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Abstract. A topological space X whose topology is the order topology of some linear ordering on X, is 
called an mterval space. A space in which every closed subspace is homeomorphic to a clopen subspace, 
is called a CO space and a space is scattered if every non-empty subspace has an isolated point. We 
regard linear orderings as topological spaces, by equipping them with their order topology. If L and K 
are linear orderings, then L*, L + K, L K denote respectively the reverse ordering of L, the ordered 
sum of L and K and the lexicographic order on L x K (so o .2 = w + w and 2 w = w). Ordinals 
are considered as linear orderings, and cardinals are initial ordinals. For cardinals K, 13 0, let 
L(K, I.) = K + 1 + 1*. Theorem: Let X be a compact interval scattered space. Then X tk a CO space tf and 
only if X is homeomorphic to a space of the form a + 1 + Z, ~ n L(K,, I,), where a is any ordinal, n E w, for 
every i -c n, K,. 1, are regular cardinals and K, k 1,. and ifn > 0, then a 3 max({K,: i in}) o. By Part I 
of this work, the hypothesis “scattered” is unnecessary. 

Mathematics Subject Classifications (1991). Primary 06B30, 54E45, 54E12. Secondary 06B05. 
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1. Introduction 

DEFINITION 1.1. Let X be a topological space. X is a CO space, if every closed 
subspace of X is homeomorphic to a clopen subspace of X. 

* Supported by the Universitt Claude-Bernard (Lyon-l), the Ben Gurion University of the Negev, and 
the C.N.R.S.: UPR 9016. 
t Supported by the City of Lyon. 
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A non-empty subset A of a topological space X is perfect, if for every open subset 
U of X, ) U n A I# 1. A space X is scattered, if it does not have a non-empty perfect 
subset. 

In this work, we characterize all compact scattered CO interval spaces, and show 
that they are very close to being ordinals. 

Let (L, < ) be a linear ordering. For a, b E L u { - co, + co}, let (a, b) denote 
{c~L:a~c~b}.Theset{(a,b):a,b~Lu(-c~,+o~}}isabasisforatopology. 
This topology is called the order topology, or the interval topology of (L, < ), and 
is denoted by 72 . A topological space (X, z) is called an interval space, if there is 
a linear ordering < on X such that T = 72. 

We regard linear orderings as topological spaces by equipping them with their 
interval topology. 

If < is a linear ordering on a set L, then < * denotes the reverse ordering of <. 
That is, for every a, b E L, a <* b if b < a. Let M, = (Li, ci) (i = 0, 1) be linear 
orderings. Then (M,,)* denotes (L,,, (co)*); M, + M, denotes (u&C2 {i} x L,, <), 
where(i,a)<(j,b)ifi<j,ori=janda <ib;andM,.M,denotes(L,xL,, <), 
where(a,b)<(c,d),ifb <,d,orb =,danda <,b.Clearly(M,)*,M,+M,and 
M,, . M, are linear orderings. 

Ordinals are considered to be linear ordered sets, and cardinals are considered to 
be initial ordinals. An infinite cardinal K is regular, if every unbounded subset of K 
has cardinality K. 

The goal of this work is to prove the following theorem: 

THEOREM 1.2. Let X be a scattered compact interval space. Then the following are 
equivalent. 

(i) X is a CO-space. 
(ii) X is homeomorphic to a + I + 2, <n (K, + 1 + ,I F ), where M. is an ordinal, n < o, 

and for every i < n, K, and I, are regular cardinals such that ~~ > 11, > w, and lfn > 0, 
then tl 2 max{lc, : i < n} * w. 

The class Yco of Hausdorff compact scattered CO spaces seems to be interesting. 
There is a space X E Yco which is not of the form described in Theorem 1.2. Let 
Y be the one point compactification of a discrete space of cardinality K, , and X be 
the disjoint union of the space Y and o* + 1, where both Y and a2 + 1 are clopen 
in X. XE Y,,, but does not have the form described in Theorem 1.2. We do not 
know however, whether X is a sporadic example, or whether it leads to a new class 
of compact scattered CO spaces. 

Accordingly we have the following conjecture. 

QUESTION 1.3. Describe the scattered compact Hausdorfl CO spaces. 

Before turning to the proof of Theorem 1.2, we need some notations, preliminaries 
and results that we can find in Bekkali, Bonnet and Rubin ([ 19921, Fart I). The first 
definition is concerned with general topological spaces. 
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DEFINITION 1.4. (a) Let X, Y and Z be topological spaces and y E Y. ry will 
denote the topology of Y. If B c Y, then r,’ will denote the topology on B inherited 
from ry. Also, for any B c Y, we denote by cl,(B) (resp. int,(B)) the closure of B 
(resp. the interior of B) in Y. If Y is understood from the context, we omit the 
underscript y. 

(b) We define - on the class of topological spaces as follows: Y N Z if and only 
if there is a homeomorphism from Y onto Z. Moreoverf: Y N Z means that fis an 
homeomorphism from Y onto Z. 

A t-embedding from Y into Z is a homeomorphism from Y onto rng(f) E Z; it 
will be denoted by Y 6’Z. Note that Y <‘Z means Y G’Z and Z 6’ Y. 

(c) Y x Z denotes the topological product of Y and Z. Y LI Z denotes the 
topological sum of Y and Z. That is, Y LI Z = Y’ u Z’ where Y’ - Y, Z’ N Z, 
Y’n Z’ = 8, and Y’, Z’ are open in Y u Z. The choice of Y’ and Z’ is done in some 
canonical way, e.g., Y’ = (0) x Y and Z’ = {I} x Z. 

(d) Let X, Y be Hausdorff spaces. We put: 

Op(Y) = (0 G Y: 0 is open in Y>, 

Cl(Y)={Fc Y:I;isclosed in Y}, 

Clop( Y) = (U c Y: U is clopen in Y}, 

OP,(Y) = (0 E oP(y): Y E o>, 

Cl,(y)={FECl(Y):yEI;}, 

Clopen,(y) = {U E Clap(Y): y E U}, 

Clcopies,(X) = {A E Cl(Y) : A - X}, 

Clopcopies.(X) = {A E Clop( Y) : A - X}. 

(e) Let Y be a Hausdorff space. 
def 

Iso( Y) = (I, E Y: y is isolated in Y>. 

We define D,(Y), for CI ordinal, by the following rules: 

D(Y) = Y - Iso( Y), 

D,(Y) = Y, 

4 + , ( Y> = D(D, ( YN, and 

D,(Y) = n D,(Y), for CI limit. 
“<LX 

rk(Y)d~fsup{~ID,+l(Y) #D,(Y)} is called the rank of Y. 

Thus Y is scattered if and only if there is an CI such that D,(Y) = 8. 

Also, for a scattered space Y, if u E Y then we put rk,(u) zf max{c( : y E D,(Y)}. 
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(f) If a is an ordinal, it is regarded as a topological space, by equipping it with 
its interval topology. We recall that if a is an ordinal, then cf(a) denotes its cojinal 
type: if a = 0, then cf(a) = 0; if a is a successor (i.e., a = p + l), then cf(a) = 1; and 
if a is limit, then cf(a) is the first ordinal y such that there is a strictly increasing 
sequence (a0 >p < y satisfying sup( (a, : p < y}) = a. 

With these definitions, clearly we have: 

PROPOSITION 1.5. Let Y be a Hausdorfspace, W any subset of Y, and V an open 
subset of Y. 

(a) Iso( W n V) = Iso( W) n I/. 
(b) D(WnV) =D(W)nV. 
(c) D,(WnV) =D,(W)nV. 
(d) rk( W n V) < rk( W). 
(e) If X C 2 C Y, then D,(X) C D,(Z). 
(f) Let p(Y) be the jrst ordinal v such that D,(Y) = D,, ,(Y). Then rk(Y) d 

p(Y) d rk( Y) + 1. If p( Y) is a successor ordinal, then p(Y) = rk( Y) + 1; and if p( Y) 
is 0 or limit, then p(Y) = rk( Y). 

Moreover, if Y is a non-empty compact space, then p(Y) is a successor ordinal, and 
thus p(Y) = rk(Y) + 1. 

Finally, Y is a scattered space if and only if DrkCrj + ,(Y) = 8. 
In particular, if Y is a non-empty compact scattered space, then DrkCY,(Y) is a 

non-empty jinite space. 0 

The next definition introduces the notations and notions concerning interval 
topologies. 

DEFINITION 1.6. (a) Let (L, <) be a linear ordering. For a, b E L u 
{--co,+co}, let (a,b)={cEL:acc<b}, [a,b]={cEL:a<cQb}, [a,b), etc. 
are defined in a similar way. 

We recall that r; denotes the topology on L whose basis is {(a, b) : a, b E L u 
{-co, +a}}. TL’ is called the interval topology of <. Y is an interval space if and 
only if there is a linear ordering < on Y such that ry = z ; . 

For any B c Y, ri denotes the topology on B, inherited from r y = r :. r> 
denotes the interval topology induced on B by the restriction < 1 B of < on B. 

(b) Let K, L be two linear orderings. Any strictly increasing or strictly decreasing 
mapping f from K into L is called an o-embedding. 

A to-embedding from K into L is an o-embedding which is a t-embedding with 
respect to ~2 and 52. These notions will be denoted respectively by 6” and <‘O. 

(c) Let (L, <) be a linear ordering, and A, B be two subsets of Y. We put A < B 
whenever every member of A is less than every member of B. A < a, A < B, 
etc . . . are defined in a similar manner. 

We summarize some well-known and easy facts in a proposition. 
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PROPOSITION 1.7. Let Y be an interval space, where the topology on Y is induced 
by a linear ordering < ,,. 

(a) Let B c Y. Then 72 E zgY. Moreover, the following are equivalent. 
(i) ~2 = zi. 
(ii) For every non-empty A E B, if sup,(A) exists, then so does sup,(A) and 

sup,(A) = sup,(A), and ifinfs(A) exists, then so does inf,(A) andinf,(A) =infs(A). 
In particular, if B is closed, then ~2 = zi. 
(b) A subset A of Y is compact in the relative topology if and only if for every 

B c A, sup,(B) and inf,(B) exist and belong to A. 
Hence if A is compact in the relative topology, then 72 = z,‘. 
(c) Let (Y, z y’ ) and (2, ~2 ) be two interval spaces, and f be an increasing 

function from (Y, < > into (Z, < >. Then f is continuous tf and only tff preserves 
suprema and injima, i.e., for every non-empty subset A of Y, tf sup,(A) exists, then 
sup,( f [A]) = f (sup,(A)), and if inf,(A) exists, then infi( f [A]) = f (inf,(A)). 

Proof See [Part I] (Proposition 2.6). 0 

Our next definition introduces notions and notations concerning ordinals. 

DEFINITION 1.8. Let a be an ordinal. 
(a) a can be uniquely expressed in the form c1 = 1 + n where L = 0, or limit 

ordinal, and 0 d n < o. 
Moreover tl is even (resp. odd) whenever n is even (resp. odd). 
Finally, we denote by Succ(cr) the set of all B < a of the form 5 + 1. 
(6) CI is an indecomposable ordinal whenever a > 0 and for all /3, y < a, /3 + y < a. 
(c) A space Y is an ordinal space whenever there is a well-ordering < on Y such 

that z,=z;. 

We need some several well known facts about ordinals. We summarize these facts 
in the following lemma. 

LEMMA 1.9. (a) A non-zero ordinal a is compact I$ and only if a is a successor 
ordinal. 

(b) (1) Every non-zero ordinal can be uniquely expressed in normal form, i.e., 

a = 1 0’~ .p,, 
l<ll 

where O<n <o,O<p, <wfor every i<n, anda,>&, >...>cr,-,. 
(2) If a is as in (bl), then tl <ozo.(pO+ 1) <0’0+‘. 
(3) Zfaisasin(bl),and~=X:,,~w~~ * q, also in such a normalform (except with 

no insistence that each q1 # 0), then we have p < a if and only if: 

Qj<i((B,=u,andq,=p,) 
There is an i such that: and 

(PI<~,)or(a,=P,andq,<p,). 
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(4) Zf a is as in (b l), we have D,(a) = {fi < a : if /I = C, i [ 13~1 . ql is in normal 
form, then 6/-, > y>. 

(5) Zfcc > 2 and b < a, then /I + 1 = [0, b + 1) s a, and /? + 1 is a closed and open 
subset of the interval space a. 

(6) Zf a is a limit ordinal and 1 < n < co, then CI + n is homeomorphic to c( + 1. 
(7) If a, fl are limit ordinals, then ct + p + 1 and /? + 0: + 1 are homeomorphic. 
(8) Let a be an ordinal in normal form as in (b 1). Then rk(a) = u,,. 
Moreover, if a > o and u is a successor ordinal, then c1 w 0’0 . p0 + 1, and 

Da&a) = {o’xo .(j+l):j-cpo}. 
Hence every injinite compact ordinal a is homeomorphic to 06. p + 1 for some 

ordinal p and some p < co. If a N co b*p+l, thenwa.p+l<a<wP+‘. 
(c) Let a,, . . . , cI, - , be compact ordinals. Then X, < n a, N u, < n a, and if uiC n a, 

is chosen to be u, < n {i} x a,, then f ((i, y )) = XI C I a, + y is a homeomorphism from 

LJ 14n% onto Gin%. 

In particular, tf u is compact, then c1 ’ n w tl x n. 
(d) Let CI be an injinite ordinal. The following are equivalent: 
(1) a is indecomposable. 
(2) There is fl > 0 such that a = ~8. 
(3) Foreveryclopen VSU+~,V-a+1 ifandonlyifaEI/. 
(4) For every indecomposable y < a, and n < o; y . n < a. 
(e) Zfa =co’, then rk(or + 1) = 8. 
Hence if a, /I are two dtxerent indecomposable ordinals, then rk(a + 1) # rk(/? + 1). 
(f> If a >a”, then D(a + 1) N a + 1. 
(g) Let a be an ordinal, Y an interval space, andf: (a + 1) N U G Y. Then there is 

a family ( W, + , : a < a) of pairwise disjoint open sets of Y such that for every /? < a, 

f(P+l) E w/3+,. 
Proof See [Part I] (Proposition 2.8). 0 

We recall an easy fact on scattered linear ordering: 

LEMMA 1.10. Assume that K is an infinite regular cardinal and (Y, <) is a 
scattered linear ordering of size K. Then u 6” Y. 

Proof. Suppose that h: d” Y. Let E be the following equivalence relation on 
Y: aEb if and only if I(a, b) u (b, a)\ < K. Since K $” Y and K is regular, for every 
a E Y, (a/E\ < K. Also, since K is regular, for every a, b E Y (a/E <b/E implies 
](a, b) - a/E - b/E\ = IC). So {a/E: a E Y} is K--dense. If Y’ c Y is such that, for 
every a E E, ((a/E) n Y’( = 1, then Y’ is x-dense. 0 

2. Proof of Theorem 1.2 

In the first part of this section, we define two properties of compact spaces F, G and 
H: the property y(F, G) and O(F, G, H). Let X be a scattered compact interval space. 
We shall show that if X has two closed subsets F, G satisfying Y(F, G), then X is not 
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a CO space (Theorem 2.11). Similarly, we shall show that if X has three closed subsets 
F, G and H satisfying O(F, G, H), then again X is not a CO space (Theorem 2.14). 

If Y is a non-empty compact scattered space, then, by Proposition 1.5(i), 
D rk(Yj( Y) is a finite non-empty set, which we denote by End(Y). If End(Y) has only 
one element, we write End(Y) = {end(Y)>. The first definition is concerned with 
general topological spaces: 

DEFINITION 2.1. Let F and G be two compact scattered spaces. 
(a) F has a trivial imlariant if End(F) has only one element. In this case we put 

Inv(F) = (rk(F), end(F)). 
(b) F is indecomposable if it has a trivial invariant and for every V E Op,(end(F)) 

there is a U E Clopcopies,(F) such that U E V. 
(c) F and G are quasi-homeomorphic if Clopcopies,(G) # 8 # Clopcopies,(F). 
(d) F and G are similar if Clcopies,(G) # 8 # Clcopies,(F). 

We summarize some easy facts in a lemma. 

LEMMA 2.2, (a) Zf F is a closed indecomposable space, has a trivial invariant, 
V E Op,(end(F)), and U E Clopcopies,(F) such that U E V, then end(F) E U and U 
is indecomposable. 

(b) Suppose F E Cl(Y), Y is compact, Fhas a trivial invariant, U E Clopen,(end(F)), 
and f: U - V E Y, then V has a trivial invariant (rk(F),f(end(F)). 

(c) Zj” F and G are quasi-homeomorphic, then they are similar. 
Proof. (a) Obviously rk(F) = rk(U) and End(U) has only one element. Now by 

Proposition 1.5(c), 

End(U) = DrkcUJ (u> = Drw#‘) n u. 

Hence end(F) E U. Hence clearly U is indecomposable. 
(6) Again we have D,,(,,(U) = DrkCFj(F) n U by Proposition 1.5(c), and the result 

follows. 
(c) Obvious. 0 

The next definition introduces the relation y. 

DEFINITION 2.3. For any two scattered compact spaces F, G, we put 
Y(F, G) = A:=, Yi(F, G), where: 

‘Y,(F, G) is: F, G have trivial invariants; 

Y’,(F, G) is: rk(F) = rk(G); 

W,(F, G) is: F, G are indecomposable; 

Y,(F, G) is: F, G are similar; 

Y’,(F, G) is: F, G are not quasi-homeomorphic. 
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EXAMPLE 2.4. Let F=(o,+l+w*)*o+l and G=(w,+l+o*+w,+l). 
o + 1. Then F and G have property Y. To see this, let: 

def 
F=o,+l+o*+o,+l+o*-(w,+l+w*)u(o,+l+o*). 

def 
G=o,+l+o*+w,+l-(o,+l+o*)u(o,+l). 

It is easy to check that rk(F) = rk(G) = o, as an easy consequence of Lemma 
1.9(b4) and 1.9(e). With obvious notations, F = F . o + 1 and G = G . o + 1. Hence 
D,,(F) - D,,(G) N o + 1, and thus rk(F) = rk(G) = o1 + 1 and IEnd ( = 
(End(G)) = 1, that show Y,(F, G) and Y’,(F, G) hold. Clearly Y3(F, G) holds. Let 
us prove Y,(F, G), i.e., F and G are similar. If in F, we delete the second w*, we 
get a closed subspace homeomorphic to G and this shows that Clcopies,(G) # 8. If 
in G, we delete the right part after o*, we get a closed subspace homeomorphic to 
wI + 1 + o*, and this shows that Clcopies,(F) # 8. Finally, for Y’,(F, G), note that 
in every W E OpG(end(G)), there is a point x such that x is a limit of 
a w,-sequence, but x is not a limit of a m-sequence, while x has a neighbor- 
hood having no other element of this sort. If U is a clopen subset of F homeomor- 
phic to G, then U have end(F) as a member, and hence must contain a terminal 
segment of F. Thus U contains a clopen subset V of F which is still a terminal 
segment of F. V contains no element of this sort indicated. But the image of V 
contains a terminal segment of G, which does not contain such an element. This 
shows that Clopcopies, (G) = 8. The argument for Clopcopies, (F) = 8 is essentially 
the same. 0 

LEMMA 2.5. Let X be a compact scattered intervaf space, let H,, H, E Cl(X), and 
assume that: 

(H 1) H, has a trivial invariant for i = 0, 1. 
(HZ) For any W, E Clop(H,) such that end(H,) E Wi, i = 0, 1, we have W,, w W,. 
Let U,, V, E Clap(X) f or i = 0,l. Assume that end(H,) E U, and Hi n U, - V, for 

i = 0, 1. Then V, has a trivial invariant (rk(H,), end(V,)), i = 0, 1, and end( V,) # 
end( V,). 

Proof. By Lemma 2.2(b), U, n H, has a trivial invariant (rk(H,), end(H,)). Hence 
V, has a trivial invariant (rk(Hi), end(V,)). 

For a contradiction, suppose end( V,,) = end( V,) = b. Let f, : H, n U, - V,. Then 
f,(end(Hi)) = end(V,). Let W = V,n V,. Then by Lemma 2.2(b), W also has trivial 
invariant (rk(Hi), b). Now f; ‘[WI is a clopen subset of H, and f;‘[W] dAf 
W, - W, zff; ‘[WI, contradicting (H2). 0 

The following general result will be frequently used. 

PROPOSITION 2.6. If X is a compact scattered interval space, then X is Boolean 
(that means that X is compact and O-dimensional). 
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Proof. By Theorem 15.4 of the Handbook on Boolean algebras (Koppelberg 
[ 19891) it suffices to show that the jumps are dense, and this is clear since otherwise 
one would get a dense-in-itself interval. cl 

LEMMA 2.7. Let X be a CO-space, H,, E Clap(X), and H’ E Cl(X). Assume that: 
(HI) H, cH(). 
(H2) Hi has a trivial invariant for i = 0, 1, rk(H,) < rk(H,,), and end(H,J = 

end(H,) “Af a. 
(H3) rf U,, V, E Clap(X) satisfy V, - UinHi for i=O, 1, and a E U,nU,, then 

end( V,) # end( I/, ). 
Then for each integer m > 0 there is a system (( Vy , WY ) : i < m) such that: 
(i) WY E Clop,O(a) and VT E Clap(X) for i < m. 
(ii) ( Vy : i < m> is a pairwise disjoint family. 
(iii) a $ Vr for i < m. 
(iv) VT - H, n WY for i < m. 
(v) If H’ is indecomposable, then VT - H, for i < m. 
Proof. Let a = rk(H,) and notice that (i) and (iv) imply: 

(vi) rk( VT) = c1 and Vy has a trivial invariant, for each i < m. 

We do the construction by recursion on m. First suppose that m = 1. Let WA = H, 
and let VA be a clopen set such that VA - H,. Then (i), (ii), (iv), and (v) are clear. 
To prove (iii), apply (H3) with U, = U, = H,, V, = H,, V, = VA; we get a = 
end( V,) # end( V, ) = end( VA), as desired. 

Suppose that k’s, WY have been constructed for all i < m so that (i)-(v) hold. 
Fori<mlet Wr+‘“zf WY. Now if H, is not indecomposable, set Wi+ ’ “zf Ho - 
u VT. l<lTl Suppose H’ is indecomposable. Choose S E Clopcopies,,(H,) so 
that SGH,-U,,, VT. Thus S E Clop(H,) and S - H, ; and by Lemma 2.2(a), 
aES. Say S=TnH’ with T~clop(H~). Set W~‘ld~fT-ui,,V~. So 

W, m+ ’ n H, = S. Note that in either case WE’ ’ l Clop,,(a). Now by the CO 
property, pick U E Clap(X) and f with 

f: (w;+’ nH,)u u y-u. 
*<WI 

Put Vy’ ’ “Lf f [Vy] for i < m and Vz+ ’ “zf f [WE’ ’ n H,]. We claim that (i)-(v) 
hold for m + 1. In fact, (i), (ii), and (iv) are obvious. For (v), we have 
V, “‘+‘,W*+‘,H,=S - H’. Finally we prove (iii), which amounts to showing 
that a # U.mNote by (i) and Proposition 1.5(c) that rk(H, n W; + ‘) = rk(H, ) for 
all i < m, and hence by (iu) rk(U) = rk(H,). Moreover, End(U) = {f(a)} u 
lf(end( VY 1) : . z < m >. Now if a E U, then by Proposition 1.5(c), a E End(U). 

CLAIM 1. a #f(a). 
Proof. In fact, end( Vz + ‘) = f (a) since f - ’ : V; + ’ - W; + ’ n H’ ; and WE + ’ - 

W 2’ ’ n H,, so, by (H3), f(a) = end( V: + ‘) # end( W; + ‘) = a. q 
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Proof. In fact, Vy + ’ - Vy - H, n WY and W;’ ’ = WE + ’ n HO, so by (H3), 
f( end( V; )) = end( Vy + ‘) # end( W; + ‘) = a. cl 

This finishes the proof of Lemma 2.7. 17 

The next definition and proposition are introduced to show that a CO space does 
not contain closed subsets satisfying Y. 

DEFINITION 2.8. (a) Let y be a limit ordinal, S c_ y, and D be a complete chain. 
Denote by d,, the first element of D, and put 

The order on Z;(S, D) is inherited from the lexicographic ordering on y x D. Note 
that Z;(S, D) is closed under bounded suprema, so adding (y, d,,) to it makes it a 
complete chain denoted by Z,(S, D). 

(b) XT (D) Ef Z, (Succ(y), D), where y and D are as in (a) and Succ(y) is the set 
of all successor ordinals less than y. 

COMMENT. A N B does not imply that Z,(S, A) - Z,(S, B). To see this, let 
A “Gf 1 + w* N B “zf 2 + m*. We claim that Zw2(02, A) + Zw,(o,, B) -coz+ 1. 
First, note that in Zw2(02, A), there is a point which has both or- and w-sequences 
converging to it, but there is no such point in w2 + 1. To show that 
Z,,(o,, B) - o2 + 1, consider 2 + w* as abo *; then Zo,(w,, B) can be considered 
as 

abo*bo*bo* ’ * . abw* . . . co, 

with a’s only at 0 and at limit places; and the first abw* and each bo* can be 
mapped to o + 1 continuously. 

LEMMA 2.9. (a) Zf D is a scattered compact interval space, y is a limit ordinal, and 
S G y, then Z,,(S, D) is a scattered compact interval space. Moreover, the mappings 
rc: Z,,(S, D) +y + 1 and a: y + 1 +Z,(S, D) de$ned respectively by n((a, d)) = c1 
and o(a) = (a, d,,) are each continuous and increasing. 

(b) Let A be a scattered compact interval space, y be a non-zero indecomposable 
ordinal, and set a,, = min(A). Then: 

(1) Zf B is an interval space homeomorphic to A, then EC(B) - CT (A). 
(2) CT (A) has a trivial invariant, and 

InvP,+(AN = (MA) + rk(y + l), 0, a,), (Y, a,>>. 

Moreover, 
l For every limit 6 < y and V E Clop,?(,,( (6, a,)), rk(V) > rk(A). 
l rk(Z&, A)) = rk(A) + rk(y + 1). 
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(3) For each a E Succ(y), {a> x A is clopen in C,Y+ (A) and is homeomorphic to A. 
(4) t E C:(A) - U ({a} x A: a E Succ(y)} if and only if t = ([, ao) for some limit 

ordinal i < y. 
(5) If t = (i, ao) for some limit c < y, then t has a successor in XT (A), namely 

(i + 1, a,>. 
(6) (0, ao) is isolated in CT (A), and Ey’(A) - ((0, a,)} - ET (A). 
(7) ET (A) is indecomposable. 
(c) Let A be a complete scattered chain, (y, : ,u < p) be a sequence of limit ordinals 

with p a limit ordinal too, X be a complete scattered chain, and (F, : p < p > be a 
family of closed subspaces of X. Put F- zf IJ, <p F,, F zf cl,(F-), and y ‘kf 
z ~ < p y,, . Suppose also that: 

(1) Zfp xv <p, then F, <F,,, 
(2) For p < P and u E F,, u # cl,(U (Fy : v -c p, v # p>), 
(3) For P < P, F,, - XyZ (A). 
Then F - CT (A). 
Proof (a) is clear. 
(b). (b 1). Let a, = min(A), b, = min(B) and b, = max(B). Suppose that g: A - B. 

Define f: XT (A) + Cc (B) as follows: f (( E, a,)) = (E, b,) for E limit, and f ((z, a)) = 
(E, g(a)) for E non-limit. Clearly f is one-to-one and onto. To show that f is 
continuous, suppose that U is open in CT (B) and (E, a) E f -'[U]. 

Case I: E is successor or 0 (i.e., non-limit). 
Now (E - 1, b,) < (6, g(a)) < (E + 1, b,). So without loss of generality U has the 
form (E} x U’, with U’ open in B. Say V is open in A such that g[V] G U’. Then 
f [ {s} x V] G U, as desired. 

Case 2: E is limit. 
Thus (E, a,,) E f -‘[U]. So without loss of generality U has the form ((6, a), 
(E+ 1, a,)). Then (E, a,) E ((6 + 1, ao), (E + 1, aoN andfK(6 + 1, a,), @+I, aoNl~ U, 
as desired. 

(b3), (64) and (b5) are obvious. 
(b2). Let us show the first part. It is easily proved by induction that 

D,( CT (A)) = ET D,(A) for a < rk(A), and D,(YZ:,+ (A)) = D, +a(~ + 1) x {do} if 
a = rk(A) + j?. The desired result follows. The proof for Z,(y, A) is similar. 

Now, let 6 and V as in the second assertion of (b2). Let 6 = Xi, ,, 061 .p, be its 
normal form. Let 6 - = X, < n 0’1 . p, + co’, . (p, - 1) and y E (6 -, 6) be such that 
(6, a,) E W “2’ ((y, max(A)), (6 + 1, a,)) E I’. Note that (y, max(A)) has an im- 
mediate successor, namely (y + 1, a,); and (6 + 1, ao) has an immediate predeces- 
sor, namely (6, ao). Hence W E Clop,:(,, ((6, a,)). Let f: IZts,(A) + W defined by 
f((s,ao))=(y+l+.s,ao)fors<~ 6, limit, and f ((E, a)) = (7 + 1 + E, a) other- 
wise. It is easy to check that f is an order-isomorphism from EWfdn(A) onto W, and 
thus f: X&,,(A) - W. Hence, rk( W) = rk(A) + rk(o’n + 1) = rk(A) + 6, > rk(A). 
Clearly rk( V) > rk( W) > rk(A), that finishes the proof of this part. 

(b6) Obviously (0, a,) is isolated in Z;(A). The second assertion of (b6) is an 
instance of the following general fact: 



188 MOHAMED BEKKALI ET AL. 

CLAIM. Zf X is a compact interval space with infinitely many isolated points, and ij 
x is any isolated point, then X N X - {xl. 

Proof. There is either an increasing o-sequence of isolated points or a decreasing 
one; say without loss of generality an increasing one. So without loss of generality 
x <x0 < x, < * . . < x, < . . . or x,, < xi <. . . < x, <. * . < x all isolated. Let c = 
suP,<wxI. Note that c #x. We define f: X+X - {x} as follows: f(x) = x,,, 

t-(x,) = xz+ 1, f(y) = y otherwise. Clearly f maps X one-one onto X - {x}, so it 
suffices to show that f is continuous. So suppose U is open in X - {x} (hence also 
in X), any y E f - ‘[U]. We want to find an open set V in X such that 
y E V z f -‘[VI. First suppose that x < x0 < x, < + . . < x, <. . . . 

Case 1: y <x. 
Then y E (-co, x) A U Cf -‘[U]. 

Case2: x<y<x,,orxi<y<xi+,forsomei. 
Similar to Case 1. 

Case 3: y = x. 
Then y E {x} Ef -‘[U]. 

Case 4: y = x, for some i. 
Similar to Case 3. 

Case 5: y = c. 
Say c = f (c) E (u, v) E U, x < u. Then c E (u, v) G f - l[U] since if x, E (u, v), then 
also x,, , E (u, v). 

Case 6: c < y . 
Then y E (c, co) n U sf -‘[VI. 

The case where x0 < xi < . . . < x, < * * . < x is similar. cl 

(b7) For each /I E Succ(y) let V, = {(/I, a,)} u[@ + 1, a,), (y, a,)]. Then if U is 
an open neighborhood of end(Z,+ (A)), which is (y, aO) by (b2), there is a 
/I E Succ(y) such that V, G U. Clearly each Vs is clopen, so it suffices to show 
that each one is homeomorphic to E:(A). A homeomorphism is given by 
IX<% a,>) = V, a,>, f((a, d)) = <B + ~1, d) for D. # 0. 

(c) For z d p limit let c, “zf sup,( uy < r J’“) and A, “zf & <T yy. By (~2) c, cf F- 
for z < p and c, is isolated in (c~} u F,, for every r < p. Now note that both 
[A, + 1, A, + ,) are order-isomorphic to y,. For p < p let, by (~3) 

f,:~,,+(A)n([~,+1,/2,+,1 x4-f’,. 
For ~1 limit < p let f,*((A,, a,)) = ccI. Set 

f=lJ{f,:p<pp)u U(f,*:pLplimit). 

Clearly f is one-to-one and onto. To show that it is continuous, let x E f -‘[U] with 
U open in F. 

Case I: x=(cr,a),withil,+l~~a~~+,. 
Then Un F, is open in I;,, and x E f;‘[Un F,]. Hence there is a V open in 
(X+(A))n([A, + 1, ;i,+,] x A) such that x E b’~f;‘[UnF,] Ef-‘[U]. Since 
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(C)?(A)) n ([A, + 1, I,, ,] x A) is clopen in CT(A), V is also open in Cc(A), as 
desired. 

Case 2: x = (i,, aO) with p 6 p limit. 
Thus C~ E U. Without loss of generality U = (d, e) with d the first element of some 
F,, v < p, and e the first element of F, if p < p, or e = 00 if p = p. Then for fi < p 
we have 

f-WI = (Z$+W) n(P, + 1, &I x 4, 
which is open, and for p = p we have: 

f-WI = W,, 4, a), 
which is also open. This finishes the proof of Lemma 2.9. 0 

Now, we are ready to prove: 

LEMMA 2.10. Let y be an indecomposable ordinal, A and B scattered compact 
interval spaces. If Y(A, B) holds, then so does Y!(C: (A), CF (B)). 

Proof: Set a,, = min(A), b, = min(B), A’ = CT(A), B’ = Z,:,‘(B). By Lemma 2.9(b), 
A’ and B’ have the same rank rk(A) + rk(y + 1) and are indecomposable, and both 
have trivial invariants. 

Thus Y,(A’, B’), Y2(A’, B’), and Y3(A’, B’) hold. 
For Y4(A’, B’), choose U E Cl(A) such that U N B. Hence by Lemma 2.9(b l), 

ZT (U) N Z:(B). Clearly XT(U) is a closed subset of CT (A), so this proves that 
Clcopies,,(B’) # 0. Similarly Clcopies,(A’) # 0. 

Next, we show that Y5(A’, B’) holds. Suppose it does not. Pick U E CIop(B’) 
with f: A’- U. It is clear that {I} x A E Clop(A’) and thus f[ (1) x A] E Clop(B’). 
Say f ( 1, end(A)) = (6, b). If 6 is limit, then b = bO. f[ { l} x A] E Clop(B’), and 
thus, by Lemma 2.9(b), rk( f [{I> x A]) > rk(B). But rk(A) = rk(B) and {l} x 
A - A, contradiction. Thus 6 is a successor. Let V = [(6, b,), (6 + 1, b,)), where b, 
is the first element of B. So, V is clopen in B’. By the indecomposability of A pick 
a clopen W&f-‘[VnU]n({l} x A) so that W -A. thus A -f [ W], which is a 
clopen subset of V, and V - B. This proves that Clopcopies,(B) # 0. Similarly, 
Clopcopies,(A) # 0, and this contradicts Y’,(A, B). 0 

THEOREM 2.11. If X is a compact scattered interval CO-space, then there are no 
F, G E Cl(X) such that Y(F, G) holds. 

Proof. Suppose such F, G exist. Consider the following statement, for indecom- 
posable y. 

‘(7): There are F,, G, E Cl(X) such that F, - Cq (F) and G, - XT (G). 

Assume that e(y) is true for each indecomposable ordinal y. Then by Lemma 
2.9(62), rk(y + 1) < rk(F,) for all y, and this is impossible since rk(y + 1) can be 
arbitrarily large. 
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Now we reach a contradiction by showing that e(y) holds for every indecompos- 
able y, by induction on y. We recall that o” = 1, and, by Lemma 1.9, that every 
indecomposable ordinal y has the form o”. We set E,+ (F) = F and C,+ (G) = G. The 
case y = w” = 1 is trivial. 

Case 1: y = 8 . w, 8 indecomposable. 
By the induction hypothesis pick Fe, Ge E Cl(X) so that F, - ZZC,f(F) and 
Ge N Z,+(G). Thus by Lemma 2.10, Y(F,, G,) holds. Now we claim that the 
hypotheses of Lemma 2.5 hold for F,, Go. In fact, (Hl) follows from Y’,(F@, Go). 
For (H2), suppose that IV, E Clop(F,), IV, E Clop(GB), end(F,) E IV,, end(G,) E 
W,,and WO- W,. Since GB is indecomposable by Y3(Fo, Go), let V be a subset of 
Ge clopen in G, such that V - G, and V c W, . Then V - U for some clopen subset 
U of W,. Thus Clopcopies,,(G,) # 8. Similarly Clopcopies,,(F,) # 8. This contra- 
dicts Y’,(Fo, G,). So (H2) in Lemma 2.5 holds. 

Now by the CO property FB - F;, for some clopen subset F;, of X. And since 
Y&p, G,) holds, we have G, - G; for some closed subset Gb of Fk . Put 
cp = rk(F,) = rk(G,). Now end&) = end(Gi) since D,(Gh) G D,(F;I) for all a; set 
a, “zf end(F6). Of course the hypotheses of Lemma 2.5 still hold for FO, Gb. This 
now implies that the hypotheses of Lemma 2.7 hold. Thus for each integer m 2 1 
there are clopen subsets Vr, . . . , Vz _ , of X satisfying: 

(1) v:w Ge for i cm; 
(2) If i<j<m, then end(Vy) #end(Vy). 

Put T “zf {end( Vy ) : i c m < m}. Hence T is infinite, and we may assume it con- 
tains a strictly increasing sequence (end(V2): k < w). For each k < o let 
c, = end( VT). Since Fe and Ge are similar, and Vz - Go, it follows that Fe and 
VT are similar. Since ck E (ck _ , , c, + ,) n V; and V? is indecomposable, there is 
aclopensubsetUofV~sothatUE(ck_,,ck+,)nV5kandU-V~.SoFgand 
U are similar; hence there is a closed subset Hk of U such that Hk - FB. Thus 
H,nH,=~fordistinctoddkandI.PutH=U(H,:k<o,kodd},F,=cl,(H), 
and c* = sup,(H). Then F, = Hu {c*}, rkCF,) = rk(F,) + 1, and end(F,,) = c*. 
Now by Lemma 2.9(c) we get Fy - Ej+ (F), if 8 2 o. If 0 = 1, it is clear that 
F,, - 2: (F). G, is constructed similarly. 

Case 2: y = c0’, 8 limit. 
Put 6 = cf(y) = cf(Q, and let (yy : v < S) be a strictly increasing sequence of 
indecomposable ordinals cofinal in y. Hence for v < 6, (yy, yv+ ,) is order-isomor- 
phic to yy + , . Now by the induction hypothesis and the CO property of X, for each 
v < 6 let F, E Clap(X) and G, E Cl(F,) be such that Fv - Zyt +,(F) and 
G” -=yt+, (G). By Lemma 2.10, Y(Fv, G,) holds. Put c, = end(F,) = end(G,). By 
Lemma 2.9@2), p < v implies rk(F,) < rk(F”). Hence C~ # c, by Proposition 1.5(c). 
Put X = {c, : v < S}. Since X is scattered and 6 is regular, it follows by Lemma 1.10 
that without loss of generality C~ < c, for p < v < 6. Fix v E Succ(G). Since F, is 
indecomposable because of Y(F,, G,), we can choose a clopen subset H, of F, such 
that H,s(c “-,, c,+,)nF, and H, -F,. Thus H,nH,=O for oddp<v in 
Succ(G). Next, let H = u {H,. . v E Succ(G) and v odd} and Fy = cl,(H). For each 
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limit ordinal p 6 6 put cf = sup,({c, : v < p>). Hence F, = H u {ct : p < y, p limit}. 
By Lemma 2.9(c) F,, N C;(F). G, is constructed similarly, and this completes the 
proof of Theorem 2.11. 0 

The next definition introduces the relation 0, between three closed subspaces of a 
space X. 

DEFINITION 2.12. Let X be a compact scattered interval space. Suppose 
H, E Cl(X) for i = 0, 1,2. We define O(H,,, H,, Hz) as the conjunction of the 
following: 

O,(H,,, H,, Hz) is: H2 G H, E H,, 
O,(H,, H, , Hz) is: H, has a trivial invariant for i = 0, 1,2, and rk(H,) = 

rk(H,) < rk(H,). 
Moreover, end(H,) = end(H,) = end(H,) “Af a. 

O,(H,,, H,, Hz) is: H, satisfies either O,.,(H,, H,, Hz) or O,.,(H,, H,, Hz) 
where: 

l O3 , (H,, H, , Hz): H, is indecomposable. 
l O,.,(H,, H, , Hz): Every intersection of countably many neighborhoods of 

a in H, is a neighborhood of a in H,. 
O,(H,,, H,, HJ is: For any clopen neighborhoods U and V of a in H,,, the 

spaces U n H, and V n H, are not homeomorphic. 

EXAMPLE 2.13. Let H,,=o:+l+o*, H,={o,*cr:cl<o,)+l+o* and 
H,={o,. CI: a < a,} + 1. It is easy to check that O(H,, H,, H2) holds (H, is 
indecomposable). With the notations of Example 2.4, notice that F N H, + H, and 
G N H, + H,, that is the basic example of the proof of Theorem 2.14. 

THEOREM 2.14. Let X be a compact scattered interval space. If there are some 
closed subsets H,,, H,, H2 of X such that O(H,, H,, Hz) holds, then X is not a 
CO-space. 

Proof. By contradiction: suppose X is a CO-space. Then we may assume that H,, 
is clopen in X. By O,(H,,, H,, H,) and O,(H,, H,, Hz), the hypotheses of Lemma 
2.5 are met for H,, H,. Hence the hypotheses of Lemma 2.7 hold. So we choose 
(( Vy, WY): i < m) as in the conclusion of 2.7. Hence T “zf (end(V7): i -=z m < o} 
is infinite. Without loss of generality, T has a strictly increasing sequence 
(end( VT) : k < w); set c, zf end( VT). For k odd, let fk : H, n WT N VT. Still for 
k odd, (c, _ r, ck + 1) n Vz is an open neighborhood of c,, so since X is a Boolean 
space let Vk be a clopen subset of X such that c, E Vk G (ck- , , ck + ,) n VT. 

Case I: O,., holds. 
Then by indecomposability of VF (by Lemma 2.7(v)), we may assume additionally 
that Vk N H, . Pick gk : H, N V, and put G, =H,,G2=H2. 
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Case 2: 03,* holds. 
Now for each odd k, fi ‘[ V,J is a clopen neighborhood of a in H, , so 
W zf n {f; ‘[ v,J : k odd} is also a neighborhood of a in H,. Let U E Clap,(a) 
such that U n H, s W. Set G, = U n H, and G2 = U n Hz. By Proposition 1.5(c), 
inv(G,) = inv(G,) = (rk(H,), a). Put g, = fk. 

So we have constructed G, and G, in either case so that G, E Clop(H,), 
G2 E Clop(H,), a E G, n G2, and rk(G,) = rk(G,) = rk(H,); and we have certain 
mappings gk. 

Next put: 

W(G,)=U(g,,+,[G,l:k<o}, 

W(G,,G~)=U(~~~+I[G,I:~<~}~U(~~~+~[G~I:~<~}, 

c = sup( {ck : k < o}), 

F= cl,W(G,)), 

G = cl,(W(G,, Gd). 

Thus F = W(G,) u {c} and G = W(G,, GJ u (c}. Note that g,JG,] E Clap(G) for 
each odd k, gk[G1] E Clap(G) for k of the form 41f 1, and gk[G,] E Clap(G) for k 
of the form 4Z+ 3. 

CLAIM. Y(F, G) holds (and hence Theorem 2.11 is contradicted). 
Proof. ‘9, (F, G) and Y’,(F, G) are clear. 
That Y’,(F, G) holds follows from gk[G,] - G, - g,[G,] for odd k, 1, and similarly 

for G,. 
Next, Clcopies,(G) # 8 since u {gdk+, [G,] : k < W} u {c} is a closed subset of 

F. And Gi closed implies that gak + 3[Gl] is closed in g& + ,[G,] and hence 
Clcopies,(F) # 8. Thus Y’,(F, G) holds. 

To check Y,(F, G), suppose that Clopcopies,(G) # 8. Let U E Clap(F) with 
U - G. Now g3[G2] is clopen in G, so there is a V E Clap(F) such that g3[G2] - V. 
Say 

s: g,[G,] - I/. 

Case I: 0, , holds. 
Thus G, = H,, G, = H,. NOW s(g,(a)) E V, so clearly there is a k such that 
g2k + ,(a) = s(g,(a)). Thus g&l+, [Vng,,, , [G,]] is an open neighborhood of a in 
H, , so by the indecomposability of H, there is an S E Clopcopies,, (H, ) such 
that 
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Thus S E Clop(H, ), and 

SNtTZkf IPI -&5’L-‘k!k+,[~lll~ 
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and g F ’ b - ’ h + I [~I13 is a clopen set in Hz. This contradicts O,(H,, H,, Hz). 
Case 2: 0, 2 holds. 

Then a E GZ, so again there is a k such that g,, + ,(a) = s(g3(a)). Then 
def 

s = gii: ,[vngg,,+ ,E,ll 
=g,‘+,P’l~G, 

is clopen in H,, and the same computation as in Case 1 gives a contradiction. 
Thus Clopcopies,(G) = 8, and the proof is complete. 0 

Now, we will apply Theorems 2.11 and 2.14 to prove Theorem 1.2. The following 
definition introduces trivial generalizations and some notation on stationary sets in 
a chain. 

DEFINITION 2.15. Let L be a chain. 
(a) L is relatively complete if every non-empty bounded subset of L has a 

supremum and infimum in L. A non-empty subset D of L is strongly relatively 
complete if: 

(1) D is relatively complete as a subchain of L. 
(2) If A c D is bounded, then sup,(A) and inf,(A) exist and equal respectively 

sup,(A) and inf,(A). 
(b) Let K be regular and W be a well-ordered chain of type K. A subset C of W 

is closed and unbounded (club) if cl,(C) = C and C is cofinal in W. A subset S c W 
is stationary if it meets all clubs in W. A non-stationary set in W is a subset which 
is not stationary. The set of clubs of W will be denoted by club(W). 

(c) N G L is hereditarily non-stationary in L if for any uncountable regular 
cardinal K and any W E L which is a well ordered subchain of type K such that W 
is strongly relatively complete, W n N is non-stationary in W. Hernonst(L) will 
denote the set of hereditarily non-stationary subsets of L. 

(d) For any x E L, zL(x) zf (cf:(x), cf;(x)) is the character of x in L. For x the 
greatest element of L (respectively the smallest element of L) we let cG(x) = 0 
(respectively cfi(x) = 0). 

(e) L is said to be countably two-sided if for every x EL, if rY(x) = (4, r) with 
t, ye 2 o, then 5 = q = o. We denote by Countwosid(L) the set of all x E L such 
that z~(x) = (0,~). 

Before giving a characterization of ordinal spaces in the class of countably 
two-sided interval spaces, we will establish some simplifying assumptions. 

LEMMA 2.16. Let Y be a scattered compact interval space, with End(Y) a singleton 

{end(Y)). 
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(a) Zf ry(end(Y)) = (co, o), then there is a countable basis (U,, : n E o) of clopen 
neighborhood of end( Y) such that Y = U, 2 . . * 1 17, 2 . . . . 

(b) Assume that Y is countably two-sided. Then: 
( 1) There is a countably two-sided chain Y such that: Y is homeomorphic to Y, end(Y) 

is the greatest element of Y and end(Y) = end(Y). 
(2) Assume that rk(Y) = fi and ry(end(Y)) = (6,O). Then 6 = cf(p) if/3 is limit, 

and 6 = w otherwise. 
Proof (a) Obvious. 
(bl) If rr(end(Y)) = (0, l), then the portion of Y to the right of end(Y) can be 

inserted between two consecutive elements coming before end(Y). For r r( end( Y)) = 
(1, o) or (0, 0) one can reverse the order. Finally, for r,(end(Y)) = (0, o), one 
can interlace successive intervals formed by isolated points converging upwards to 
end(Y) with those formed by isolated poinIs converging downwards to end(Y). 

For (b2), we distinguish different cases: 
Case 1: rk( Y) = /I limit. 

Let (a, : v < S) be a strictly increasing sequence cofinal in Y - End(Y), with a, the 
first element of Y. Put Y, = [a,, a,] for each v < 6. Hence rk( Y,) < rk( Y,) for 
p <v ~6. Clearly D,(Y) = U,,6Da(Yv)u(end(Y)}, so fl =sup{rk(Y,): v <S}. 
so 6 = cf(P). 

Case 2: rk(Y) = y + 1 for some y. 
Then D,(Y) is order-isomorphic to o + 1, so 6 = o. 0 

LEMMA 2.17. Zf Y is a countably two-sided scattered compact interval space, then: 
(a) If Countwosid( Y) E Hernonst( Y), then Y N CI + 1 for some ordinal a. 
(b) Zf Countwosid( Y) 4 Hernonst( Y), then there are a regular cardinal K > o and 

a stationary subset T of K such that Z,(T, 1 + co*) is homeomorphic to a closed 
subspace of Y. 

Proof We proceed by induction on rk( Y). Without loss of generality, End(Y) is 
a singleton {end(Y)}. By Lemma 2.16(bl) we may assume that end(Y) is the 
greatest element of Y. 

(a): Countwosid( Y) E Hernonst( Y). 
Case I: rk( Y) is a successor ordinal y + 1, or cf( rk( Y)) = o. 

Pick (U, : n < o) as in Lemma 2.16(a). Then Countwosid( Y) n (U, - U,, + ,) E 
Hernonst( U, - U,, + , ) for each n < o. Since rk( U, - U, + , ) < rk( Y), it follows that 
un -UP%,, is homeomorphic to some ordinal a, + 1. Hence Y N C, < o (a, + 1) + 1. 

Case 2: cf(rk( Y)) > w. 
Let y = cf(rk(Y)). By Lemma 2.16(62), let (yb: CI < y) be a strictly increasing 
continuous sequence with supremum end(Y). Let W = {y:: c( < r}. Let C be a club 
in W disjoint from Countwosid(Y). Obviously if y E C, then ry( y) # (0, w), and 
thus cf:(y) E (0, l} or cf;(y) E (0, l}. 

CLAIM 1. There is a strictly increasing sequence (y,: v < y) in Y cofinal in 
Y - {end(Y)} such that: 
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(1) UYwYv+rP <Yl is a partition of Y - {end Y}. 
(2) [y,, yv + ,) is a c/open subset of Y for each v < y. 
Proof. To see this, consider two possibilities: 
Possibility I: (y E C: cf’,( y) = I} is cofinal in C. 

Each such y has an immediate predecessor y -. Let (y, : v < 7) enumerate in 
increasing order all such y’s Now [yy, yV+ i) = (y;, yv+ ,) = [y,, y;+ i], so such 
intervals are clopen. Replacing y, by the first element of Y, we obtain (I), (2). 

Possibility 2: (y E C : cfry (y) = 1} is cofinal in C. 
So each element of this set has an immediate successor. Enumerating this set as 
(y, : v < y), what we really want is (yV+ : v < y), except for replacing y,+ by the first 
element of Y. 17 

Now, having ( 1) and (2), we have rk([y,, y, + I ))<rk(Y)andso[~,,y,+,l-~,+l 
for some ordinal pLY. Hence Y N (C, <y (p,, + 1)) + 1, as desired. 

(b) : Countwosid( Y) $ Hernonst( Y). 
Case 1: rk( Y) is a successor ordinal, or cf(rk( Y)) = w. 

Pick (U,: n E o) as in Lemma 2.16(a). 

CLAIM 2. There is an n such that Countwosid( Y) A (U,, - U, + 1) 4 Hernonst( Y). 
Proof. Indeed, since Countwosid( Y) # Hernonst( Y), there is an uncountable 

regular cardinal K and a subchain W of Y order-isomorphic to K so that W is 
strongly relatively complete and W n Countwosid( Y) is stationary in W. Note that 
W n (U, - U, + , ) is a club in W if it has cardinality K. Since one of these sets does 
have power K, the claim follows. 0 

Taking such an n, we have rk(U, - U, + ,) < rk( Y), so from the induction hypo- 
thesis there are a regular uncountable cardinal K and a stationary subset T of K such 
that Z,(T, 1 + w*) is homeomorphic to a closed subset of U, - U,,, , , hence of Y, 
as desired. 

Case 2: cf( rkf Y)) > w. 
By the assumption of (b), let D be a strongly relatively complete subset of Y such 
that: 

(1) D is order-isomorphic to an uncountable regular cardinal. 
(2) S cf Countwosid(Y) nD is stationary in D. 

Let (y; : 5 < S) be the canonical increasing enumeration of D. For y, 4 S put 
F5 = (ye }, and for yc E S n D choose a strictly decreasing sequence (yc, : n < o) in 
( yg, y5 + ,) converging to ys and set FE = (ye > u {yen: n E o}. Finally, we put 
F6 = {end(Y)}. Thus F 2’ ur G6 F,, is closed. Clearly F N Z,(S, 1 + a*), as desired. 

This finishes the proof of Lemma 2.17. 0 

COROLLARY 2.18. Let X be a compact scattered CO interval space, and Y a 
closed and countably two-sided subset of X. Then: 



196 MOHAMED BEKKALI ET AL. 

(a) Countwosid( Y) E Hernonst( Y). 
(b) Y - cx + 1 for some ordinal u. 
Proof. (a) By contradiction. By Lemma 2.17(b) there exist a closed set H, E Y 

and a homeomorphism f: Z,( T, , 1 + o*) - H, for some stationary subset T, of a 
regular uncountable cardinal K. Let T3 c T2 G T, be sets such that T3, T, - T3, and 
T, - T2 are stationary in rc. Let H, = f [Z,(T,, 1 + o*)] for i = 2, 3. Clearly 
Z,(Ti, 1 + w *) is closed in Z,(T, _ , , 1 + o*) for i = 2, 3, so Hi is a closed subset of 
Hi-1 for i = 2,3. 

CLAIM. O(H,, H,, H3) holds. 
Proof. Indeed, O,(H,, Hz, H,), &(H,, Hz, H3), and O,,,(H,, H2, H3) are clear. 

From Lemma 2.1 of Bonnet and Si-Kaddour [ 19871, it follows that e4(H,, Hz, H3) 
and O,(H, , Hz, H3) hold. This proves the claim. 0 

The claim contradicts Theorem 2.14, so (a) is proved. 
(b) Follows from (a) and Lemma 2.17. 0 

The next definition is used to conclude the proof of Theorem 1.2. 

DEFINITION 2.19. Let X be a chain. We denote by Bad(X) the set of all x E X 
such that: 

(1) cG(x), c&(x) 2 0; 
(2) cf:(x) 2 o1 or cf;(x) 2 0,. 

PROPOSITION 2.20. Zf X is a CO compact scattered interval space, then Bad(X) is 
a jinite set. 

Proof. Assume that Bad(X) is infinite. There is no loss in generality that there is 
a strictly increasing sequence (a, : n < o) of elements of Bad(X) such that each a, 
is isolated in Bad(X). So for each it < o there is a clopen interval U” such that 
U”n Bad(X) = {a,}. With no loss in generality, the U”‘s are pairwise disjoint, and 
U” -c U” for n < m. Let 

a =SUpX{u,:n <w>. 

Now by Corollary 2.18, (-co,u,]nU”-c,+l and [a,, co)nU”- 1 +[,* for 
some ordinals t,, c,,. Since (I, E Bad(X), we have <,, [, 2 w and cf(5,) 3 o1 or 
cf(c,) 2 0,. Clearly U” N ?j,, + 1 + [,*. So th ere is a closed subset F,, of U” such that 
F,, - cf(&J + 1 + (cf([,))*. Without no loss of generality, o1 < cf(&J > cf([,) for all 
n. By Ramsey’s theorem, we can suppose that each sequence (cf(5,) : n < o), 
(cf([,): 12 < o) is either constant or strictly increasing. 

Case I: cf(<“) = 5, cf(i,) = [ for all n. 
Hence~~~.LetH=cl,(~,,,F,).ClearlyH-(~+l+~*)~w+1.NowletG 
be the closed subspace of H’ zf (5 + 1 + [*) . o + 1 obtained by eliminating the 
even c*‘s, i.e., 
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is transformed to 

So G = (4 + 1 + [* + 5 + 1) . o + 1. We claim that Y(H’, G) holds, contradicting 
Theorem 2.11 (the reader can be helped by Example 2.13). All parts of Y(H’, G) 
are easy except Y5(H’, G). We claim, in fact, that Clopcopies,,.(G) = 8. For, let U 
be a clopen subset of H’ and suppose h: U N G. If we take the middle element b in 
a part 5 + 1 + 5 of G we have the following situation: b has a clopen neighborhood 
U”, namely ( -co, b], such that if V and W are closed subsets of U” such that 
VuW=U”,b~VnW,andbisnotisolatedinVandinW,thenVnW-{b}#~ 
(since V-(b) and W-(b) are clubs in <, and < is regular and uncountable). 
Hence the preimage c of b under U N G has such a neighborhood U’ too. Since 
there is a t-sequence of distinct elements converging to b, the same is true for c, 
so c is the “middle” element in a part 5: + 1 + [* of H’ (since [ < 5). Let 
V’ = ( - co, c] n U’, W’ = [c, co) n U’: this contradicts the above property. 

Case 2: Not Case 1, i.e., (cf(&) : n < o) or (cf([,) : n < w) is strictly increasing. 
For each infinite subset A of o, put 

F(A) =cl(U (FH:n EA}) = {a>uU {F,:n EA}. 

Pick U, E Clap(X) and fA : F(A) N U,. 

CLAIM. Suppose that A and B are injinite subsets of o such that A n B is finite. 
Then the following holds: 

(*) For every V E Clap,,,,(a) and W E Clop,Ja) we have V + W. 
Proof. In fact, assume otherwise and choose n E A - B such that F,, E V. Then 

the “middle” element in F, must map to a “middle” element in F(B), by the 
argument in Case 1. This gives rise to the following situation: We have an element 
b mapping to an element c, where there exist 5, - and [, - sequences converging to 
b, while every sequence of regular type converging to c has type &,, or [,, where 
n # m. This is clearly impossible. So (*) holds. 0 

Because (*) holds, we have fA(a) #fs(a). 
Now let (A, : c( < o, ) be a sequence of infinite subsets of o such that IA, n A, 1 

is finite, for CI # /?. Since (&(a): u < w,) is one-one, we may suppose that it is 
strictly increasing (by Lemma 1.10). For CI < o, let F, = F(A,), U, = U,., f, =fA,, 
b, = f,(a). By omitting some b,‘s if necessary we may assume that there are pairwise 
disjoint clopen sets V,, CI < o,, such that V, E Clop,(a,). Now fix u < w,. Since 
fm : F% - U,, there is an n E A,, say h(u) such that fE[FhJ E V,. Because h : o, -+ co, 
there is q E w such that r 2’ h-‘(q) is infinite. Then for a, /3 E r, f,[Fq] N 
Fq -fD[Fq] and f,[F,] nfs[F,] = 8. For CI E r, let c, = end(f,[F,]). There is no loss 
in assuming that (c, : CI E r) is strictly increasing. Let c = sup( {c, : CI E r}) and 
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Then H’ puts us back in Case 1, so we have a contradiction. 0 

PROPOSITION 2.21. Let X be a compact scattered chain such that [Bad(X)] = 1. 
Then the following are equivalent: 

(i) X is a CO-space. 
(ii) X - CI + 1 + /? + 1 + y * for some infinite regular cardinals /?, y with fi > y, 

/?2o,,anda>fl.w. 
Proof. (i) implies (ii). Put Bad(X) = (a}. Hence there are b, c such that: 
(1) b<a<c. 
(2) U “zf [b, c] E Clap(X) and D,,(,,(U) = {u>. 

Thus Bad([b, a]) = 0. Hence, by the definition, [b, a] is countably two-sided; so by 
Corollary 2.18(b) it is homeomorphic to an infinite successor ordinal. Similarly for 
[a, c] and X - U. So X - 6 + 1 + y* for some ordinals 6, y, with 6, y infinite. And 
since a is bad we have cf(6) > wi or cf(y) > 0,; without loss of generality cf(y) 2 o, 
and cf(y) > cf(6) 2 w. 

Now by Lemma 1.9(b), y + 1 - E . p + 1 for some indecomposable ordinal E and 
some p E o(p > 1). Hence y + 1 N (E + l)(p - 1) + E + 1 and so 1 + y * - 1 + 
E* + (a + 1) . (p - 1). The clopen part (E + 1) . (p - 1) can be moved to the front of 
6 + 1 + y*. So, without loss of generality y is indecomposable. Arguing similarly 
with 6, we may assume that: 

X-a+1+/3+1+y* 

where c1 is some ordinal and fl and y are indecomposable, with cf(/?) > o, and 
cf(P> B cf(y) 2 0. 

Now we claim 

CLAIM 1. y + 1 is homeomorphic to I + 1 for some regular cardinal A. 
Proof. By contradiction. Write b + 1 + y* = Go u {b} u G,, where Go < b < G,, 

G,, - /I, and G, - y*. Let 
H, = G,u{b}uG,, 
H, = G, u {b } u G; where G; is a coinitial subset of G, of order type (cf(y)) *, and 
H3 = G,u {b}. 
We claim that O(H,, Hz, H,); this will contradict Theorem 2.14. 
@,(H,, Hz, H3), @(Hi, Hz, H3), and @,.,(H,, Hz, H3) are clear. 
To prove e4(H,, Hz, H3), let U be clopen in H,, b E U and let V be clopen in H2, 

b E V, and suppose that f: U - V. Because Inv( U) = Inv( V), b = end(U) = end(V), 
and f: U- P’, we have f(b) = 6. Let S =( -co, b)nU, T = (b, co)n U. Let 
K E ( - 00,b) n V be closed, cofinal, and of order type cf(/?). If K nf [S] and 
K nf [T] are both club in K, then so is K nf [S] nf [T], hence this set is non-empty. 
But S n T = {b}, contradiction. So say with no loss of generality K nf [T] is not 
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club in K. Then (f[T] - {b}) nG, is not cofinal in G,,. Hence by passing to a 
clopen subset W 3 b of V, we may assume that b # W nf[T]. Then b $ 
Wncl,,(f[T]) 2 Wnf[cl,,(T)] 3 b =f(b); contradiction. 

Similarly, O,(H, , Hz, H3) holds; that finishes the proof of Claim 1. 0 

Similarly, 

CLAIM 2. b + 1 is homeomorphic to K + 1 for some regular cardinal 1~. 0 

Thus X - c1 + 1 + K + 1 + A*, with K Z A, K, 1 2 o regular cardinals, rc 2 w,. If 
CI < K . o, then X - K . n + 1 + A* for some positive integer ~1. We claim that: 

CLAIM 3. The closed set K . n + 1 is not homeomorphic to a clopen set of 
K~n+I+A*-X. 

Proof. By contradiction. Write X = G,u {a} u G,, with G, < a < G,, G, N K . n 
and G, -A*. Let F=G,u{a}, and let ~:F-UGX where U is clopen in X. 
Clearly, a E rk(F) = rk( U) = rk(X), End(F) = End(U) = End(X) 3 a and U - X. 
Let b E End(F) be such that f(b) = a. This gives rise to the following situation: 
there is a clopen neighborhood U’ of b E F such that End( U’) = {b}; if V and Ware 
closed subsets of U’ such that V v W = U’, b E V n W, and b is not isolated in V 
andin W,thenVnW-{b}#@(sinceV-{b}and W-{b}areclubsinIc,andIc 
is regular and uncountable). Hence a has such a neighborhood U” in X too. But 
a is the “middle” element in a part ~+l+l*. Let V”=(-co,a]nU”, 
IV” = [a, co) n U”: this contradicts the above property. 0 

This finishes the proof of (i) implies (ii). 
(ii) implies (i) follows from the fact that every closed subspace of p + 1 + y* is 

either homeomorphic to clopen subspace of the ordinal space B + 1 or to 
/? + 1 + y*, and the fact that every compact ordinal space is a CO space. 

This finishes the proof of Proposition 2.21. 0 

Proof of Theorem 1.2. It follows from Proposition 2.20 and Proposition 2.21. 
0 
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