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Analytical buckling solutions for circular Mindlin plates: 
inclusion of inplane prebuckling deformation 

G. M. Hong, C. M. Wang and T. J. Tan, Singapore 

Summary: The buckling problem of thick circular plates under uniform radial loads with allowance for inplane prebuckling 
deformation is solved analytically. The analytical buckling solutions should be very useful as benchmark values for testing the 
validity, convergence and accuracy of numerical techniques for plate buckling. This study shows the importance of including 
the prebuckling deformation in thick plate buckling since its effect is in the same order of magnitude as that of shear. The 
prebuckling deformation effect raises the critical load and is more pronounced in clamped plates than in simply supported ones 
as the former plates undergo greater deformation before buckling. 

Analytische Liisungen flit das Ausbeulen yon Mindlin-Platten: Beriicksichtigung der ebenen Vorbeul-Verformung 

[3bersicht: Es wird das Ausbeulproblem von dicken, kreisf6rmigen Platten, die gleichf6rmigen radialen Lasten ausgesetzt sind, 
unter Berficksichtigung der ebenen Vorbeul-Verformung analytisch gel6st. Die analytischen Beull6sungen sollten als 
Anhaltswerte ffir Untersuchungen der Gfiltigkeit, Konvergenz und Genauigkeit von numerischen Verfahren sehr nfitzlich sein. 
Die Untersuchung zeigt auch, dab es wichtig ist, die ebene Vorbeul-Verformung beim Ausbeulen dicker Platten zu 
berficksichtigen, weil dieser EinfluB von derselben Gr6Benordnung ist wie der der Scherung. Der Effekt tier Vorbeul- 
Verformung erh6ht die kritische Last und ist bei fest eingespannten Platten st/irker ausgepr/igt als bei einfach gelagerten, weil 
erstere vor dem Verbeulen gr6Bere Deformationen erfahren. 

1 Introduction 

It is well-known that shear deformation (SD) influences the critical loads of moderately thick plates. 
The neglect of this SD leads to an overprediction of the critical load, with increasing error as the 
thickness-length ratio increases. The SD effect can be incorporated using the first order shear 
deformation (Reissner-Mindlin) theory [1, 2]. The governing equations for Mindlin plate buckling 
were first derived by Kollbrunner and Herrmann [3] and a more general version of the equations 
which include vibratory effects was given by Herrmann and Armenakas [4]. A study by Srinivas and 
Rao [5] has shown that this first order theory will suffice in giving reasonably accurate buckling 
solutions after comparing with results derived from a three-dimensional exact analysis. In 1983, 
Ziegler published an interesting paper [6] where he showed that the effect of inplane prebuckling 
deformation (PBD) is of the same order of magnitude as the shear effect on a simply supported 
rectangular plate. Recently, Xiang et al. [7] further investigated the effect of PBD on thick rectangular 
plates with various edge conditions, thickness-length ratios, aspect ratios and Poisson's ratios. It was 
found that the PBD is even more significant when the plates: 

(a) are subjected to a combination of compression loadings in one direction and tensile loadings 
in the other orthogonal direction, 

(b) have clamped edges. 

Apart from [6, 7], there are no papers in the open literature on the buckling of thick plates with 
allowance for PBD. Unlike the earlier work on rectangular plates, this present study considers simply 
supported and clamped circular plates under uniform radial inplane loads. 
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In determining the buckling load, the Trefftz's initial stress theory [8] is adopted. On the basis of the 
strain energy functional, the governing differential equations and boundary conditions are derived 
using calculus of variations. By analytically solving the differential equations, the critical loads may be 
presented in closed-form expressions. Scalar indicators are embedded in these expressions which 
enable the inclusion or the exclusion of the influences of P B D  and the second order terms involving 
the in-plane deformation in the Green-Lagrangian strain expressions. Note  that these second order 
terms have been referred to in the literature [9, 10] as "curvature terms" (CT). Consequently, the 
sensitivity of the critical load to these individual effects can be examined using these scalar indicators. 

2 Derivation of energy functional by Trefftz's theory 

Consider an isotropic circular Mindlin plate of uniform thickness t, and radius R under uniform radial 
compressive in-plane load N as shown in Fig. 1. According to Trefftz's initial stress theory [8], the 
internal strain energy may be expressed as 

F = ~  e r r [ B ] ~ L d V +  a r e N d V  (1) 

v v 

in which V is the volume of the plate in the prestressed state; e is the incremental strain tensor; o- is the 
prestress tensor; [B] is the material property matrix; and the subscripts L and N denote linear and 
nonlinear components,  respectively. 

In view of axisymmetric buckling and the assumption of no thickness deformation, the 
incremental displacements can be expressed in polar coordinates as 

u~(r, d?, z) = - zOo(r), (2 a) 

u4,(r , qS, z) = 0, (2 b) 

w(r, 4~, z) = w(r), (2 c) 

in which r, q5 and z are the radial, circumferential and transverse coordinates; u,, ur and w are the 
displacements in the radial, circumferential and transverse directions; and 0~ is the rotation in the 
radial planes, respectively. 

In view of (2), the linear and nonlinear strain tensors are given as follows [11]: 

eL r =  {e~,Ler162162162 

in which 

~u~ d0~ 1 ~u~ u~ z ~w 
e ~ r -  0r z dr e 4 r  r O~b + r - r 0,, ez,L Oz - 0 ,  

1 Ou, Su e ur Ou, Ow 
- -  - -  O ,  ~ r ~ L  = + - -  e~,L r aq~ + 0r r ~ z  0r 

dw) ~ur 1 Ow 
- - - -  0 ~ - ~ -  , d r  %~L=~-Z  + - -0  r 0~ 

(3 a) 

Y N 

Fig. 1. Buckling of thick circular plate under uniform in-plane load 
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and 

~'N T :  {errN e4)4)N EzzN erdiJN erzN '~4)zN}, 

in which 

(3 b) 

[B] = 

E vE vE 
0 0 0 

1 - v  2 1 - - V  2 1 - - V  2 

vE E vE 
0 0 0 

1 - v 2 1 - -  V 2 1 - v 2 

vE vE E 
0 

1 - v 2 1 - v 2 1 - v 2 

E 
0 0 0 

0 0 0 

0 0 0 0 

0 
2(1 + v) 

zE 
0 

2(1 + v) 

0 

0 0 

in which E, v and ~ are the Young's modulus,  Poisson's ratio and shear correction factor, respectively. 
The values of shear correction factor ~ that  have been used in the literature are: 

5 
= - due to Reissner [11 (5 a) 

6 

~2 
= - -  due to Mindlin [21 (5 b) 

12 

20(1 + v) 
x = due to N/inni [12] (5 c) 

24 + 25v + v 2 

As these factors do not  differ much in value, the Reissner's factor of ~ = 5/6 is adopted as comparison 
of solutions will be made with other researchers who have also used this value. 

0 

0 

zE 

2(1 + v) 

(4) 

'%"'= T L t  ~,. ) + t,~,,.)_l + T t , ~ ) = C ~ Y t d r )  +2t, d,')' 

~'+'<=CeL\ar ) a~ +t ,~ , - )kT~ -+ + 7 7 =o, 

~':" = CC Lt ar j \ Sz ) + t ar ) t az ) l  + 7 7 =CczO"t,.dr// 

~+:~ = c~ L\ez) e~ + t e= j 77 + + ~ tr ee) 

in which the scalar indicator Cc takes on the values of 1 and 0 for including and excluding the CT, 
respectively. 

The material property matrix, [B], is given by 
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For circular plates under a uniform radial in-plane compressive load, N, the prestress tensor, a, is 
given by 

a4)4oL azzL ar4)L arzL ad)zL} = 
N fit 

( t 
Substituting (3), (4) and (6) into (1) yields 

Nt 0 0 0 0} (6) 

1 f f Ez 2 ~(dOr'~ 2 ( ~ ) 2  ( ~ ) ( d O r , ~  N [ ( d w ) 2 ]  
F = ~ [1 - v a L\~-r// + + 2v \ d r / J  - T ~-r 

v 

+ 2(1 + v~ 0 r -  d r / / J  - cCZ2 7 k \ d r / /  + dV. (7) 

Note that V is the prestressed volume at the state of incipient buckling and is given by 

V = rc(RA) 2 t (8) 

The in-plane deformation factor, A, in (8) is defined as 

A =  1 -  CP t = l - Cp 12(1+v) (9) 

where c~ = t/R and k is the critical load factor given by 

NR 2 
k -  D (10) 

and D = Et3/[12(1 - v2)] is the flexural rigidity of the plate. Note that the scalar indicator Cp in (9) 
takes the values of 1 and 0 for buckling with and without the allowance for PBD, respectively. 

Normalising coordinate, r, with respect to the deformed radius, RA and integrating with respect to 
z, (7) becomes 

1 
F f { (d0r~ 2 1 (dOr'~ C d ~  2 

reD - 0 \do / /  + 7 (0,)2 + 2v(O,) - kA20 \do// \do,,/ 
o 

6"(1--v) ( d#~ 2 ke;[ (dOr'~2 1 }} 
+ c~ z A2~ O, - ~ / /  -- Cc ~ -  O \ d 0 )  + -0 (0,)2 dQ (11) 

in which 0 = r/(RA) and v~ = w/(RA). 

3 Governing differential equations and boundary conditions 

The minimization of the energy functional given by (11) with respect to # and 0r, using calculus of 
variations, leads to the following two coupled differential equilibrium equations 

E kc~2 ] E  l d #  d2~b~ E~ d0,] 
1 6x ( iZ  v ) ~ +  do2j-- + do j  = 0 ,  (12) 

[ kc~2~IOr 1 d0r d20, -] 6 ~ ( l - v )  A2[  d#J 
1 - C c  12J ~5 0 dQ d20_] + e2 0 , - ~  =0.  (13) 

(13) gives d#/d0 as a function of 0,. Substituting it and its derivatives with respect to 0 into (12) 
yields: 

d 0, 2d 0, ( ,)d0r 
do ~ + - 0  dQ2--+ k o - ~  ~ - + ~  ko+~5  0 , = 0 ,  (14) 
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where 

ko = 

Q - = I - C c - -  

kA  2 
(15) k0r 2 

6u(1 - v)J 

kcr 2 
12 (16) 

Introducing fi = ~ o  ~ and dividing through (14) by (ko) 3/2 leads to 

d30  ( l)d0  
d f i ~ + ~  dfl~-~+ 1 - ~  ~ - + ~  1 + f i 5  0 , - -0 .  (17) 

As for the boundary conditions, they are: 

(i) a t ~ = 0 ( i . e ,  f i=0)  

0~ = 0 (18) 

(ii) at Q = 1 (i.e. fi = 1/~oo) 

0r = 0, for clamped plates; (19a) 

d0r v 
f2 ~ + ~ 0r = 0, for simply supported plates. (19 b) 

Note that (18) is due to axisymmetry while (19b) is furnished by the transversality condition. 

4 Analytical solutions 

(17) is a first-order Bessel's differential equation and the general solution is 

O~(fl) = aJl(fl) + b Yl(fl) (20) 

where a and b are constants while Jl(o) and Ydo) are the first-order Bessel functions of the first and 
second kind, respectively. 

In view of(18) and the fact that at fl = 0, J1 = 0 and I11 = - o% we have b = 0. Thus (20) reduces to 

Or(fl) = aJl(fl) .  (21) 

Substituting (21) into (19) yields the following stability criteria: 

(i) for clamped plates: 

J l ( ] / ~  = 0, (22a) 

(ii) for simply supported plates: 

Jo( ) - v) : 0,  (22b) 

where J0(o) is the zero-order Bessel function of the first kind. 
The critical load factor, k, for clamped and simply supported plates, can be obtained by solving 

respectively (22a) and (22b), in view of (9), (15) and (16). 
Analytical solutions, however, can be derived for different combinations of Ce and C o  Below, we 

present explicit exact buckling load expressions except for the cases of simply supported plates with 
Cc = 1. 

(22a) and (22b) are first solved to yield ko: 

(i) for clamped plates: 

ko -~ 14.6820, (23a) 
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(ii) for simply supported plates (ignoring CT, i.e. Cc = 0, f2 -- 1): 

ko -- 3.389 8 + 2.838 3v - 0.501 lv 2 + 0.058 3v 3 . (23 b) 

Note that 23 b has been obtained from a least square curve fitting exercise. 
Substituting (9) and (16) into (15) leads to the cubic equation for the critical load factor k: 

{ C e a e  2} k 3 -- {Ce2ap -4- Ccacasko} k 2 + {1 q- [Ccac + as]/Co} k - / c  o = O, (24a) 

where: 

~2 

a c -  12' (24b) 

O~ 2 a C 

ap = 12(1 + v) = (1 + v~' (24c) 

~2 2ac 
as - 6~(1 - v) - ~(1 - v)" (24d) 

Note that by setting the thickness-radius ratio, c~, to zero, (24) yields the expected buckling solution for 
thin plates, i.e. k = ko (see [13]). 

By setting the scalar indicators Cp and Cc to either 1 or 0 the individual and combined effects of 
PBD and CT, can be compared and analysed. There are all together four cases: 

case (1) Cc = 0, C~, = 0 (i.e. only SD effect): 

ko ko 
k - 1 + asko ~ 2 k o  (25) 

1 +  
6~(1 - v) 

This novel simple explicit buckling solution for clamped and simply supported plates resembles the 
one obtained for the buckling load of Engesser columns under a vertical load (see [13, pp. 133] or [14]). 
Note that previous buckling studies on thick circular plates [15 17] presented only some numerical 
solutions while a simple approximate formula was proposed in [18]. It can be seen from (25) that thin 
plate solution of ko is factored down by 1/(1 + asko). This ratio is very nearly equal to unity for very 
thin plates as a ~ 0. 

ease (2) Cc = 1, Cp = 0 (i.e. SD and C T  effects included): 

{acasko} k 2 - {1 + [ac + as] ko} k + ko = O, 

k = [1 + (ac + as)/Co] - ]/[1 + (ac + as) ko] 2 - 4acasko 2 

2acasko 

case (3) Cc = O, Cp = 1 (i.e. SD and PBD effects included): 

{ae 2}k  3 - { 2 a e } k  2 + { 1  + a s k o } k - k 0 = 0 ,  

3ap' 

(26) 

(27) 

(28) 

(29 a) 

where: 

p = 

Q _ 

27aek0 - 18asko - 2 
54ae 3 

3asko - 1 
9ae 2 

(29b) 

(29 c) 



540 Archive of Applied Mechanics 63 (1993) 

case (4) Cc = 1, Ce = 1 (i.e. SD, PBD, and CT effects included): 

{ae 2} k 3 - {2ae + acasko} k 2 + {1 + [ac + asl ko} k -  k0 = 0, (30) 

ocos(COS 11 J l+2 ) + 3 2ap + acasko 

3ae 2 
(31 a) 

where: 

p ko (2ae + acasko) (1 + (ac + as) ko) (2av + acasko) 3 
- + (31 b) 

2ae 2 6ae 4 27ae 6 ' 

1 + (ac + as) ko (2ae + acasko) 2 
Q = 3 a e 2  - 9ae4 (31 c) 

It should be recalled that values of ko in (23 b) is not applicable for simply supported plates with 
Cc = 1, and therefore (26), (27), (30) and (31) are valid for clamped plates only. 

5 Resul ts  and discuss ions  

Before considering the influence of PBD, the analytical solutions for cases (1) and (2), which neglect 
the PBD effect, are checked with available numerical solutions obtained from previous researchers 
[15 18]. Table 1 shows the comparison between the results and the dose  agreement between case (1) 
solutions and that of Kanaka Raju and Rao [15], Dumir  [17] and Wang et al. [18] confirms the 
correctness of the present analytical expressions for the considered case. Note  that  Chen and Doong 
[16] results do not appear to have converged to the correct results. It can be observed that when CTare  
taken into consideration (i.e. case (2)), the critical loads are lower, especially when t/R is relatively 
large. This is to be expected since these CT increase the specific work of the loadings. 

When PBD is allowed for, i.e. cases (3) and (4), the critical loads become somewhat higher than 
those of cases (1) and (2) as shown in Figs. 2 and 3. At e = 0.2, the increase in the loads are 6% for 
clamped plates and 2% for simply supported plates. The larger increase for the clamped plates can be 
readily explained as the plates undergo greater in-plane deformation prior to buckling due to the 
higher load values. Comparing the results for cases (3) and (4), it can be observed as before, the 
inclusion of CT causes the buckling loads to decrease slightly. 

Table 1. Comparison of critical load factor, k = NR2/D, for radially loaded circular plates 

Boundary c~ Other researchers Present study 
condition (t/R) 

Kanaka Raju Chen Dumir Wang case (1) case (2) 
(1983) (1984) (1985) (1993) 

Clamped 0.001 14.682 5 14.6818 14.6819 14.681 9 M.6819 
0.01 - 15.9910 - 14.675 9 14.675 8 14.6741 
0.02 - 15.9641 - 14.6574 14.6574 14.6503 
0.05 14.529 9 15.778 3 14.529 6 14.529 6 14.4862 
0.10 14.0910 15.1533 - 14.0909 14.0909 13.9338 
0.15 13.4159 - - 13.4157 14.4158 13.1137 
0.20 12.5725 13.1234 12.5723 12.5725 12.5724 12.1344 

Simply 
supported 

0.001 4.197 8 4,197 8 4.197 8 4.197 8 4.197 8 
0.01 - 4.2061 4.197 3 4.197 3 4.197 2 
0.02 - 4.2050 - 4.1958 4.1958 4.1953 
0.05 4.1852 4.1929 - 4.1853 4.1853 4.1823 
0.10 4.1481 4.1505 - 4.1480 4.1480 4.1365 
0.15 4.0874 - 4.087 5 4.087 5 4.062 7 
0.20 4.005 6 3.989 7 4.005 7 4.005 6 4.005 6 3.964 3 
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15 0 [ /~.20 
/ 

k 0 ~ /  . . . . . . . .  CJ_as_sj_calt_h!n - t31ate_ss . . . . .  k0 j I ~ . . ~  solution / 
(1G.6820) ~ ~ . . . .  fCasel3) (/~.19781 ~ /-easel3) / 

l,.15 \ \ ~  ~ /-Case(k) / 
\ \ \  ~ /-Case (l,) XX"X,\  )~',SD'PBDI 

N~,xXXX~SD, PBD O a s e , 1 ) J a X X ~  X &C7- I 
1G.O ~ x  

 as0,1  \ \ , ,  , G I0 \ \ \  " 4  
=  00,, \ \ \  

- 

~ v:o.3 sO;iT \ 1  
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12.0 0. 5 0.10 0.15 0.20 0.05 0.10 0.15 0.20 
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2 3 

Figs. 2 and 3. 2 Critical load factor k for clamped plates; 3 Critical load factor k for simply supported plates 

6 Conclusion 

The effect of PBD on the elastic critical loads of thick circular plates under uniform radial 
compression has been investigated. Exact closed-form expressions for the critical load factor k are 
derived analytically. These analytical expressions should be useful as they provide benchmark values 
for checking the validity, convergence and accuracy of numerical methods in determining critical 
loads for thick circular plates. 

The effect of PBD on the critical load is of the same order of magnitude as the shear effect and both 
these effects influence the critical loads significantly when the plate thickness is relatively large. While 
shear deformation causes the critical load to decrease, the pre-buckling inplane deformations cause 
the critical load to increase. The net result is still a decrement of the critical load and this reduction 
becomes larger with increasing thickness-radius ratios. Both effects are more pronounced in clamped 
plates as compared with simply supported ones due to the former plates undergoing greater 
deformation under larger loads. 

The effect of CTin the Green-Lagrange strains causes the buckling load to decrease further. This is 
because the inclusion of the nonlinear terms causes the specific work of the in-plane load to increase, 
thereby decreasing the critical load. It remains to be verified by future experimental studies on such 
plate buckling which of the two critical load values, computed with and without CT, is more realistic. 
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