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chemo-mechanical couplings 

Summary The paper explores the theory of reactive porous media for the modelling of creep and 
plasticity due to chemo-mechanical couplings at the macro-level of material description. The for- 
mulation is based upon thermodynamics of open porous media composed of a skeleton and several 
fluid phases saturating the porous space. This theoretical framework allows to introduce the kinetics of 
a chemical reaction directly at the macro-level of material description. In turn, it is used to model 
creep due to chemo-mechanical couplings within a closed reactive porous continuum, as wall as 
ageing creep due to two chemical reactions, one associated with the apparent creep phenomenon, 
the other with the apparent ageing phenomenon. Furthermore, it is shown how the modelling can be 
extended to account for plastic (i.e. permanent) phenomena, including hardening/softening and damage 
phenomena, coupled with a chemical reaction (chemical hardening). 
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1 
Introduction 

extent of the ageing reaction; 
isotropic chemical dilatation coefficient; 
hardening/softening/damage variable (scalar, tensor); 
strain tensor; 
volume strain (try); 
viscous strain tensor; viscous volume strain (treY); 
plastic strain tensor; plastic volume strain (tr ~P); 
intrinsic dissipation of the open elementary system; 
chemical dissipation of the open elementary system; 
intrinsic dissipation of the closed porous medium; 
viscosity relative to physico-chemical phenomenon i; 
material parameter; 
plastic multiplier; 
maturity function or equivalent age; 
stress tensor; initial stress tensor 
mean stress, initial mean stress; 
extent of the creep reaction, creep reaction rate; 
free energy of the open elementary system; 
free energy of the closed elementary system; 
hardening force; 
time derivative of function x; 
rate of quantity x; 
double tensor contraction; 
scalar product; 
first invariant of tensor (). 

Geomaterials involved in civil engineering, whether natural (rocks, soils) or man-made (concrete), 
are more or less porous materials, which deform when subjected to mechanical loading. In addition, 
chemical reactions may occurs within them, influencing the mechanical behaviour, and leading to 
strains of chemical origin. Furthermore, the stress applied may be of a magnitude beyond the 
current material strength: the material then deforms in an irreversible manner, and may deteriorate. 
Finally, mechanical response (elastic properties, material strength etc.) may also depend upon the 
extent of a chemical reaction. An accurate modelling of chemo-mechanical couplings is thus 
required to predict, and possibly prevent, a deterioration of engineering structures composed of 
reactive porous materials. 

This paper explores the theory of reactive porous continua as developed in [5] for the modelling 
of chemo-mechanical couplings, which allows to account for chemical reactions directly at the 
macro-level of material description, i.e. at the scale of laboratory test specimens. The formulation is 
based upon thermodynamics of open porous media composed of a deformable skeleton and several 
fluid phases saturating the porous space. This theoretical framework allows to introduce the 
kinetics of a chemical reaction directly at the macro-level of material description. In turn, it will be 
used to model standard apparent phenomena, like creep, ageing etc. due to chemo-mechanical couplings 
within a closed reactive porous continuum. The detailed study of the phenomena, of which the actual 
understanding involves the molecular level, lies beyond the purpose of the presentation. Attention 
will merely be drawn to establish a theory capable of predicting the macroscopic behaviour of 
materials subjected to such phenomena. Furthermore, it will be shown, how the modelling can be 
extended to account for plastic (i.e. permanent) creep effects, including hardening/softening pheno- 
mena, coupled with a chemical reaction (chemical hardening). The modelling will be carried out in 
the framework of physical linearization and infinitesimal transformations. 

2 
Thermodynamic framework of reactive porous media 
In this part, we will briefly recall the basic relations of the theory of reactive porous media to account 
for a chemical reaction at the macro-level of material description. For the general theory of open 
reactive non-saturated porous media, the interested reader is referred to [5]. 

Consider an open porous medium of initial volume d~2 composed of a matrix and a porous space 
which is saturated by two fluid phases, a reactant phase A and a product phase B. A chemical reaction 
may occur between them such that 

A ~ B .  (1) 



The observable strain is that of the skeleton and is denoted ~. The mass variation of the open system 
is due to the mass variations of fluid phases A and B per unit of macroscopic volume dO, denoted 
rn A and rn B. The mass conservation for the two fluid phases reads 

dmA o o dmB o o 
d t =  MA - m A ' ~ '  d t =  MB +mA~B' (2) 

o where Mi ~ represents the external rate of fluid mass supply of each fluid phase. The quantity rnA~ ~ is 
the rate of mass formation of product phase B due to chemical reaction (1) such that quantity rnA~ ~ d t ds 
is the mass of phase A which transforms into phase B during time interval dr. It is noteworthy that 
mass-formation rate rn2~ B is a priori not the time derivative of a function (i.e. f ~ ~ df/d t), since 
the mass increases of the reactant and the product phase may be due to external supply, i.e. the terms 

O O 
M A and M~. 

Using thermodynamics of open porous continua, the generalized Clausius-Duhem inequality which 
expresses locally the second law of thermodynamics, reads 

~1 + GoB >0,  (3) 

where q)~ is the intrinsic dissipation associated with the irreversible behaviour of the skeleton 

da s d T  dmj d~>= 0 j=A,B, (4) 
(~I  ~--- a : Z Z AV~m dt dt 

and q~A~B the dissipations associated with chemical reaction (1) 

~ = ( ~  o > 
-- gB~)mA~ B = O, (5) 

which are assumed to be non-negative and independent of each other. 
In the expression for the intrinsic dissipation (4) ~s, S and g~m are the stress tensor, the entropy 

and the chemical potentials or free enthalpies per mass unit of fluid phasej = A, B, associated to the 
rates of strain tensor e, temperature T and fluid mass rnj (j =A,B), respectively. Furthermore, Tis  
the free energy of the open elementary system which defines the thermodynamic states of the 
system in terms of external variables, i.e. strain tensor e, temperature T and fluid mass rnj (j = A,B), 
and a set of internal variables • associated with the dissipation due to the irreversible skeleton 
behaviour 

~rJ= ~(T, ~, m A, m~, Z). (6) 

Using Eq. (6) in (4) yields 

O T dmj ? T d z _  
(7) 

In the case of a thermo-poro-elastic behaviour, the intrinsic dissipation is zero, and the constitutive 
equations are reduced to the sole state equations 

3 T  3 T  ~ T  
~ = - ~  S -  DT ~m--Omj with j = A , B .  (8) 

State equations (8) still hold in the case of a non-reversible behaviour of the skeleton. A substitution 
of Eqs. (8) in Eq. (7) yields the intrinsic dissipation in the form 

0 T  
~3=()~=>0 ( -  #X" (9) 

The constitutive equations are then formed of the state equations (8) and of complementary evolution 
laws, which describe the irreversibility of the skeleton behaviour. More precisely, these complementary 
evolution laws are the relations linking the rate of the internal variables Z to the thermodynamic 
forces ~ which cause the intrinsic dissipation, see Eq. (9), i.e. the dissipation of effective mechanical 
work into heat form associated to the irreversible skeleton behaviour. 
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A second source of dissipation is associated with the chemical reaction. It is given by inequality 
(5), where g~ - g~ is the difference in chemical potentials between the reactant phase and the product 
phase. This gradient of free mass enthalpies expresses the thermodynamic imbalance between the 
chemical constituents involved in reaction (1). Chemical dissipation qsA~ B can be equally written in 
the form 

(DA~=Am~~ (10) 
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where A m is the affinity of the chemical reaction, and r176 its reaction rate. They are related to the gradient 
of free mass enthalpies and to the rate of mass formation by 

O 

Am=d(gAm--g~m) and ~~ (11) 

with d a constant which relates the mass formation rate and the reaction rate. In a more refined 
modelling, d accounts for the stoichiometry and the molar masses of the substances constituting the 
reactant and the product phases, cf [4, 3, 5 and 6]. 

Note that all equations introduced here until now are purely macroscopic, since they involve only 
macroscopic state variables. In particular, reaction rate 4 ~ is propor t ional  to the rate of  mass  
format ion  in the chemical reaction. Fur thermore,  f rom Eq. (10), chemical affinity A m is identified 
as the the rmodynamic  force associated in the chemical dissipation to reaction rate (~ It expresses 
the thermodynamic imbalance between the reactant and the product phase, i.e. the difference in 
chemical potentials. This explicit identification holds irrespective of transport phenomena of the 
reactant and product phase through the structure, and is essential when making precise the kinetics 
of the chemical reaction considered at the macro-level of material description, i.e. at the scale of 
laboratory tests. More precisely, according to expression (10) of chemical dissipation qSA~ B, the kinetics 
of the reaction must be specified by a relation linking affinity A,~ to reaction rate ~~ In the limits of 
a diffusion-controlled reaction, a linear evolution law can be adopted, see for instance [1]. It reads 

Am=kd~ e k a > O ,  (12) 

where k a is a viscous coefficient, which accounts for the micro-diffusion of chemical constituents 
involved in reaction (1). More precisely, in the case of a diffusion-controlled reaction, reaction rate 
4 ~ corresponds to a diffusion rate. At the microscopic level, this diffusion rate depends upon the free 
enthalpy gradient between the reactant and the product phase, which is expressed at the macro-level 
of material description by affinity A,o. Thus, k d is a diffusion coefficient. Furthermore, the combina- 
tion of reactants to form products may be activation-controlled. In this case, an evolution law of 
the Arrhenius type may be adopted, reading 

(Ea) A m = ka~ ~ exp ~ k,~ > 0, (13) 

where E, is a certain activation energy, and ~ the universal constant for ideal gas. In this case, the 
micro-diffusion process is at the basis of the chemical dissipation (10), amplified by the latter thermal 
activation. 

Consider now the elementary system as closed for the chemical constituents, i.e. there is no external 
supply 

O 

M i = 0 .  (14) 

0 �9 Then, according to Eqs. (2) and (11), the rate of mass formation mA~ B 1S actually a time derivative, 
as it is reaction rate 4 ~ = d~/dt  = 

rnA~ ~ = r G ~  ~ = - mm = m~  = d ~.  (15) 

Closure condition (14) allows to reduce the number  of state variables which characterise the thermo- 
dynamic states of the porous media. In fact, since intrinsic dissipation qh of the closed elementary 
system reads 

(pl = O':/~ -- S 7~ -- ~ ~ 0, (16) 



a comparison with Eq. (3) allows to consider reaction extent ~ as an internal state variable, since its 
evolution is spontaneous and cannot be controlled by external flow. In other words, in a closed system, 
a chemical reaction is an internal process, and reaction extent ~ is a measure of the progress of the 
reaction considered, see [1]. Free energy ~ of the closed system then reads 

t ~ = ~ ( T , a , ~ , Z ) =  W(T,z,m~=-d{,rnb=d~,Z), (17) 

and state equations (8) yield 

S = - O ~  t ~ - - - -  ca  A , ~ -  0 ~ '  (18) 

where entropy S, stress tensor ~ and chemical affinity A~ are the thermodynamic forces associated 
in intrinsic dissipation % with the rates of state variables T, ~ and (. In contrast to the open elementary 
system, affinity A~ derives now explicitly from the free energy 6 of the closed system, and 

O~b (19) 

where X are still the internal state variables modelling intrinsic dissipative phenomena of the skeleton, 
while ~ is now an internal state variable. In return, the evolution of ~ is still governed by kinetic laws 

~0 
(12) and (13), with q = ~, and the evolution of variables ;( by complementary evolution laws linking 
its rate to the thermodynamic force f. 

3 
Creep due to a chemical reaction 
In the above, only one simple reaction (1) was considered, and it was shown how it can be integrated 
in the constitutive modelling at the macro-level of material description. In turn, this framework of 
closed reactive porous media will be employed to model creep due to a chemical reaction. In a first 
step, other dissipative mechanisms than the one related to the chemical reaction will be not con- 
sidered, i.e. q~ = 0, and cpl = q~A~ >-- 0, thus assuming an elastic behaviour of  the bulk material. 
Furthermore, only isothermal evolutions will be considered, see [15] for an extensive discussion of the 
modelling ofthermo-chemo-mechanical  couplings of closed reactive porous media. Finally, for the sake 
of clarity, shear effects will be set aside. 

Consider a porous continuum, closed with respect to the chemical constituents. Hence, the state 
equations are given by relations (18), and the constitutive modelling can be worked out from specifying 
expression (17) of  free energy $ = ~s (e, ~) of the closed system. The following expression can be adopted 
for an isotropic material: 

t~=~K,~2--fiKg{ + ~ ~g,~ 2. (20) 

The above expression corresponds to a stress-relieved reference state (initial stress a ~ = 0) being at 
thermodynamic equilibrium (no initial thermodynamic imbalance between the chemical constituents, 
i.e. Amo = 0), and to a linerization with respect to both volume strain e = trz and reaction extent {. 
Using expression (20) in Eqs. (18), the state equations read explicitly 

=Kg--flK{, a m=fiK~- 3y~, (21) 

where ~ = try/3 is the mean stress. In addition, substituting Eqs. (21) in kinetic law (12) or (13) yields 

(22) 

Furthermore, the first of state equations (21) can be inverted, reading 

G 
g = ~ + fl ~, (23) 
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which allows to identify 

~ = fl ~, (24) 
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as the strain of chemical origin, related with reaction extent ~ by coefficient fl, which can be considered 
as a chemical dilation coefficient. Equations (23) and (24) allow to rewrite the constitutive equations 
in the equivalent form 

a = K ( ~ - ~ ) ,  = a - - ~ ; # e ~ = ~ / d Y  or = t / d ~ e x p  ~ - ~  , (25) 

with 

O f ' = ~ - - K ,  ~/d = ~2. (26) 

Constitutive equations (25) are linear with respect to strain e and stress a. They show, that a sudden 
stress application induces a thermodynamic imbalance between reactant and product phase, and 
starts the chemical reaction: the material creeps. In fact, constitutive equations (25) correspond to 
those of a viscoelastic material, or more precisely to those of a Kelvin-Voigt material, with a viscosity t/a 
governing the kinetics: the higher t/a, the slower the reaction. In the case of linear kinetics, i.e. t/a = const., 
the material behaves like a linear viscoelastic material. However, the kinetics of the physical 
phenomenon at the origin of the apparent creep phenomenon may not be linear. More precisely, in 
the case of a diffusion-controlled reaction, the reactants have to bypass the layers of products already 
formed, to meet and form new products. As the reaction advances, i.e. as ~ increases, the layer extends, 
and the difusion process becomes slower. Hence, viscosity t/a may not be constant, but increases as 
the reaction advances, i.e. t/d = t/a(~ ) or tld = /~d(eV). This renders the complementary evolution 
law (25), nonlinear with respect to creep strain e~, and corresponds to a nonlinear visco-elastic material 
which creeps due to a chemical reaction. 

Finally, note that a Maxwell material is recovered by setting Yf = 0 in constitutive equations (25). 
Furthermore, a Kelvin-Chain model, as frequently used for the modelling of concrete creep [2], is 
obtained when considering N uncoupled reactions, and associating with each reaction its own reaction 
extent ~ (i = 1, N). The evolution of each chemical reaction is still given by kinetic law (22), while 
the total viscous strain e ~ reads as a sum of the viscous strains ?~ = f i ~  (without summation) of 
the individual units of the Kelvin chain. From a more physical standpoint, such a modelling implies 
that N different physical processes with different kinetics and amplitudes are, in fine, active in the 
material, which cannot be considered as instantaneous with respect to the time of observation. 

4 
Ageing creep due to two chemical reactions 
So far, only one reaction was considered, leading to a modelling of creep due to chemo-mechanical 
coupling. This part is devoted to the modelling of ageing creep due to two distinct physical phenomena, 
one related to the basic creep phenomenon, the second to the ageing phenomenon, which appears 
as a variation of mechanical characteristics in time at the macro-level of material description. With 
respect to these distinct physical origins, consider a second reaction, and let x be its reaction extent. 
Considering an isotropic elastic behaviour of the bulk material, and disregarding shear effects, a modi- 
fied expression for free energy ~9 = ~ (~, ~, x) of the closed system can be adopted 

= �89 -- e') 2 + �89 + Y/'(x) (27) 

where e~ is still defined with respect to the chemical reaction of extent ~, i.e. Eq. (24). Constitutive 
Eqs. (25) now read 

~r=K(x)(e--e~), o - - - ~ ( ( ( x ) e ~ = ~ f  or o - - - Y ( x ) = ~ d ~ e x p ~ -  ) (28) 

while the affinity associated with the chemical reaction of extent x is obtained from 

c ~  18K(x)  (e - -  ev)2 leVY(x)  e~2-- c~(x)  (29) 
A x -  8 x -  2 8x 2 8x 8x " 



Assuming infinitesimal strains e << 1, which applies equally to the strains of chemical origin e~ << 1, 
the second-order strain terms in state equation (29) can be neglected, leading to 

a~(x) 
Ax ~ 8x  (30) 

The law governing the kinetics of the "ageing" reaction can be formally written as 

8.(x) 
Ax ~ Ox =f(.2), (31) 

Let x(t) be the solution of the above differential equation, i.e. 

x = x (t) (32) 

The count of time is beginning with the instant at which the ageing reaction starts, i.e., in general, 
with the instant of material creation. According to Eq. (31), the evolution of reaction extent x is 
independent of the other state variables, and, consequently, of the mechanical loading. In other words, 
and in contrast to the "creep" reaction of reaction extent 4, application of stress does not induce 
a thermodynamic imbalance between reactants and products involved in the ageing reaction of reaction 
extent x. Hence, an initial thermodynamic imbalance, i.e. an initial affinity between the chemical 
constituents A o = A~(x = 0) exists in the reference state, in order for the reaction to start. Applying 
a linear expression for affinity A x yields 

A x = A x o - K x = r l . 2 e x p  . ~  , (33) 
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where t/x is the viscous coefficient relative to the micro-diffusion process involved in the ageing reaction, 
and E, the activation energy of the reaction. The positive values of function t/x ensure the non-negative 
dissipation associated with the reaction, while the positive modulus tc guarantees its stability. Further- 
more, affinity A x tends to zero for t ~  0% which corresponds to a thermodynamic equilibrium 
Ax(oo) = 0. The asymptotic extent of the ageing reaction then reads 

x(oo) = Axe~ (34) 
K 

and thus depends solely upon the initial thermodynamic imbalance between the chemical constituents. 
Rewriting differential equation (33) in the form 

dx  K - ~ d t  = d#,  (35) 

and integrating, an equivalent state variable to reaction extent x is obtained, denoted as maturity #. 
It reads 

exp -- ds. #(t) = l n  L x ( ~ _ ~ ( t ) j  ,=0 ~x ~-T (36) 

Due to the positive values of the integrand in definition (36), the function #(t) is a monotonically 
increasing function of time. It is equal to zero at the material creation, i.e for t = x = 0, and tends to 
infinity with t--* oo for which x ~x(oo) .  Hence, maturity #(t) can be used as an appropriate argument 
for functions K(#) and J f  (#) in constitutive equations (28) instead of the reaction extent x(t). In 
the case of linear reaction kinetics, i.e. at G = const., and at isothermal evolution i.e., at T = T o, maturity 
# is linearly linked with physical time t. However, G may not be a constant, since the reactants have 
to bypass the layers of products already formed. It increases with the advance of the ageing i.e. yields 
~/x = G(x). Furthermore, though derived for isothermal evolution, definition (36) of maturity y still 
holds at non-isothermal evolution provided that not only stress variation but also temperature varia- 
tion does not induce a thermodynamic imbalance between the chemical constituents involved in the 
ageing reaction of extent x. A detailed discussion of these thermo-chemo-mechanical couplings 
and their application to concrete at early age can be found in [15]. 
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Finally, substituting Eq. (32) in Eq. (28) yields 

a K(t)(e ~) a--X(t)e~=~d g or o" Yf(t) t/dgexp{~_~}./E\ . . . .  (37) 

The above constitutive equations are linear with respect to strain ~ and stress a, with moduli K and 
X which depend now on time. Consequently, the porous material behaves as an ageing linear 
viscoelastic material, provided that t/a = const. In this linear case, the ageing concerns only the moduli 
variation in time, and thus the amplitude of the apparent creep phenomenon. It may equally play 
on the kinetics of the creep phenomenon, i.e. t/e = tla(X ) or r/a = tld(t). 

5 
Plastic creep effects 
So far, the modelling of chemo-mechanical coupling has not considered plastic phenomena, by 
assuming an elastic behaviour (possibly nonlinear, due to ageing) of the skelton. The presentation 
has focused on chemical dissipation ~A-B' thus neglecting other sources of intrinsic dissipation ~ ,  for 
instance the dissipation of effective mechanical work into heat due to plastic effects. To account for 
such irreversible creep phenomena, introduce plastic variables, namely the plastic volume 
strain ~P and the hardening variable ;6 The free energy ~ = ~ (~, ~P, ~, )0 of the closed poroplastic 
material now reads 

(38) 

The above expression corresponds to a stress-relieved reference state with initial stress a ~ = 0 being 
at thermodynamic equilibrium there is neither initial thermodynamic imbalance between the chemical 
constituents, non ageing, i.e. Amo = Axo = 0. It corresponds also to a linearization with respect to volume 
strain e, plastic volume strain eP and reaction extent ~. Furthermore, U(Z) is the energy related to 
hardening effects, which is also called frozen energy and assumed uncoupled from the chemical reaction. 
This latter coupling between the chemical reaction and the hardening phenomenon will be considered 
in the next section. 

Using expression (38) in Eqs. (18), state equations (21) are replaced by 

0O ~ 

0~ 0u(z) 
A m -- = f i K ( ~ 3 - - s P ) - - , ~ ,  ~- -  

~ o z  

(39) 

The dissipation expression (19) now reads 

q~l=#~+q~a~B>=0, q)~=aY+~)~,  CI)A~B=Am~, (40) 

where stress a, like in the standard plastic model, is the thermodynamic force associated in the dis- 
sipation to the rates of both total strain e and plastic strain 8P, while affinity A m, according to identifica- 
tion (10), is still the associated force to reaction rate ~. Furthermore, according to identification (9), ~ is 
the hardening force associated in dissipation ~ to the rate of hardening variable X- 

Irrespective of total dissipation (p~ assuming non-negative chemical dissipation ~A~B' i.e. ineqLuality 
(10) with C ~ = ~ together with a linear taw for the kinetics linking affinity A~ and reaction rate 4, i.e. 
Eq. (12) or (13), we have 

(E~ A m = f l K ( 8 - ~ P ) - S ~ = k a ~  or Am=ka~ex p - ~  . (41) 

The first of state equations (39) can be inverted giving 

(r 
8 = -- + r + fl~, (42) 

K 



which allows to identify 

e~=zP+fi~, (43) 

as the measurable strain which is not instantaneously recovered after a complete unloading process 
from a present loading state of stress or. Substituting Eq. (43) in the first of state equation (39) and in 
kinetic law (41) leads to 

a = K ( a - a 0 ,  =~r-~"fi~=rlafi4 or -fi-=r/dfi~ex p ~ -  , (44) 

where 2/{" and 11a are still defined by relations (26). Constitutive equations (44) show that a sudden 
application of stress induces a thermodynamic imbalance between the chemical constituents, starting 
the reaction and inducing strains due to chemo-mechanical couplings (cf. the term fl~). It is now 
increased in an instantaneous manner by plastic strains if the stress reaches a threshold which gives 
rise to irreversible creep effects. 

Like in the standard plasticity model, a loading point ~ cannot leave the elasticity domain Cs, thus 
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r ~)=<0, (45) 

where f (G  ~) is the loading function or plasticity criterion. Plastic evolution occurs only if a loading 
point ~ is at the boundary of elasticity domain C E, i.e. f i g  ~) = 0, where it remains for an ideal plastic 
material or which it carries along for a hardening plastic material. The plasticity criterion indicates 
when plastic phenomena occur, while the plastic flow rule indicates how. More precisely, when as- 
suming non-negative dissipation q5 associated with plastic phenomena, i.e Eq. (9), standard formula- 
tions can be used for both the flow rule (see [5, 9, and 11]), 

de P = d2 Of(a, ~) or de P = d2]~',c3g(~ (46) 
80 8a 

and the hardening rule 

= or dz  = d;t , (47) 

where d2 > 0 is the plastic muliplier 

d 2 > O  if f = O  and df=O, 
d 2 =  0 if f < O  or dr< O. (48) 

In the previous equations, the functions g(G () e f ( a ,  ~) and h(a, ~') ef(o, ~) are the nonassociated 
potentials of the plastic and the hardening evolution, which quantify the thermodynamically admissible 
directions 8g/&r and 8h/8~ taken by the plastic increments de; and d Z, satisfying non-negative dis- 
sipation related to plastic phenomena 

q51dt= d2(a ~ + r a~) > O. (49) 

Note clearly the different time scales of chemical and plastic evolution. The evolution of the reaction 
extent ~ is related to the time scale of the reaction kinetics, while plastic increments de P and dT, occur 
simultaneously with any variation in loading, provided that the chemical reaction does not alter the 
hardening state, i.e. ~ = ~(Z). In this case, writing the consistency condition dr= 0 in the form 

-- 8f da = - d2H, d~ = 8~r (50) 

the hardening modulus H and the plastic multiplier d2 read 

B 8f[  8r 8fa2Uah = l O r d  r 
- - | - - | -  and d2 

aeax  2 < 
o (51) 
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Fig. 1. Rheological model corresponding to the 
chemically reactive plastic porous material 

Here, use has been made of hardening rule (47) and the state equation of relations (39) which links 
the hardening force ~ to the frozen energy U(X). The hardening modulus H is positive for hardening, 
and negative for softening, which corresponds to an expansion or a shrinkage of the clasticity domain 
Cz, repectively. 

Constitutive equations (44), (46) and (47) correspond to a viscoelastic material, now coupled with 
plasticity, as illustrated in Fig. 1, which undergoes both a time-dependent deformation governed by 
the kinetics of the chemical reaction, and a permanent strain in an instantaneous manner when 
reaching a threshold. It may be coupled with a second reaction as shown in Sec. 3 to account for 
ageing, i.e. the variation of elastic characteristics in time. Also the threshold may vary in time, due to 
chemo-mechanical couplings, the modelling of which will be shown hereafter. 

6 
Chemical hardening 
In the previous section, hardening phenomena due to chemical effects were neglected. In other words, 
at constant stress, the progress of the reaction has no effect upon the elasticity domain of the material. 
Consequently, the hardening/softening state of the material depends only upon plastic variables Z, 
which, according to hardening rule (47), evolve in an instantaneous manner, if a loading point a is 
at the boundary of the elasticity domain Ce which it deforms while carrying it along. Recalling, 
in particular, that 

(52) 
~- 8Z' 

expression (38) of the free energy ensures the independence of the hardening force ~ with regard to 
the chemical reaction and its kinetics, and thus with regard to the physical time independent of stress 
application. However, a time-dependent evolution of the threshold (material strength) can play an 
important role for some geomaterials, where the evolution of the material strength cannot be con- 
sidered as instantaneous with respect to the time scale of observation (maturing concrete, dis- 
solution process etc.). To model such a phenomenon, we consider again the ageing reaction of extent x. 
Combining free energy expressions (27) and (38), the following expression for free energy 

= 0 (e, eP, X, ~, x) is adopted: 

1 2 
O = ~K(x) (~ --eP -- fl~): -- Y ( x )  (fl~)2 + U(Z, x) --Axox +-~:x, (53) 

and constitutive equations (28) become 

(Eo) a=K(x)(e--ev), a--W(x)fi~=tlafi4 or a--~ff(x)fi~=~lafi~exp ~ ,  (54) 

with ~v given by Eq. (43), and d and t/a by Eq. (26). Substituting expression (53) in Eq. (52) shows 
that the hardening force ~ now depends on reaction extent x through the function U(X, x). In the first 
approach, a linear coupling of reaction extent x with the hardening phenomenon can be assumed 

U( Z, x) = U(Z) -- xAz(z), (55) 



leading to the following expression of hardening force (: 

OU(z) xSAz(z) = - - -  + . (56) 
8Z 8Z 

Kinetic law (33), linking affinity A~ and reaction rate 2, now reads in the modified form 

Ax = A o + A x (Z) - lcx = r/.2 exp , (57) 

which allows to identify Ax(Z) as the thermodynamic imbalance induced by plastic evolutions and 
thus by mechanical loading. Hence, it is worth noting that maturity#, as defined by Eq. (36), can be used 
as an equivalent state variable for reaction extent x only if plastic effects do not significantly affect 
the thermodynamic imbalance between the chemical constituents involved in the ageing reaction, 
i.e. [A z (Z)[ << [A,o -- ~cx [. In return, plastic affinity A~ (Z) concerns only the amplitude of reaction extent 
x. Plastic evolution may, however, also influence the kinetics of the reaction. In this case, the function 
t/x will depend on the hardening variable )6 i.e. r/x = G(Z). 

Furthermore, the elasticity domain is still expressed by Eq. (45). Even when no plastic loading 
occurs, and, consequently, the hardening variable Z keeps its current value the hardening force ~ may 
change. This occurs according to Eq. (56) when a variation dx = 2dr of the reaction extent x within 
the time interval dt takes place according to kinetic law (57). Hence, the elasticity domain C e 
changes as well. This phenomenon corresponds to a pure chemical hardening. 

Assuming again non-negative dissipation q~ associated with plastic effects, i.e. Eq. (49), the flow 
rule and the hardening rule are still given by Eqs. (46) and (47), while the plastic multiplier d2 and 
hardening modulus H are now expressed in slightly different forms. In fact, the consistency con- 
dition (50) reads now 
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~ d Z = - dzf = - d2H, (58) 

where d J  stands for differentiating function f a t  constant hardening variable Z- Substituting Eq. (56) 
in (45) and using hardening rule (47), the plastic multiplier d2 and the hardening modulus H can 
be expressed explicitly in the form 

d 2 - d z f - l ( ~ f ~  d a - t H  H 8~OfSAz(Z)dx) ' 8  Z (59) 

0f8~ dz 8f(O2U(z) 02Az(Z)~c~h 
H -  <sza, -8\ x ez  2 (60) 

which are to be compared with Eqs. (51). It is worth noting, that the previous definitions are consistent 
with the habitual definition of the hardening modulus H, which is positive for hardening (for which 
plastic loading occurs when dzf> 0) and negative for softening (for which plastic loading occurs when 
dzf< 0). In fact, replacing the hardening force ~ in the loading functionf =f(a, ~) by expression (56), 
thus obtaining f = f ( G  Z, x), and using Eq. (55) for df= 0 yields 

f l r  Z + dz, x) =fOr,  Z, x) + ~ d z  = f i g  Z, x) - Hd2. (61) 

Consider an initial loading state defined by stress ao and chemical hardening state x o at the boundary 
of the elasticity domain, satisfying f (G,  Zo, Xo) = 0. If plastic loading occurs (df= 0), the hardening 
variable Z undergoes an infinitesimal change d Z. According to Eq. (61), and since Hd2 > 0 for 
hardening, the initial loading point ao satisfies f (  G, Zo + dz, xo) < 0. Thus, it lies inside the new elasticity 
domain associated with the new hardening state which is defined by Zo + dx and the reaction extent 
Xo prior to the plastic loading. The same reasoning applies to softening for which H < 0 and dzf< O. 
In this case, initial loading point ao lies outside the new elasticity domain. As an intermediary 
case, ideal plasticity is defined by a zero hardening modulus (H = 0), while the plastic multiplier d2 
remains undetermined during plastic loading. 
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Finally, the previous modelling can be easily extended to the case where plastic evolution leads 
to a degradation of the elastic moduli of the material; i.e. to the case of a damaged material. In this case 
free energy ~ reads 

~=~K(x ,z ) (e_ep_f l~)2  g K ( x , z ) ( f i ~ ) 2 + U ( z ) - ( A x o + A ~ ( z ) ) x + ~ t c x  z, (62) 

and the constitutive equations become 

a=/q(x ,z ) (e -e  ~) with e~=e;+/~  

a - - X f ( x , z ) l ~ = t / d ~  or ~r - -~Y~ ~ -  . (63) 

Furthermore 

CU(z) CA(z) / \  
Ax~Axo + Az(z) -- tcX= ~lxdcexpl - -~  ] (64) ~ -  ~z ~x ~--~, , \ ~ ' ~ / '  

where the second-order terms of total strain e and strains of plastic and chemical origin have been 
neglected in accordance with the hypothesis of infinitesimal strains, i.e. ~ << 1, ~v << 1, see Eq. (29) and 
(30). The previous constitutive equations together with the flow and hardening rules (46) and (47) 
correspond to those of a plastically degrading or plastically damaged ageing viscoelastic material. 
The elasticity domain C a is still expressed by Eq. (45), and the plastic multiplier d.~ and hardening 
modulus H by Eqs. (59) and (60), respectively. In contrast to damage models found in literature (see 
for instance [7, 8, 10, 11, 12 and 13], the plastic variable Z used herein models the plastic hardening/ 
softening behaviour, i.e. the dependence of the elasticity domain C a upon plastic evolution, as well as 
the damage behaviour i.e. the loss of elastic rigidity OK(x, Z)/CZ < 0, provided that both hardening/ 
softening and damage can actually be associated with permanent irreversible evolutions in the 
porous material, for instance due to cracking, cf [14]. In this way, two competing physical phenomena 
determine the instantaneous elastic behaviour of the material, one associated to the ageing reaction 
and defined by its kinetics, i.e. the second of Eq. (64), the other to plastic evolution undergone 
by the material throughout the loading history of the chemically hardening material, i.e. hardening 
rule (47) together with the first of Eq. (64). 

7 
Concluding remarks 
The objective of this paper was to show how a chemical reaction can be integrated in the constitutive 
modelling at the macro-level of material description. It is worthwhile recalling the sequence of 
identification: first, starting from the open porous continua and considering the mass conservation 
for the involved fluid phases, Eq. (2), the intensive thermodynamic force (affinity Am) is identified, 
Eq. (10), and linked to the chemical reaction rate through a complementary evolution law, for instance, 
Eqs. (12) or (13), representing the reaction kinetics. Second, considering the system as closed, 
Eq. (14), a chemical reaction can be considered as an internal process, and the reaction extent ~ as 
an internal state variable with a spontaneous evolution not controlled by external flow. For the closed 
porous continua, the modelling can then be worked out by specifying the expression of free energy 

of the closed reactive porous medium on account of chemo-mechanical couplings between the 
observable strain and the reaction extent. In this way, an apparent macroscopic creep and/or ageing 
phenomenon can be caused by a chemical reaction. The term "reaction" as employed throughout this 
paper must be understood in a broad sence. It equally applies to a matrix dissolution, adsorption 
phenomena, etc., see [1]. More generally, when applying an external stress to a sample, a creep process 
will occur whenever a coupling of the strain with a physical phenomenon is involved, of which the 
kinetics cannot be considered as instantaneous with respect to the time scale of observation. Due to the 
chemo-mechanical coupling, an application of stress induces a thermodynamic imbalance, starting 
the "reaction" at the micro-level of material description, which imposes its kinetics on the apparent 
macroscopic creep phenomenon: the sample undergoes a time-dependent deformation, restoring 
thermodynamic equilibrium. If the stress reaches a threshold, permanent evolution may occur. The 
material undergoes a permanent straining leading to irreversible creep, which is not recovered after 
a complete unloading, while approaching thermodynamic equilibrium. 



For the sake of clarity, shear effects have been set aside, allowing for a formulation of chemo- 
mechanical couplings with scalar quantities, which can easily be extended to the general case. For 
instance, Eq. (24) is to be replaced by ~ -- B ~ where B is the second-order tensor of chemical dilatation 
coefficients, relating reaction extent ~ to the viscous strain tensor ev caused by chemomechanical 
couplings, and fl = B: 1 for an isotropic viscous behaviour. Furthermore, standard loading functions 
and hardening models (isotropic, kinematic, etc., see [4, 5, 9, and 11], can be used within the theoretical 
framework developed in this paper, when replacing scalar quantities (~, () and (eP, X) by their tensorial 
counterparts (a, ~) and (~P, ~), from which they derive. 

Finally, the application of the presented modelling to the particular case of engineering geomaterials 
starts by identifying the microscopic physical origin which lends its kinetics to the apparent macroscopic 
creep phenomenon, the kinetics being the linkage between microscopic and macroscopic scale of 
material description. 535 
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