. M.K.S .  
units are used. The boundary conditions are the usual ones that charge neutrality 

N 
holds in the bulk fluid, ~ Zj t/j=0 as X~oo ,  or that the potential and electric 

j = l  
23* 
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field proportional to ~-~- be zero in the bulk electrolyte. The electric field 

d ~  x=0 q a 2  o where vanishes for X < 0 and at the charge sheet ~ -  = - 2 V, V = 2 e k T 

is the fixed surface charge density of the sheet. 

d~'  
Next eq. (2) can be integrated by the standard trick of multiplying by ~ d X 

d ~  d ~  
to find the equation for ~-X-. Equating ~ -  to - 2 ~ at the charge sheet gives 

the Graham equation which is written later on for the 2 - 1 - 1  electrolyte. The 
second integration results in X in terms of an integral over ~. 

d ~  

x+o= f  j(e_ZJ. 1)]�89 (4) 

where D is an integration constant. 

To integrate the above integral in eq. (4) we can factor the square root term. 
This had been shown previously for 1 - i electrolyses, 2 - 1  electrolytes (Abraham- 
Shrauner, 1973 b) and we first showed it for 2 - 1 - 1  electrolytes by trial and 
error. However, a general proof exists for all Z~ for this 9eometry that considerably 
simplifies this integration. Hence simpler representation of the potential can 
be found for the Z = + 1, + 2 case or even with one value of Zj = 3 than might 
have been expected. 

One can show that the term in the square root can be written as 
N 

tl j (yZj_  1) = (y-- 1) 2 f ( y )  (5) 
j = l  

where y = e-  * and f (y) is a polynomial (some powers of y may be negative). To 
show eq. (5) holds one first notes that ( y - 1 )  must be a factor of each term in 
the sum over j in eq. (5) from elementary algebra. Next assume eq. (5) is correct 
and differentiate. The resultant terms on the right hand side of the equation 
contain at least one factor of y - 1  or the right hand side vanishes at y =  1 if 

N 

( y - 1 )  2 is a factor. However, at y =  1, ~ = 0 ,  ~ t/j Z j = 0  by charge neutrality or 
j = l  

the left hand side of the differentiated equation must vanish. Hence ( y - 1 )  2 is a 
factor. 

For  a 1 - 1  electrolyte the entire term factors in the square root and the two 
forms of the potential are found. 

= - 4 t anh-  1 (e-X tanh Me f f) 

/ X 1 2M "~ 
= 2  In tanh ~--2-+tanh- e -  e,,).  

(6) 
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-~(0)  The first form is the usual Gouy-Chapman f o r M  _ ! s i n h - 1  ( _ 7 ) =  4 e S f -  2 

potential but the second form which is equivalent is included for comparison 
with the 2 -  1 - 1 electrolyte result. 

We integrate eq. (4) for a 2 - 1 - 1  electrolyte by letting Z 1 = - 1 ,  Z z =  1, Z 3 = 2  , 
tl2 = 1, rl3 = K,  and t/1 = 1 + 2 K where the last follows by charge neutrality. 
The integral was done by bringing the (e - e -  1) z factor outside the square root, 
letting W = 1 - e ~ and expanding the integral in partial fractions. 

Our result for the potential is then eq. (1) above. The potential for the 2 - 1 -  1 
electrolyte given by eq. (1) is very similar to the second form of eq. (6) for the 
1-  1 electrolyte and in the limit of no divalent ions (K--*0) the two are the 
same. The integration constant F may be determined from 

2 
F = Vi  + 3 K  tanh-  1 Z (7) 

where Z is a solution of the cubic equation 

V ' I + 3 K  Z 3 - 2 y Z Z + V I + 3 - K  z +  

o r  

Z=IK+(I+2K)ee{~189 

2 y K  
I + 3 K  = 0  

If we substitute Z into the equation containing 2 y we find Graham's equation 

2 y=  - ( e  - ~ ( ~  1) [ K + ( 1  + 2  K) e~(~ ~. (8) 

We can check the large increase in divalent cation concentration near a highly 
charged surface for model calculations for the calcium ion concentration 
[(Ca + + (X)] 

(Ca + + (X)] =(Ca  + + (~ ) ]  e - 2a~{x) 

near a phospholipid vesicle surface. The following parameters were used, T=  23 ~ C, 
q = 4 . 8 0 x 1 0  -1~ esu, k = 1 . 3 8 x 1 0  -16 ergs/~ oR=79.1 ' Avogadro's number 
A=6.022 x 10 z3 particles/mole, area per charge group A =99 ~z, bulk concen- 
tration of + 1 cations (mostly N a  +) = .128 M. The Debye length was found to be 

8.51 A 2 2 -  8 rc n q2 in cgs units , and 2 y=  -7.70.  For the bulk calcium con- 

centration [Ca + + (oo)] = 2  x 10 .3  M, K ~  1.5625 x 10 .2 and for [Ca + + (oo)] = 
= 4 x  10 -s  M, K=3.125 x 10 .4  . 

The tables for the extremes of bulk calcium concentration given above give the 
potential in thermal potentials (1 thermal potential = 25,5 mV here) and the 
molar strength of calcium [Ca + + (X)] as a function of distance from the fixed 
charge sheet in Debye lengths. The Gouy-Chapman potential ~ (X) for zero 
calcium concentration in a 1 - 1 electrolyte is given for purposes of comparison. 
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The parameters chosen above were used since they apply to experiments in the 
conversion of prothrombin to thrombin in the presence of phospholipid vesicles, 
Ca  + + and activated factor X [Jackson, private communication]. The binding of 
Ca  + + to the phospholipids was not considered. The effect of binding calcium to the 
vesicle surface is to reduce the fixed charge density or increase the area per 
charged molecule. The present relations for the potential and ion concentrations 
can always be applied for the correct surface charge density. Hence the results in 
the tables are correct only if the actual areas per charged molecules are the 
ones assumed. 

T a b l e  1. Potential and Calcium Concentrations as a Function of Distance from Charge Sheet for 
2 - 1  - 1 Electrolyte and Gouy-Chapman Potential. [ (Ca  + + (oe)] = 4  x 10 - 5  M 

X ~(X)  ~o(X)  [Ca++(X~ 

0 - 4 . 0 4  - 5 . 4 8  1.28 x 10 - 1 M  

�9 1 - 3.41 - 4.34 3.65 x 10 -2  

.2 - 2.94 - 3.62 1.43 x 1 0 -  2 

.3 - 2.57 - 3.11 6.80 x 10 -3  

.4 - 2.26 - 2.70 3.70 x 1 0 -  3 

.5 - 2 . 0 1  - 2 . 3 8  2.21 x 10 . 3  

1.0 - 1.15 - 1.34 4.03 x 10 - 4  

1.5 - -6 .88  x 10 "-1 - 7.94 x 10 -1  1.58 x 10 - 4  

2.5 - 2 . 5 1  x 10 -1  - 2 . 8 9  x 10 -1  6 .6 l  x 10 . 5  

4.0 - 5.59 x 10 -2  - 6 . 4 4  x 10 - z  4.47 x 10 -5  

5.0 - -2 .05  x 10 - 2  - -2 .37  x 10 -2  4 . 1 7 x  10 . 5  

T a b l e  2. Potential and Calcium Concentration as a Function of Distance from Charge Sheet for 
2 - 1 - 1 Electrolyte and Gouy-Chapman Potential [Ca + + (oo)] = 2 x 1 0 -  3 M 

X �9 (X) ~ (X) ECa + § (x)] 

0 -- 3.55 -- 5.48 2.29 M 

.1 - 2 . 9 5  - 4 . 3 4  7.25 • 10 -1  

.2 - 2 . 5 3  - 3 . 6 2  3.17 x 10 -1  

.3 - 2 . 2 1  - 3 . 1 1  1.66 • 10 - I  

.4 -- 1.94 - -2 .70  9.75 x 10 - 2  

.5 -- 1.72 - -2 .38  6.25 • 10 -2  

1.0 - -9 .81  x 10 -1  - 1 . 3 4  1 . 4 2 x  10 - 2  

1.5 - 5.78 x 10 - 1 -- 7.94 x 10 -1  6.36 x 10 - a 

2.5 - - 2 . 0 6  x 10 -1  - 2 . 8 9  x 10 -1  3 . 0 2 x  10 . 3  

4.0 - 4 . 4 3  x 10 . 2  - - 6 . 4 4  x 10 . 2  2.19 x 10 - 3  

5.0 - 1.59 x 10 - 2  - 2 . 3 7  x 10 -2  2.06 x 10 -3  

A c k n o w l e d g e m e n t s  

W e  w i s h  to  t h a n k  Dr .  D a v i d  E l l i o t t  f o r  a s s i s t a n c e  in  the  f a c t o r i z a t i o n  p r o o f  a n d  Dr ,  C r a i g  J a c k s o n  

fo r  m a n y  h e l p f u l  d i s c u s s i o n s  a n d  s u g g e s t i o n s � 9  
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