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The influence of elastic waves on dynamic stress intensity factors 
(two-dimensional problems) 
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Summary In this paper, an indirect boundary integral equation method for the solution of dynamic 
crack problems is presented. The Laplace transform method is used to derive the fundamental solutions 
for the opening mode (mode I) and the sliding mode (mode II) displacement discontinuity. Accurate 
dynamic stress intensity factors KN(t) (N = I, II) resulting from different time-dependent loads 
on the crack surface are obtained. The specific influences of the various elastic waves on the stress 
intensity factors can be clearly seen from the results. 

Key words dynamic stress intensity, boundary integral equation, indirect BEM, Laplace transform, 
elastic waves 

1 
Introduction 
The analysis of crack growth preceding the fracture of structures subjected to impact loads requires 
the knowledge of the dynamic stress intensity factors (DSIF) and their dependence on time, which 
is influenced by the variation in the stress waves [1]. Numerical methods are usually the only 
tools available for the evaluation of the DSIF. One of the earliest applications of a numerical method 
to the solution of a dynamic crack problem was the use of a finite difference method in [2]. Later, 
the finite element method and the boundary element method were applied successfully to the evaluation 
of dynamic stress intensity factors. 

Boundary element methods have, in recent years, proved very successful in solving static crack 
problems [3]. However, the application to dynamic crack problems is relatively new and the subject of 
current research. The so-called direct boundary integral equations have been applied to crack problems 
by many researchers, for example in [4] using the multi-region formulation, and more recently in [5] 
using the dual boundary element method. Other formulations can be found in [6-8]. 

An alternative formulation to the direct method is the indirect method which relates the displacement 
and stresses to fictitious source densities. Two indirect formulations known as the fictitious stress 
and the displacement discontinuity methods were developed in [9] for two-dimensional static 
problems. Recently, these formulations were extended to dynamic problems in [10]. In this paper, 
the displacement discontinuity method is presented in Laplace transform space. The equivalent stress 
method as described in [11] is extended to calculate the dynamic stress intensity factors K~(t) and 
Ki~(t ) for an isolated crack in an infinite sheet. The influence of different elastic waves, 
particularly the surface waves, is analysed in detail. This method can be extended to determine stress 
intensity factors for three-dimensional crack problems. 

2 
The fundamental solutions for discontinuity displacement solution 
In the Laplace space, the basic equations for the transformed variables are the same as in [10]. 
A Laplace transformed variable f*  (p) is derived from the time-dependent variable f ( t )  

Received 18 May 1995; accepted for publication I October 1995 

P. H. Wen 1, M. H. Aliabadi 
Wessex Institute of Technology, Ashurst, Southampton, UK 

D. P. Rooke 
Structural Materials Centre, DRA, Varnborough, Hants, UK 

1 On leave from the Central-South University of Technology, 
Changsha, P.R. China 



as follows: 

cO 

f*(p) = ~S(t)e-Vtdt. 
o 

For u ,  the mode-I displacement discontinuity, the boundary conditions on the x axis are 

u* --a < x < a ~. I - -  - -  uy-- * = 0  Ixl<o(3; (1) 
0 otherwise ' Gy 

�9 the mode-II displacement discontinuity and for u x, 

{3 ~ --a<x<_a �9 - - ( 2 )  U x -  otherwise ' o ;y=0  ]x[<oo. 

The fundamental solutions for the stress components (r* and (r~ are given by yY 

~ ) Ox + S \ O - ~ f  O~y~/J~_. -t(2~+;Ox-<, j" S U ) d x  

=fz (x,y,p) u 7 (3) 

and 
I x+a 

=fi~(x,y,p) u~; (4) 

where 

X(~)=/Vo(fix~yZ), .~V(2>=/fo(fl2~y2), 
S 0 (z) is a zero-order Bessel's function; fi~ = p / c  1, f12 = P/c2; Cl and c2 are the velocities of longitudinal 
and transverse waves respectively; p is the Laplace transform parameter; 2 and # are the Lam4 elastic 
constants. 

As only straight-line cracks in infinite bodies are considered here, the fundamental solution on 
the x axis ar~ (x, 0,p) is the only one required, and, therefore, the boundary element formulation can be 
written [10] as 
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o~(x, 0,p) =f i  (x, 0,p) u~, (5) 

where 

f~(x,O,p) = - -  - -  2G a I f t [  f l ~ f l ~ A * ( o ( k + l )  l n 2 + 2 k @ i - ) 2 ( k + l  ) 
u(1 q-  1;) X2 - -  a 2 ]- 

~ k = o  ( .L  

+2f l~A*( ln2-~O(k+l ) -~O(k+2) -2k- -~)  

( ; 1 )1  
+6fi~B* @ ( k + 2 ) - l n  + 2 - k - ~  2 ( k + 1 )  

2fi21-fl~B*(ln z 1 ~ 1 ) y, \ i - iO(k+i)-  ~,(k+2)-2k+-- ~ 

Z 
+12fl, B* l n ~ - ~ O ( k + 2 ) - ~ O ( k + 3 ) - - -  , )  , } 

2 k + l  4 ( k +  1 ) (k+2)  

Z 2 k + I ) z  =/71 (x - a) 

2 2k+1 k! (k + 1)! (2k + 1)~z=A(x+~)( 
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fi~B* (ln - z -1  - ~ O ( k  + 2) - 2 ~  \ 2 2 o(k+l) - - -  

--12 fl~B*(lnZ -- ~ O (k + 2 ) -  ~O(k + 3 ) - - - -  

z2k+l tz=fl2(x a) 
22k+'k! (k + 1)! (2k + 1)2z=&(.+~ ) 

2 k + l  

1 ) 1 J 2k+1 4(k + 1)(k+ 2) 

and 

G ( x ,  o,p) = f~(x, o,p) u~, (6) 

where 

4/2 fll 3 1 1 
f~(x,O,p)=Tc(l+v)x2_a2 ~ ~ ( k + l ) - l n  + 2 ~ - ~  2-~q-1) 

t"2 k=O L L  

(lnZ 1 _ ~ 6 ( k + 2 )  1 ) 
+ \  ~ - ~ ( k +  1) 2 k + l  

+6  in 2 -  ~ ( k + 2 ) -  ~(k+3)-2k+~---~ , 

I ] Z 2k+l  t z=~l(x-a) 
4 ( k + l ) ( k + 2 )  22k+ak!(k+l)!(Zk+l)2~=r ) 

+ n k=0(Lk~ ' (k+ l ) - ln  + ~  2 ( k + 1 ) + 1 2  @ ( k + 2 ) - l n ~ + 2 ~  ~ 

�9 2 ( k + 1 ~ + 4  In 2 -  ~ t ( k + l ) -  ~(k+2)-2k+~ ~ 

+24 l n ~ -  ~ ( k + 2 ) -  t p ( k + 3 ) - - -  1) 1 1 
2 k + l  4(k+ 1)(k+2) 

�9 Z2k+l "~z=,6z(x a) 
22k+~k!(k + 1)[(2k + i) Jz=&(x+.)' 

where 

A *  - 2 2 f l l  B *  _ 4 # f l ~  

k~z.1 1 
0 (k) = ~)~1 m - ~' 

is the Euler constant (~ = 0.577). It can be seen from the solutions in (5) and (6) that there are two 
parts. The first part is independent of the Laplace transform parameter p, since it is the solution for 
an elastostatic problem. The second term may be considered as the modification term in 
Laplace space, and is a function of the transform parameter p. 

3 
The calculation of dynamic stress intensity factor 
Suppose that x~ is the nodal coordinate of constant element i(i = 1,2 ..... N), and a~ is the half-length 
of that element (a i = c/N, where 2c is the length of the line crack)�9 For a mode I problem, the influence 
of elementj on element i can be determined from the solution in (3) when the stresses are put equal 



to the boundary value a0* (P) in Laplace space 

N 
a~ ~ = ~ f ~ ( x  i --xj,  O,p) u~ -j = o-~i(p), 

j = l  
(7) 

where u~ i is the displacement discontinuity of elementj in the y-direction. As a~ = aj, then 
f ( x ~ -  xj, O,p) =f~(xj -x~, 0,p), so that the coefficient matrix C, below, is symmetric. At a given sample 
point Pk, we have 

C U = Y ,  

where 

X-1 ~2 ~-N T 
U = {U I ,U I . . . . .  U 1 ) 

(8) 

and Y .~ .2 . T = {or0 ,or0 ..... a o ~  �9 (9) 
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If there is only a normal load %* on the crack surface, the stress intensity factor K~ is zero. In a similar 
way, the displacement discontinuity u* j for mode II can be determined. After the displacement 
discontinuties are determined on each element, the equivalent normal and transverse stresses ~* and 
~* on all of the elements can be determined [11] by 

N 2Gaju~,J N 

a.  --j=i~zr(1--v)[(xj--xi)Z--a~] j=i 

and 

N 2Gaj u*~ j N 

O's -- j=ls  - - v ) [ ( x j - - x i ) 2 - -g ]  j=, (10) 

Then, the stress intensity factor at the right-hand tip of a crack in Laplace space is given by 

N N N 
"'~J 7ZC 

i=U=1 j-1 

where 

xi+a 1 X 2 xi+ai F-I~ -- .~./., ~ c---~xf' ~ dx =-[arcsin(X)- ~1- ( c ) x  I.,-., 
and 

N 
4= 

i=l 

(11) 

Once the stress intensity factors K~;(pk) are determined, the stress intensity factor in the time domain 
K~(t) can be obtained from Durbin's inversion formula [12], as 

e~  1 % 2k~zt~ 
K~(t ) - -2T-~--29~[K~(P~247176 T J - ~ I  K~(pg) " 2kzr tT) \  (12) 

where 9~ [ ] and .~ [ ] denote the real and imaginary parts, respectively. In this work, the Laplace sample 
points Pk were determined bypk = (OT + i2k~r)/T, k = O, 1 ..... Mp, where OT - 5 and T = 20c/q; Mp 
is the number of sample points. The calculation method for mode-II stress intensity factors 
K~(t) is the same as that for mode I. 

4 
Numerical examples 

4.1 
Uniform load on the crack surface 
An isolated crack of length 2c in an infinite sheet is subjected to a uniform opening load %H(t) or 
a uniform sliding load %H(t), where H(t) is the Heaviside function. Poisson's ratio v is taken as 0.25. The 
number of elements N = 80 and the number of sample points in Laplace space Mp = 150. In this case, 
the velocities of transverse and surface waves, q and c R, are 0.5774 q and 0.5309 cl, respectively. 
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In Fig. 1 the ratio of the dynamic stress intensity factor to the static (long time) value is plotted; it 
can be seen that there are many kinks for both of the dynamic stress intensity factors, K s and Kit The 
positions of the kinks are determined by the times of arrival at the crack tip of the different elastic 
waves. The results in [13] are also shown for comparison. 

For the opening-mode stress intensity factor K~, the coordinate of the first kink A is given by 
t = t R = ci/c R = 1.884, where ? is the non-dimensional time cl t / (2c);  7~ is the time required for stress 
surface waves to travel from one crack tip to the other tip. It is clear that the first kink is thus caused by 
the ~irrival of this surface wave. The second one B is due to the surface wave starting from one tip 
(at t = 0) and travelling to the other and back; it occurs at t = 2 t  R = 3.76. Further kinks of decreasing 
sharpness (for example C) are observed at periods o f ~ ,  as the surface waves oscillate between the tips. 
Thus surface waves account for all the kinks in K~. For 7 > 4, the value of K1 tends to the static value. 

In contrast, kinks in K, are caused by both surface and dilatation waves. The position of  the first 
kink D at t = t~ = 1, is caused by the dilatation wave leaving one tip at t -- 0 and travelling to the other 
at velocity q. After this point, the curve of Kz~ is smooth until -/-- 7 R, the time for the surface wave to 
travel from tip to tip, causing a second kink. A second kink due to dilatation waves occurs at 

= 271 = 2; it is difficult to detect because of its closeness to the kink at 7 R. Further periodic kinks 
for K, are caused by further reflections of both dilatation waves and surface waves. Thus it can be 
seen that the stress intensity factor Kzi is sensitive to both dilatation and surface waves. The influence of 
these oscillating elastic waes declines very rapidly; for f >  3, the dynamic stress intensity factor is 

virtually the same as the static value z 0 x ~ .  
The influence of these ocillating elastic waves on the stress intensity factors can be seen even more 

clearly in the following examples. 

4.2 
Interference between two cracks 
There are two collinear cracks AB and CD shown in Fig. 2 with a uniform opening load a o H ( t )  acting 
on the crack faces of AB. The length of each of the two cracks is 2c, and the distance between crack 
tips B and C is c. The parameters v, Mp and the number of elements/q are the same as in Example 1. 
The stress intensity factors at these four crack tips are shown in Fig. 2. When 7 < 3.768 ( = 2tR), there 
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Fig. 1. Dynamic K I and K u for an isolated 
loaded crack 



is no difference between K~ and K~. The other two K c and Ks ~ are zero before the dilatation wave 
starting from crack tip B arrives at the points C and D (at 7 = 0.5 and t = 1.5, respectively). After this 
wave arrives, the calculated stress intensity factors K c and K D are less than zero, which means the 
crack closure has occurred. There are three kinks for curve KID at a, b, and c (shown in Fig. 2). The 
first kink a occurs at t = 0.866 + 1.884 = 2.75 and is caused by a stress wave starting from crack tip 
B travelling through the body from B to C at the speed c z of transverse waves, and then along the crack 
CD at the surface wave speed (cR). The second kink b a t t =  1.884 + 0.866 + 1.884 = 4.634 is 
caused by the arrival of a stress wave starting from crack tip A travelling to tip B at the speed of surface 
waves, and from B to C at the speed of shear waves and then to D at the surface wave velocity. The 
last kink c at 7 = 3.768 + 0.866 + 1.884 = 6.518 is caused by a stress wave starting from point  
B travelling to point  A and then being reflected to point  D along the same path as the wave causing 
kink b. For the stress intensity factor K c, there is only one weak kink at c ' caused by a stress wave 
starting from point  D at the time 7 = 4.634 (kink b in K D) and travelling at the speed of surface waves 
to tip C. 

4.3 
Point forces at the mid-point of the crack 
Two pairs of concentrated forces PH(t)  and QH(t)  act at the mid-point  of a crack in the normal and 
tangential directions, respectively, Fig. 3. Poisson's ratio v is taken as 0.25, N = 100 and Mp = 200. 
The normalized stress intensity factors K~(t)/K~ and Kzs(t)/K~s are also shown in Fig. 3, were K~ = P / ~ - ~  
and K~I = Q / x / ~ .  The influence on the dynamic stress intensity factors of the elastic waves oscillating 
between the tips can be clearly seen. Kinks are caused by both surface waves and dilatation waves. 
As in the first example, the stress intensity factor KH(t) is more sensitive than Ks, and the effects 
for both decline very rapidly. 

For the mode I stress intensity factor, there is a small change when the dilatation waves arrive 
simultaneously at both crack tips from the central point at t = tJ2 = 0.5. It should be noted that 
K~(t) < 0, which means that crack closure would occur in practice (not considered here). When the 
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first surface wave arrives at the tip, at t = tfl2, the/(i is singular and discontinuous. That is 

l i m [ K S t = ~ - - e ) ]  = ~ - o L  \ 2 - -oo,  

~-~o L \ 2 J/ 
(13) 

These lim!ts agree with Freund's solution [1] for a semi-infinite crack. The second major kink is due 
to a surface wave starting from the mid-point at 7 = 0, travelling to one tip and being reflected to the 
other, arriving at 7 = 3tJ2. The second kink is weaker than the first one. Further weaker kinks occur 
at t = 5tf12 and 7 = 77R/2 after which K~ is constant at the static value. 

For the mode-II stress intensity factor, the first jump occurs at 71/2 and is due to the arrival 
of the first dilatation wave from the mid-point. The second jump at tR/2 is similar to that of K I and 
is caused by arrival of the first surface wave. The stress intensity factor K~(t) displays a similar 
singularity character to that of K~(t) at tR/2. As in mode I, the stress intensity factor Kzz(t) undergoes 
a discontinuous jump immediately after the first surface wave arrives. It remains constant until the 
reflected dilatation wave arrives at 371/2 (kink a'), and then decreases rapidly. As with K I, there 
is a further kink d'  at 3tR/2 due to the reflected surface wave, after which Kzz rapidly tends to the static 
value. 

In general, there are many kinks generated by the different waves. They are detailed in Table 1, 
where the arrival times are shown for different combinations of stress waves starting from the central 
point, travelling to the left-hand crack tip, and then reflecting from this tip to the right-hand crack 
tip. The  first line denotes the speed of the initial elastic wave, the second line is the reflected 
wave speed, and the last line is the arrival time at the tip after one reflection. Some of these kinks 
(a', b', c' and d ')  can be seen in Fig. 3. 

The normalized opening displacements on the crack faces uyE/P are shown in Fig. 4. When 7 is 
less than 0.5, there is no displacement of the crack surface near the crack tip (uy = 0). The results show 
negative displacements close to the tip for 0.5 < t < 0.943 due to longitudinal waves. At -t = 0.943 the 
surface wave front arrives, and the crack tip starts to open and remains open. Thus crack 



Initial speed q c 2 cR 

Reflected speed c 1 c z c R q c 2 c R c~ q c R 

Arrival time t 1.5(a') 2.23 2.39(c') 1.87 2.60 2.75 1.94(b') 2.68 2.83(d') 

closure would  occur  in pract ice for a pe r iod  of  t ime. The posi t ive d i sp lacements  near  the tip are 

i n d e p e n d e n t  o f  t ime until  the reflected di la ta t ion wave arrives at t = 1.5. The d is turbances  in the 

d i sp lacement  caused by the reflected wave are very small. 

4.4 
Crack face loads continuously varying with time 
Let there be a normal load croft(t) acting on the crack surface, where 
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(c2t~n e c~tlc n = O, 1, 2, 3, t >_ O. 
f~(t)  = \ T ]  ' 
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For Poisson's ratio v = 0.25, N = 80 and Mp = 150, the dynamic stress intensity factors, normalized 

with respect to c r 0 ~ ,  are shown in Fig. 5. The influence of surface waves on these stress intensity 
factors can be seen clearlyin the case of  n = 0. However, when n = 1, 2 or 3, the influence is much less and 
the curves of the variation of the stress intensity factor with time are virtually smooth. 

4.5 
Moving load on the crack faces 
Consider a moving load on the crack surface: a uniform opening load moves from the left-hand tip 
(L) to the r ight-hand tip (R) with a speed of V, Fig. 6. The boundary  condition on the crack surface 



can be written as 

where H(t) is the Heaviside function. For Poisson's ratio v = 0.25, N = 100 and Mp = 150, the stress 
intensity factors K~ and K~ are shown in Fig. 6. There are many jumps and kinks both for K;  (right) and 
K~ (left) due to surface waves. From Fig. 6(a), it can be seen that the maximum value (at A) of the 
stress intensity factor K~ increases slightly with speed V. For all speeds, the kink points A, 
B and C are caused by surface waves, the same waves as when V = 0. For V/c 2 = 0.5 the kink D for 
K; coincides with the arrival of the edge of the moving load at tip R. The surface wave caused by the 
arrival of the moving load at R arrives at the crack tip L a time 7 R later; this is the kink D'  in the stress 
intensity factor K~ shown in Fig. 6(b). All of the other kink points for these stress intensity 
factor curves can be analysed in a similar way. 
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5 
Conclusions 
The procedure for determining dynamic stress intensity factors by a displacement discontinuity method 
is outlined in this paper. By the use of Laplace transforms, the basic solutions for a constant 
displacement discontinuity element were deduced. The stress intensity factors in Laplace space K~(p) 
were calculated by an equivalent stress method. The dynamic stress intensity factors KN(t) were 
determined by the Durbin inversion method. Numerous numerical examples are given in this paper, 
and the influence of different elastic waves, particularly the surface waves, on dynamic stress intensity 
factors is highlighted. 
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