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Abstract 

The accumulation of good quality satellite altimetry 
missions allows us to have a precise geoid with fair resolution 
and to compute free air gravity anomalies easily by fast 
Fourier transform (FFT) techniques. 

In this study we are comparing two methods to get gravity 
anomalies. The first one is to establish a geoid grid and 
transform it into anomalies using inverse Stokes formula in 
the spectral domain via FFT. The second one computes 
deflection of the vertical grids and transforms them into 
anomalies. 

The comparison is made using different data sets: Geosat, 
ERS-1 and Topex-Poseidon exact repeat misions (ERMs) 
north of 30°S and Geosat geodetic mission (GM) south of 
30°S. The second method which transforms the geoid 
gradients converted into deflection of the vertical values is 
much better and the results have been favourably evaluated by 
comparison with marine gravity data. 

Introduction 

Computing free air gravity anomalies (FAA) from satellite 
altimetry has become an important technique in marine 
geodesy and geophysics. Early results were obtained more 
than ten years ago from Geos3 and Seasat by Haxby et al. 
(1983) and since then refined by many groups. It has often 
been done by converting geoid height grids into FAA grids 
(Knudsen et al., 1992). Another way to do it, which is getting 
more and more frequently used, is to convert geoid gradient 
derived deflection of the vertical grids into FAA grids 
(Sandwell, 1992). 
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This paper presents a comparison between these two 
methods with a special emphasis on practical aspects and 
problems encountered during the gridding of geoid heights, 
the gridding of north and east deflections of the vertical and 
finally the FFT techniques used for conversion into FAA; we 
restricted our investigation to the FFT techniques and did not 
use least squares collocation, although thought to be a good 
method for our type of problem (Rapp and Basic, 1992), for it 
is generally more demanding in computer time. 

The first method is based on the direct gridding of the 
geoid heights measured along the sub-satellite tracks (either 
from individual tracks or from averaged stacked arcs). This 
gridding is made after a cross-over adjustment to remove most 
of the orbit error and  after a ~spline adjustment>> to avoid 
artefacts near bad cross-overs. A one year stacked arc of 
Topex-Poseidon was first adjusted over the whole globe and 
formed the basis for subsequent adjustments. The FAA are 
then derived by Fourier transform, taking care of some 
correction to the approximation of Stokes function, trying to 
reduce the errors due to flat Earth approximation and 
truncation of the integral, using a Wiener filter to take into 
account the data noise and using a remove-restore technique 
based on a 360 degree-order spherical harmonic reference 
model. 

The second method does not require a preliminary cross- 
over adjustment. It derives the geoid gradients along each 
altimetric profile, after ad'hoc smoothing, and interpolates 
cross-track gradients from cross-over bi-directional 
information. The north and east deflection of the vertical 
components are thus computed at each data point and gridded. 
These two deflection grids are finally converted into FAA via 
FFT, with similar precautions as for the first method. 

The comparison is first made with ERM non-dense data, 
and then with GM data where the cross-track distance is 
smaller than the along-track resolution. In both cases, the 
comparison is also made with marine gravity data and with 
the global FAA grid computed by Sandwell & Smith (1992). 
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I - M E T H O D O L O G Y  

1 . 1 -  F r o m  g e o i d  t o  a n o m a l i e s  

~ :  data stacking 

To get the geoid, we need to subtract the sea surface 
dynamic topography (SSDT) from the mean sea surface 
(MSS). To get the MSS, we first need to stack the different 
cycles of  an ERM together. This is easy to do for Topex- 
Poseidon data thanks to the quality of  the orbit: we can 
directly compute mean values of height and position with the 
values of the different cycles for each point of  a track; to 
insure the quality of the stacked profile, a mean value (derived 
by weighting data as a function of their distance to the 
reference point) is computed only if we have at least 24 values 
out of 37 cycles. For Geosat and ERS-1, the orbit error is 
greater than the oceanic variability and we need to adjust the 
different cycles together prior to averaging the different 
height values. Not doing that would produce some jumps in 
the stacked profile when one of the cycles has no data. 
Besides and in order to minimize the effect of  geoid gradients, 
the mean value is computed by using residual quantities with 
respect to the OSU91A model (Rapp et al., 1991). 

Each satellite data set is thus stacked over a one year 
period, which Is enough to remove most of the oceanic 
variability. 

revolution). The sinusoidal functions are used only for large 
areas. Two software systems have been written to perform 
these adjustments: a direct algorithm with inversion of the 
least squares matrix and an iterative algorithm. 

When working with three satellites at a time such as 
Geosat, ERS- I and Topex-Poseidon, we first do an adjustment 
of Topex-Poseidon alone because its orbit error is much 
smaller than for the others. Any adjustment of this type 
requires some constraints to be added to the system of 
equations, to insure the stability of the adjustment. We 
adopted the simple method by which, for each unknown u, we 
add an a priori value equation u=0. Such an equation would 
have an undesirable effect if it was not weighted with a very 
low weight with respect to the observation equations. In 
practice it proves to be adequate to stabilize the system with, 
as shown by several tests using the two above-mentioned 
algorithms, no effect on the good relative adjustment between 
the arcs. The constraints may impact the reference frame in 
which the adjusted sea surface heights are obtained, but 
almost not the gravity anomalies to be derived from them 
because of their long wavelength nature. An interactive 
graphic software system then allows us to see not only the 
geographical distribution of the cross-over height differences 
before and after adjustment, but also the corrections that are 
applied on ascending or descending arcs to check that the 
adjustment is satisfactory not only in the root mean square 
(RMS) sense. 

.Second step: orbit error reduction. 

Once we have the different stacked data sets, we operate a 
cross-over adjustment to remove most of  the non 
geographically correlated part of the orbit error (Balmino, 
1992). Our cross-over orbit error adjustment software is 
composed of two steps: the cross-over search and the 
adjustment. 

Cross-over search: the cross-overs can be searched 
between the arcs of  1, 2 or 3 satellites. Each data set is cut into 
ascending and descending arcs which will be adjusted 
separately, The Equator crossing longitude is computed for 
each arc, as well as other parameters which allow us to have a 
theoretical track based on satellite dynamics formulas. For 
each pair of  arcs suspected to intersect, a theoretical cross- 
over position is quickly computed. Then a dichotomous 
search locates on each arc the exact position of the cross-over 
and both cross-over heights are interpolated (linearly, with 
splines or with smoothing splines). This first step takes I0 
CPU-hours on a Sun SPARC station IPX or 12 CPU-minutes 
on a CDC Cyber 2000 for 100.000 cross-overs in the case of 
sparse data. or for 200.000 cross-overs for dense data. 

Adjustment: each arc is adjusted assuming an orbit error 
function such as: orthogonal polynomials with 1, 2 or 3 
unknowns (bias + tilt + curvature) or sinusoidal functions 
with up to 5 unknowns (terms at one or two cycles per 

Once this best satellite data set is adjusted, we decide that 
it serves as an absolute reference for the other satellites and 
we do a three satellite adjustment with fixed Topex-Poseidon 
arcs; in other words, we adjust Geosat and ERS-1 on Topex- 
Poseidon. When we do this, we still take into account Geosat/ 
ERS-I cross-overs. Each cross-over is considered with a 
weight depending on the precisions assumed on the crossing 
satellite altimeters, and also with another weight depending 
on the number of  cross-overs of  each family of arcs, so as not 
to privilege denser data sets like ERS-1 (35-day orbit against 
11-day orbit for Topex-Poseidon). 

Third step: spline adjustment 

After having done the orbit error adjustment, there are still 
height differences at cross-overs. These differences are due, 
among other causes, to: 

- altimeter noise 
- bad measurements that may not have been eliminated 
- poor corrections applied to the measurements, especially 

the tidal correction near coasts 
- residual orbit error, which is supposed to be very small 

(something not well absorbed by the orbit error model chosen) 
- residual oceanic circulation signal, especially in places 

where all the cycles covering the one year period where not 
present; also signals with 2 year or 3 year cycles. 

Whereas the relative accuracy on each arc may be quite 
good, these residual errors at cross-overs may force us to 
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over-smooth in gridding, independently of the algorithm. 
Otherwise, it might result in artefacts such as on figure 1. The 
effect is even more disastrous when recovering the gravity 
anomalies. 

' ' ' ' / i I i 

; i t b i , i ~ , i i 

Figure 1. ArtefaCt.in a geoid grid due to a bad cross-over 

A pragmatic approach since the error may be on arc A, on 
arc B or on both arcs (fig. 2) is to assume that the MSS is 
somewhere between are A and arc B. The idea is then to add a 
spline function to each arc so that they cross exactly at the 
same height. Thus the error relative to the MSS will not be 
worse than it would be without modifying the arcs, and we get 
rid of the artefact. This is what we have called ~spline 
adjustment~>. 

"" . . . . . .  A' . . . . . .  ~ "  

Figure 2. Soline adjustment to nullify the residual cross-over differences 

In practice, we consider an arc A with all its cross-overs 
with arcs of the same or of different satellites. The heights at 
the cross-overs are computed with smoothing splines so as to 
take into account the noise of the altimeter. Let Ah(i) be the 
height difference at cross-over number i, satA be the satellite 
of arc A and satB the satellite of crossing arc B; then we 
compute a spline function for arc A which will take the 
following value at cross-over i: 

precision (satA) 
6h (i) x precision (satA) + precision (satB) 

and a similar formula for arc B, the precision being estimated 
for each satellite, for example by the RMS of the cross-over 
height differences for this satellite after adjustment. 

For instance, two arcs of a common satellite will be moved 
by half the difference at the cross-over. The spline functions 
of Akima (1970) are used to avoid oscillations when two 
cross-overs are very close. 

After this adjustment, the RMS at cross-overs are 
nullified, and the artefacts seen previously disappear (or are 
reduced in places where three arcs have three very close bad 
cross-overs). 

Fourth step: from MSS tO residual geoid 

Once the data have been stacked, the orbit error reduced and 
the spline adjustment done, all data points are supposed to 
reflect the MSS. We still have to subtract the SSDT to get the 
geoid. We used the Levitus (1982) model. Western boundary 
currents (e.g. the Gulf Stream) have dynamic topography of 
about one meter. Because of mismodeling errors in the Levi- 
ms model and of variability effects, a significant part of  the 
signal may remain. 

Prior to gridding and transforming into anomalies, we 
subtract a reference geoid computed from a global spherical 
harmonic model, m get a residual geoid. We used the 
OSU91A model (Rapp et al., 1991) which is complete to 
degree and order 360. The corresponding reference anomaly 
will be added back at the end of the process to the residual 
anomaly grid obtained by FFT. This is a usual remove-restore 
technique used to reduce effects of the flat Earth 
approximation and truncation errors when using FFT. 

Fifth step: gridding 

The gridding of the residual geoid heights is somewhat 
delicate because we have very good resolution along the 
tracks (1 point every 6 or 7 km) but relatively large gaps 
between different tracks, especially at latitudes smaller than 
60 ° . After having tested different methods (average of nearest 
points with different kinds of weight, spline surface fitting) 
and different software, we selected a method which computes 
a spline surface with continuous curvature and eventually 
interior and bounda~ tension factors. The software, which is 
very fast, was taken from the GMT package (Smith & Wessel, 
1990). For geoid gridding, it seems best to set the interior 
tension factor to zero. When dealing with an area with large 
data gaps (because of land or ice) and especially when located 
on the edges of the area, we empirically found that the 
residual geoid had to be constrained in these gaps by adding 
some points with zero value and eventually by using a tension 
factor along the edges.  In high latitude areas close to the 
maximum latitude reached by the satellite, we discard the 
observations since inter-track geoid gradients (and therefore 
the gravity anomalies computed) are very sensitive to residual 
orbital errors for satellite tracks which are extremely close to 
each other - this not so much the case with the second method 
(see 1.2). 

Sixt h step: FFT 

We now have a regular grid in longitude and latitude, of  
residual geoid heights which we transform into residual 
gravity anomalies using the well-known FFT techniques 
(Schwarz et al., 1990) because its rapidity allows us to process 
large areas. 

The sources of FFT errors that we have tried to reduce are 
the following: 

a) Truncation errors: to minimize the truncation effects 
(due to the integration over a limited area) that appear on the 
edges of the area, we work, as said already, on residual grids 
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and we taper the edges of the grid by adding a tapered band all 
around the grid (for 5'x5' grids, a I ° wide band gave the best 
results). In addition, we work with areas bigger than the area 
(10 ° x 10 °, practically) we are interested in, by 2 or 3 more 
degrees on each side of the area. 

b) Flat Earth approximation: to perform FFT, the nodes 
should represent regularly spaced values. Of course a grid in 
longitude and latitude does not have the same horizontal scale 
at different latitudes. As a result, if we take into account the 
mean latitude to scale the horizontal grid step, the FFT will 
introduce errors except near the mean latitude. A first classical 
method to reduce these errors is to use a Lambert projection 
(for example) before doing the Fourier transform. But this is 
not easy when working on a large area; one would have to 
divide the area into different small regions, use several 
projections, and after transformation try to paste everything 
together. Another method was presented by Forsberg & 
Sideris (1993) and called ~<multi-band approach>>, which 
divides the area into narrow horizontal bands in which the 
horizontal grid step is quasi-constant. The successive 
overlapping bands are transformed seperately and then 
merged together, typically working on 3 ° wide bands. We 
adopted this method which is easy to use for large areas 
bounded by meridians and parallels. 

c) Approximations in Stokes' integral: this approximation 
is often made when using Stokes' formula with FFT. Strung 
van Hees (1990), Forsberg & Sideris (1993) have shown that 
the Stokes integral can be well evaluated by a two 
dimensional convolution formula and transformed by FFT 
(instead of using only the leading term of the Stokes function 
as it is often done). 

This improves the results, but even better seems to be the 
method of the gravity coating suggested by Farelly (1991). 

To evaluate the errors due to the FFT, we made some tests 
over a 10°x 10 ° area near Japan using the OSU91A geoid and 
gravity anomaly models from degree 180 to degree 360. This 
allowed us to compare the solutions obtained by FFT with an 
absolute reference, unfortunately looking only at wavelengths 
greater than 1 ° . 

Table 1 summarizes the results of some tests we made to 
compare the different methods; the statistics are for a 7°x7 ° 
area (5'x5' grid) in the middle of the 10°xl0 ° grid, to avoid 
edge effects. It is worth noting that this residual field ranges 
from -124 to +143 reGal. 

Table 1. Comparison of  three FFT methods when recoverin~ 
Lhe hart of the OSU91A field above decree 180 

(k is the wavenumber S(V) the Stokes function. R the mean Earth radius) 

I RMS in mGal 
Method Kernel Bands (min/max) 

I band (I0 °) 0.97 (-3.51/5.35) 
approximation of Sto- k 
kes function 

3 ° wide bands 0.47 (- 1.02/2.5 I) 

1 
spherical FFT FFT (S (V))  3 ° wide bands 0.45 (-0.86/1.68) 

Method Kernel 

i gravity coating method k - 3 
2R 

RMS in mGal 
Bands (min/max) 

I band 0,84 (-2.9114.35) 

3° wide bands 0,35 (-0.59/1.54) 

From these results we decided to choose the multi-band 
gravity coating method. In addition, we use a "~ener  filter in 
the spectral domain as suggested by Forsberg & Solheim 
(1988), which has the following form when going from geoid 
heights to gravity anomalies: 

l 
W(k)  = 1 +ck 4 (1) 

where c is set so that W(kr)=0.5 when k r is the 
wavenumber corresponding to the typical resolution expected 
from the data. 

L2, F r o m  def lect ion of the vertical to a n o m a l i e s  

The great advantage of this method is that it is only based 
on geoid gradients computed along the satellite profiles. So if 
there is locally a bias between two arcs, it has no effect on the 
results; all long wavelength errors have very small effects. As 
Sandwell (1992) showed it, the orbit error, which is mostly of 
long-wavelength nature, has a negligible effect, and no cross- 
over adjustment has to be done. To subtract the SSDT Levitus 
model, which is very smooth, is not necessary anymore, since 
its derivatives are several orders of magnitude smaller than 
the residual geoid gradients. 

First sten: data stackin~ 

Stacking cycles together is still required because it 
diminishes noise and short wavelength phenomena of non 
geodetic origin that can appear on a cycle and not on others. 
So, as for the geoid, we worked with stacked data from 
ERMs. 

Second steo: north and east deflection computation 

The along-track gradient (opposite of the deflection of the 
vertical) can be computed after fitting each arc with a 
smoothing spline. The question is how to obtain north and 
east gradients from gradients along up to six directions when 
dealing with three satellites, in benefitting from the maximum 
amount of information. 

Sandwell (ibid.) has developped a method where north and 
east deflection grids are iteratively obtained from ascending 
and descending along-track deflection grids. 

The method we present here is different and requires 
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cross-over location. The process is the following (fig. 3): 

/ " " ~ t r  c k de ttection from data 
/ " , . ~  ~ r o s s - t r a c k  deflection 
' 7 \ ~ e d a t  ~ s ~ - O ~ . r ~ "  _ 

Fibre  3. North (~) and east (n) deflection computation 

- First we locate all cross-overs and interpolate the along- 
track deflection along each arc at the cross-overs, by deriving 
a smoothing spline that follows the profiles. Since these two 
components of the deflection will be used to compute cross- 
track deflection of both arcs, we only take cross-overs making 
a cross at significant angle, that is to say <<UV>> cross-overs, 
between a U arc and a V arc (if we call U arcs the ascending 
arcs of prograde satellites or the descending arcs of retrograde 
satellites, and V arcs the opposite). Taking <<UU>> or <<VV>~ 
cross-overs would be dangerous since the azimuths of the arcs 
of Such cross-overs are often close. 

- Then we consider one arc after the other. We take an arc, 
compute the along-track deflection at each data point (again 
with smoothing splines). Then at each cross-over we compute 
the cross-track deflection from crossing along-track 
deflections computed at the first step. We interpolate these 
cross-track deflections at each data point with an Akima 
spline. Therefore we get along and cross-track deflections at 
each data point, and from these two components we recover 
north (~) and east (rl) deflections. 

Regarding the cross-track deflection interpolation: at the 
extremity of an arc, after the last cross-over, the cross-track 
deflection at this last cross-over is extrapolated to the end of 
the arc. Every data point which is too far from the nearest 
cross-over of its arc is eliminated. The maximum distance for 
interpolation or extrapolation has been set to 15 km for dense 
data (Geosat GM) and 60 km for merged ERMs of Geosat, 
ERS-1 and Topex-Poseidon. 

Third step: removal of reference model 

We subtract the spherical harmonic reference model from 
north and east deflections. 

Fourth step: gridding 

We have north and east residual deflections at data points. 
The gridding of  these values is performed with the same 
method and software used in the case of the geoid. 

Fifth step: FFT 

We use the following formula, with approximation of the 
Stokes function by the leading term: 

Ag(k) = iT~..W(k) • [kx~(k) +ky~(k) ] (2) 

where: 

k = ~  q--x - --y 

k x and ky being the wavenumbers in west-east and south- 
north directions, respectively. 

To try to minimize the errors due to the flat Earth 
approximation, we again work on narrow horizontal bands, on 
the principle suggested by Forsberg & Sideris (ibid.). We also 
apply a Wiener filter in the frequency domain, which is in that 
case: 

W (k) = 1 (3) 
1 +dk  2 

Finally, we obtain a residual FAA grid, which is added to 
the reference model to get the final grid. 

I I -  RESULTS AND COMPARISONS 

H.1- Working with Geosat,  ERS-1 
and Topex-Poseidon ERMs 

The first computation is done with non-dense data sets. 
R.H. Rapp provided a one year stacked data set of Geosat 
ERM (November 1986 to October 1987, Wang & Rapp, 
1992). ERS-1 IGDRs with improved orbit were provided by 
C.C. Tscherning and were stacked over a year (14th April 
1992 to 4th May 1993). Topex-Poseidon data were stacked at 
GRGS, again over one year (13th October 1992 to 14th 
October 1993). 

The studied area goes from 25°W to 60°E and f~om 30°N 
to 82°N. We work on 5 'x5 '  grids. 

Geoid precision 

For the geoid computation, Topex-Poseidon was first 
adjusted over  the whole globe as explained before, the RMS 
at cross-overs going from 3.4 cm before adjustment to 1.9 cm 
after. Then ERS-I and Geosat were adjusted on Topex- 
Poseidon, over a large area (70°W to 120°E and 10°S to 
82°N) containing the region of interest, to be sure that all arcs 
are well constrained, especially ERS-1 northern arcs (as 
checked with our visualization software). The RMS at cross- 
overs after adjustment were the following: 

Geosat/Geosat : 10.6 cm 
ERS-1/ERS-1 : 6.5 cm 
Topex/Topex : 1.9 cm 
Topex/Geosat : 6.8 cm 
Topex/ERS-I : 6.2 cm 
Geosat/ERS-1 : 8.8 cm 

All cross-overs : 7.8 cm 
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(a) geoid derived FAA (b) deflections derived FAA 
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figure 4: Comtmrison between geoid and deflection derived ~rids (contour every_ 5 reGal) 
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As said before, after spline adjustment all cross-over 
differences were nullified. So we may say that the precision of 
our MSS is about 8 cm where we have data. 

It is difficult to give a long wavelength precision to our 
geoid, but here are some figures to give an idea: Levitus 
SSDT surface precision in Northern Atlantic Ocean is said to 
be around 10 cm for long wavelengths. The effects of  currents 
that have a period longer than a year are believed to be a few 
centimeters in this region, except for the Gulf Stream of 
which the position changes. 

The short wavelength precision is limited by the poor 
inter-track resolution, especially at low latitudes. At 30 ° in 
latitude, we find some geographical points in the grid which 
are 35 km away from the nearest data point. The short 
wavelength information cannot be invented in places where 
we have no data. To quantify its importance, we high-pass 
filtered a high resolution geoid which we computed with 
Geosat dense data (described in part III) over the Mid-Atlantic 
Ridge, where we find very large high frequency signal. After 
high-pass filtering, keeping wavelengths under 35 km and 
rejecting those above 40 km, the residual high frequencies 
went up to 20 cm, with an RMS of 2.5 cm. Of course the 
precision of recovery of these terms increases with latitude. 

Computation of FAA ~m-ids 

The geoid derived anomaly grid was obtained by FFT as 
described before; north and east deflections were gridded and 
also converted into anomalies. Both conversions included a 
Wiener (low-pass) filter with a half-cut at 35 km. 

The two grids show no difference at wavelengths greater 
than 100 km. The RMS differences that we observed between 
the two grids are 3.5 mGal in an area around 70°N, and 6.7 
mGal in an area around 40°N. 

When looking at the maps (fig. 4), there are two points to 
note: first, the geoid method sometimes generates lineaments 
that can be seen on the maps using a shading graphic 
technique; the deflection method gets rid of these effects. The 
second point is that the deflection method provides more 
continuity in the short wavelength features. This can be seen 
on the figure. 

We performed some comparisons with marine cruises, in 
different areas. The geoid and the deflection methods lead to 
quite similar results in places where the cross-over 
discrepancies are small, but the difference can be appreciable 
in other places, as shown from comparison with cruise data, 
e.g. one (Sharman and Metzger, 1994) located around 15°W - 
55°N (see table 2). The external grid is from Sandwell & 
Smith (ibid.). Figure 5 shows the correlation between the 
cruise data and the deflections derived FAA grid interpolated 
along the cruise, after a -14 mGal bias adjustment of  the 
cruise, probably due to a reference system error (the bias is 
practically equal to the Postdam correction). 

Table 2. 
Comoarison with marine data in the case of non-dense altimetric data 

linear correlation std deviation mean 
Grid compared with cruises of difference difference 

Geoid method 0.929 9.42 regal -14.2 mGal 

Deflection method 0.957 7.75 mGal -13.7 mGal 

External grid 0.921 10.44 regal -13.05 regal 
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(a) deflection derived FAA (b) FAA from marine data (c) External grid 
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lYigure. 5 Correlation Ofrthe deflection derived g'cid 
with a Geodas marine cruise (units: km and mGal) 

In that first situation (non-dense data), the deflection 
method appears to be superior to the geoid method, but the 
geoid method does not give bad results and has the advantage 
of providing, as intermediate product, a geoid grid which can 
be used for other purposes. 

IL2-  W o r k i n g  w i t h  T o p e x - P o s e i d o n  a n d  G e o s a t  G M  

This second determination is made along the Mid-Atlantic 
Ridge, from 20°W to 9°W and from 38°S to 30°S, with 2'x2' 
grids by Neumann (1993), covering the area chosen, for the 
sake of comparison (fig. 6). 

When using the geoid method, the Geosat GM tracks are 
so close to each other that a simple error of 2 cm between two 
parallel arcs separated by 2 km creates a geoid gradient which 
produces a gravity anomaly error of about 10 mGal. As a 

result, the geoid derived FAA grids are so marked by the 
satellite tracks that it hides the short wavelength signal (fig. 7a 
shows these residuals level problems in the geoi grid). It is 
clear that our geoid method, despite the efforts we have made 
to bring it to an otherwise satisfactory level, falls in the case 
of dense data. 

On the other hand, the deflection derived map shows very 
clear details. We compared our grid and an external grid 
(SandweU & Smith, ibid.) to marine data (Marathon 10 and 
Plume 4 & 5 validated and adjusted cruises, Neumann et al., 
1993) which are considered as a very good reference (internal 
standard deviation at cross-overs was reported to be less than 
4 reGal). The grids can be seen in figure 6. The quality of the 
results is shown by numerical comparison with the marine 
cruises (table 3). The comparison is made between marine 
data points and values interpolated from the altimetry derived 
grids. 

Table 3. 
Comparison with marine datain the case qf dense altimetric data 

linear correlation std deviation mean 
Grid compared with cruises of difference difference 

BGI grid 0.963 7.0 regal 0.3 reGal "' 

External grid 0 . 9 5 9 '  8.3' mGal 1.8 regal  

Nora: our deflection method requires cross-over location, 
which we consider is no major handicap with today's 
machines. It is even feasible with a modest workstation: we 
produced a FAA grid using Geosat GM data over a large 
region (57°W to 183°W and 53°S to 30°S) containing 
1.500.000 cross-overs. It took 3.5 days from beginning to end 
with a Sun Spare station IPX. 



IH- COMPUTATION OF A GEOID GRID 
WITH DENSE DATA 

The difference between the poor looking geoid derived 
FAA grid and the deflection derived grid lead us to try to 
compute the geoid from deflections of the vertical using FFT. 

We have: 

(~(k)  = -ikyN(k) (4) 

(k) -ikx/~l (k) 

Thus: 

ky~ (k) + kxfi (k) = -ik21~l(k) (5) 

Consequently: 

i . [ky~ (k) + kx~ (k)] (6) 

Using the usual remove-restore technique and again the 
multi-band approach, we computed the geoid surface shown 
in figure 7b. The comparison between this surface and the 
Topex-Poseidon profiles shows a RMS difference of 10 cm. 
Compared to the quality of the Topex-Poscidon data, this 
might be explained by the larger errors in the Geosat data 
which are simultaneously used, also by the sea surface 
topography model used.. 

Besides this approach, and of course least squares 
collocation, there are other ways to compute a gcoid from 
geoid slopes (Sandwell, 1987) but we did not try any at the 
moment. 

CONCLUSION 

In this paper, two methods to convert satellite altimetry 
data into free air gravity anomalies have been presented with 
an emphasis on practical aspects. 

A geoid was computed with stacked ERMs of Geosat, 
ERS-1 and Topex-Poseidon over an area going from 25°W to 
60°E and from 30°N to 82°N, following an orbit error 
adjustment and a <<spline adjustment>> which avoids or at least 
diminishes artefacts due to remaining cross-over errors. 

A new algorithm for gridding north and east deflections of 
the vertical was presented. 

The conversion of the geoid grid and of the deflection 
grids into FAA has been clone with FFT techniques, taking 
special care of the different errors induced by these 
techniques: the truncation error, the fiat Earth approximation 
and the approximation of the Stokes integral. A Wiener filter 
was applied in the spectral domain. 

Unlike collocation or similar statistical estimation 
methods, the FFT approach does not provide the error 
estimate of the predicted anomalies. Their accuracy can be 
evaluated only with recourse to external data checks. 

The comparison with marine gravity data allows us to say 
that both methods, via geoid and via deflections, lead us to 
satisfactory results when working with these ERMs, altough 
the poor inter-track spacing doesn't allow a high resolution 
product. The results are quite similar in areas of low 
variability and medium frequency signal, but the deflection 
method appears to be superior in other areas, giving no 
artificial lineaments along sub-satellite tracks and more 
continuous features. 

When working with dense data, i.e. Geosat GM south of 
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30°S, the geoid method is not workable anymore, because the 
very small inter-track spacing creates high cross-track geoid 
gradients when gridding the geoid. But the deflection method 
leads to better FAA maps. Over the Mid Atlantic Ridge, 
where important high frequency signal is present, our map 
differs from dense marine cruises by 7.0 mGal RMS, which 
appears to be slightly better than the results obtained by 
Sandwell & Smith with a different algorithm. 

A high resolution geoid was computed from the north and 
east deflection grids via FFT, not showing the lineaments that 
were present on the grid directly obtained from geoid heights. 

The deflection of the vertical method, after that empirical 
comparison, appears to be a good method to use to compute 
FAA from altimetry data. The ERS-1 170 day orbit mission, 
hopefully followed by a slightly shifted mission with the 
same inter-track spacing, ground segment operations 
permitting, promises fairly dense data of very good quality, 
allowing the production of global high resolution maps of 
geoid and FAA. 

Acknowledgements 

We thank R.H. Rapp for providing Geosat one year mean 
sea surface height track, C.C. Tscherning for providing ERS- 
1 data, C. Brossier for providing the Topex mean arc and G. 
A. Neumann for providing Marathon 10 and Plume 4 & 5 
validated and adjusted cruises, as well as the corresponding 
FAA grid (Neumann et al,, ibid.). 

References 

Akima, H. (1970) A new method of interpolation and smooth 
curve fitting based on local procedures, J. of the Assoc.for 
Computing Machinery, Vol. 17, No.4, pp.589-602. 

Balmino, G. (1992) Orbit choice and the theory of radial orbit 
error for altimetry, in Satellite Altimetry in Geodesy and 
Oceanography, R. Rummel and F. Sanso (Eds), Springer- 
Verlag, 243-315. 

Farelly, B. (1991) The geodetic approximations in the 
conversion of geoid height to gravity anomaly by Fourier 
transform, Bull. Grodrsique, 65:92-101. 

Forsberg, R. and D. Solheim (1988) Performance of FFT 
methods in local gravity field modelling, Chapman 
Conference on progress in the determination of the 
Earth's gravity field, pp. 100-103. 

Forsberg, R. and M.G. Sideris (1993) Geoid computations by 
the multi-band spherical FFT approach, Manuscripta 
Geodaetica, Vol. 18, No. 2, pp. 82-90. 

Haxby, W.F., Karner G.D., Labrecque J.L. and Weissel J.K. 
(1983) Digital images of combined oceanic and 
continental data sets and their use in tectonic studies. EOS 

Trans. Am. geophys. Un., 64, pp. 995-1004. 
Knudsen, R, O.B. Andersen and C.C. Tscherning (1992) 

Altimetric gravity anomalies in the Norwegian-Greenland 
Sea - Preliminary results from the ERS-I 35 dziys repeat 
mission, Geophys. Res. Lett,, Vol. 19, No. 17, pp. 1795- 
1798. 

Levitus, S. (1982) Climatological Atlas of the World Ocean 
NOAA, Geophysical Fluid Dynamics Laboratory, 
Professional Paper 13, Rockville, MD. 

Neumann, G.A., D.W. Forsyth and D.T. Sandwell (1993) 
Comparison of marine gravity from shipboard and high- 
density satellite altimetry along the Mid-Atlantic Ridge, 
Geophys. Res. Lett., Vol. 20, No. 15, pp. 1639-1642. 

Rapp, R.H. and T. Basic (1992) Oceanwide gravity anomalies 
from Geos-3, Seasat and Geosat altimeter data, Geophys. 
Res. Lett., Vol. 19, No. 19, pp. 1979-1982. 

Rapp, R.H., Y.M. Wang and N.K. Pavlis (1991) The Ohio 
State 1991 geopotential and sea surface topography 
harmonic coefficient models, Rep. 410, Dep. of Geod, 
Sci. and Surv., The Ohio State Univ., Columbus. 

Sandwell, D.T. (1987) Biharmonic spline interpolation of 
Geos-3 and Seasat altimeter data, Geophys. Res.Lett., 
Vol. 14, No. 2, pp. 139-142. 

Sandwell, D.T. (1992) Antartic marine gravity field from 
high-density satellite altimetry, Geophys. J. Int. 109, 437- 
448. 

Sandwell, D.T. and W.H.R Smith (1992) Global marine" 
gravity from ERS-1, Geosat and Seasat reveals new 
tectonic fabric, AGU Fall meeting, G42D-7. 

Schwarz, K.P., M.G. Sideris and R. Forsberg (1990) The use 
of FFT techniques in physical geodesy, Geophys. J. Int 
100, 485-514. 

Sharman, G.R and D. Metzger (1994) National Geophysical 
Data Center's GEODAS CD-ROM Project, submitted to 
Bulletin d'information, Bureau Gravimrtrique 
International. 

Smith, W.H.F. and P. Wessel (1990) Gridding with 
continuous curvature splines in tension, Geophysics, Vot. 
55, pp. 293-305. 

Strang van Hees, G. (1990) Stokes formula using Fast Fourier 
Techniques, Manuscripta Geodaetica, Vol. 15, pp. 235- 
239. 

Wang, Y.M. and R.H. Rapp (1992) The determination of a 
one year mean sea surface height track from Geosat 
altimeter data and ocean variability implications, Bull. 
Grodrsique, 66:336-345. 


