RE FERENCES

- 1. A.A. Goldenberg. Metalloved i Termich. Obrab. Met., 1959, No. 10, pp. 51-61. [HB Translation No. 4990].
- H.W. Schleicher and U. Zwicker. Metallkunde, 1956, Vol. 47, No. 8, pp. 570-576.
- 3. H.M. Burte etal. Metal Progress, 1955, Vol. 67, No. 5, pp. 116-120.
- A.D. McQuillan. Journal Institute of Metals, 1951, Vol. 79.

STRUCTURE AND MECHANICAL PROPERTIES OF HIGHLY ALLOYED TITANIUM

Engs. L. S. Golubeva and R.P. Shehegoleva

Central Iron and Steel Res. Institute

This paper is concerned with the causes of the change of the mechanical properties of two medium-alloy titanium compositions, Table 1, after heat treatment. These alloys are used for forging billets and hot-rolled tubing. Depending on the heat treatment, they may have a strength of 25, 30 and more kg/sq.mm. These high values are achieved by quenching and aging. Heat treatment of thin-walled tubing and small section bars is limited to an aging treatment {without pre liminary solutionizing).

In alloy 1, this change is associated with an increase of the α -phase. Heating of alloy 1, however, results in a transformation $\beta + \alpha + \omega - \beta + \alpha$.

The strength of annealed alloy 1 after 100 hrs soaking at $400-600^{\circ}$ C changes little; the increased ductilities are associated with a larger amount of α -phase. Fig. 1

TABLE 1

The structure of the alloys after forging, piercing and rolling contains three phases: β , α , α . The amount of ω -phase is small and is not always detected with X-rays.

Under certain conditions, a eutectoid transformation is observed in these alloys as well as the formation of the metastable phases β and α . Slugs for our investigation were prepared by sintering of titanium powder containing (%) 0. 12 Fe, 0. 074 Si, 0.12 Ni, 0. 022 AI, 0. 052.Ca, 0.003 H, 0.18 O, and 0.01 N. The sintered slugs were forged at 1000-700°C into 16 mm dia rods.

Inasmuch as the binary titanium alloys Ti-Fe, Ti-Cr, and Ti-Mn belong to the eutectoid system [1, 2], it was of interest to determine the tendency of these alloys to embrittle after holding for 100 hrs at 400, 500 and 600°C. Table 2 shows the mechanical properties of rods forged and annealed at 700 and 800°C, reheated as indicated above. Table 2 suggests that as the heating temperature is increased, the ductility of alloy 2 falls and that of alloy 1 increases.

TABLE 2

			Mechanical properties				
Alloy no.		Heat treatment	$\rm R_{\rm C}$	$\mathbf{P}_{\boldsymbol{b}}$	$\sigma_{\rm s}$	å	ф
				$kg/sq.$ mm		ጜ	
$\mathbf{1}$	Forged	400 $^{\circ}$, 100 hrs 500° , 100 hrs 600° , 100 hrs	44 46 40 38	163,6 167,0 130,6 122,3	157,6 163,4 129,2 120,4	0,4 4,2 8,0 19,2	2,4 6,1 12,4 26,3
	Annealed	700° , 1 hrs 400°, 100 hrs. 500° , 100 hrs 600° , 100 hrs.	37,5 39 38 37,5	129,1 129,0 130,3 127,6	126,1 126,5 129,7 126,2	12,0 9,2 17,0 2,0	17,0 11,3 31,6 1,4
		Annealed 800°. 1 hrs 400 $^{\circ}$, 100 hrs 500° , 100 hrs 600°, 100 hrs	36,5 38,5 37,5 37	131.7 132.0 128,0 125.1	128.8 127,7 121,5 120,0	7,2 15,2 16,2 10,0	10,1 21,8 23,3 15,1
$\overline{\mathbf{2}}$	Forged	400° 100 500°, 100 600°, 100	43 44 42 41	139,7 170,0 143,4 143,7	137,1 166,1 142,1 131,0	9,0 1,2 1,0 3,2	14,8 2,0 4,3 7,0
	Annealed 800°, 1	$400^{\circ}, 100$	38,5 41	121,2	118,4 Ruptured at shoulder	15,8	20.1
		500°, 100 $600^{\circ}, 100$	39,5 39	133,5 130.3		2,0 4,4	11,2 6,6

Note: Table contains average data of five tests.

shows the microstrueture of alloy 1 after annealing at 800° C/1 hr and also after annealing at 800° and aging at 500°C/100 hrs. The increase of α content after aging is plainly seen.

The precipitation of α after heating at 400 and 500°C/ 100 hrs is due to the following factors: annealing at 700 and 800°C followed by cooling at about 100°C/hr does not produce an equilibrium condition. The content of β in the microstructure, Fig. 1, a, by far exceeds the equilibrium conditions. On aging at 400 and 500° C/100 hrs, a precipitation of α and an enrichment of the β -phase with β -stabilizers take place. The 100 hrs treatment does not bring the β -phase to the eutectoid concentration.

At 600°C a eutectoid concentration is reached after less than 100 hrs. When this happens, the following transformation takes place: $\beta \rightarrow \alpha +$ intermetallic compound. This change lowers the ductility, as follows from Table 2 (see mechanical properties of alloy 1 annealed at 700 and 800°C) after additional heating at 600° C/100 hrs.

The annealing temperature $(700, 800^{\circ}\text{C})$ of alloy 1 affects the properties after long soaking. As a result of annealing at 700° C, the subsequent eutectoid decomposition at 600° C

is accelerated and causes a more pronounced fall of ductility than annealing at 800°C. This effect depends on the composition of the metastable β -phase: the closer it is to the eutectoid concentration, the faster will the eutectoid transformation proceed.

The strength of forged alloy 2 after aging at $400^{\circ}\text{C}/$ 100 hrs exceeds the as-forged strength by 30 kg/sq, mm . Apparently a $\beta \rightarrow \infty$ transformation takes place here $(3, 4)$. However, we were unable to discover the ω -phase in this case by metallographic or X-ray methods. The extraordinary brittleness of annealed alloy 2 held at 400° C/ 100 hrs is apparently explained by the embrittling eutectoid transformation. This change of alloy 2 (both forged and annealed) is observed during holding at 500 and 600° C/ 100 hrs.

It is clear from these data that despite its 3% Al, alloy 2 has a stronger tendency to an embrittling eutectoid transformation than alloy 1. Apparently manganese exerts a hampering action on the rate of the euteetoid transformation in alloy 1. The curves in Fig. 2 show that alloys 1 and 2 contain a β -stabilizer above the critical value [4, 5].

Upon water quenching, the relatively soft β -phase is stablized: its hardness is $40\,\mathrm{R}_{\bigmathrm{C}}$ in alloy 1 and 36.5 $\mathrm{R}_{\bigmathrm{C}}$ in alloy 2.

Aging at 200°C gradually hardens both alloys. After holding for 15-20 hrs, the hardness reaches a maximum and a further holding (up to 24 hrs) has practically no effect. Aging at 300° causes a hardness increase during the first 5 hrs but longer soaking adds very little.

At 400° C, a high saturation hardness (R_C 50) is reached during the first 15 to 30 min. The aging curve at 500° C shows a maximum hardness after about 15 to 30 min (1 hr) max) followed by a decrease.

At 220-475°C a contraction of the specimen caused by ω precipitation is observed [4, 6]. Beginning from 475°C and above, the specimen expands due to vanishing of the ω -phase and appearance of α : $\beta + \omega \rightarrow \beta + \alpha$.

Precipitation of α results simultaneously in a reduced hardness and improved ductility. Microstructural observations confirm the presence of an acicular α -phase after aging at 500° C/100 hrs. Hence, if at aging temperatures of 200, 300 and 400°C, only a precipitation of ω -phase is observed (after 24 hrs at 200 and 300°C the $\beta \to \infty$ transformation does not run to completion), at 500° first the ω -phase shows up (hardness increases) whereupon, after longer holding periods, the reaction $\beta + \infty$ + α follows and the hardness decreases, in the latter case, no eutectoid transformation was found.

REFERENCES

- I. S.G. Glazunov and E.K. Molchanova. Phase Diagrams of Titanium Alloys (Diagrammy Sostoyanii Splavov Titana), [Book], Oborongiz, 1954.
- 2. G.V. Samsonov, V.S. Neshpor and L.V. Lange. Metalloved i Obrav. Met., 1956, No. 1, pp. 35-39.
- 3. Yu. A. Bagaryatskii, G. L Nosova and T.V. Tagunova. Doklady Akad. Nauk SSSR, 1955, Vol. 105, No. 6, pp. 1225-1228. [HB Translation No. 4103].
- 4. Yu. A. Bagaryatskii, T.V. Tagunova and G.I. Nosova. Problems of Metal Science and Metal Physics (Problemy Metalloved i Fiz. Metallov), 1958, Vol. 5.
- 5. P.D. Frost and W.M. Parris. Transact. ASM, 1954, Vol. 46, pp. 231, 257 and 1056.
- 6. H. Böhm and H. Westphal. Zeitschrift Für Metalkunde, 1956, Vol. 47, pp. 558-563.

MECHANICAL AND TECHNOLOGICAL PROPERTIES OF TERNARY TITANIUM ALLOYS

Cand. tech. sc. L.P. Luzhnikov and Eng. V.M. Novikova

The paper of reference [1] deals with ternary titanium alloys Ti-AI-Mn, Ti-AI-Cr, Ti-AI-Mo, Ti-AI-Fe and Ti-Fe-Mn. Not counting the last, all others are based on the binary system $\operatorname{Ti-A}\nolimits\bar{\operatorname{I}}$ with addition of one of the four β -stablizers.

The present work is based on the system Ti-Sn to which Zr, Cr, V, Me and Mn were added. The system Ti-A1-Zr was also studied. In all these ternary systems we studied alloys along the section with 94% Ti and from 6% Sn to 6% of one of the β -stablizers listed.

Preparation and Testing of Alloys. The alloys were prepared from pre-mixed sponge of one batch. The strength of sheet made of this material was 55.5 kg/sq. mm ; elongation, 32.7% (0.3% Fe, 0.15% Si). The sponge was alloyed with manganese, refined chromium, aluminum, vanadium, tin (metallic), iodide zirconium, technically pure iron and molybdenum powder.

The ingots were prepared in a vacuum arc furnace with a double ('stepped') mold using a consumable electrode. The weight of the charge was 3 kg. The ingots were forged and rolled under laboratory conditions according to the existing technology. The sand blasted and pickled sheets 1. 3-1.5 mm thick were vacuum annealed $(5 \times 10^{-3} \text{ mm Hg})$ at 800° C/2 hrs, furnace-cooled to 200 $^{\circ}$ C and then cooled in air. The composition was determined on the finished product, Table 1.