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Symbolic generation of large multibody system 
dynamic equations using a new semi-explicit 
Newton/Euler recursive scheme 

Po Fisette, Jo C $amin 

Summary The aim of this paper is to show that multibody systems with a large number of degrees 
of freedom can be efficiently modelled, taking conjointly advantage of a recursive formulation of the 
equations of motion and of the symbolic generation capabilities~ 

Recursive schemes are widely used in the field of multibody dynamics since they avoid the 
"explosion" of the number of arithmetical operations in case of large multibody models. Within the 
context of our field of applications (railway dynamics simulation), explicit integration schemes are 
still prefered and thus oblige us to compute the generalized accelerations at each time step. To 
achieve this, we propose a new formulation of the well-known Newton/Euler recursive method, whose 
efficiency will be compared with a so-called "O(N)" formulation. 

A regards the symbolic generation, often decried due to the size of the equations in case of large 
systems, we have recently implemented recursive multibody formalisms in the symbolic programme 
ROBOTRAN [1]. As we shall explain, the recursive nature of these formalisms is particularly well-suited 
to symbolic manipulation. 

AII these developments have been successfully applied in the field of railway dynamics, and in 
particular allowed us to analyse the dynamic behaviour of several railway vehMes. Some typical results 
related to a completely non-conventional bogie will be presented before concluding. 
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~ntroduction 
The multibody system dynamic analysis involves several modelling steps among which it is necessary 
to dearly distinguish the phase of generation of the equations of motion from the phase of resolution 
of the latter. Indeed, some confusion frequently appears concerning these two tasks, especially when 
evaluating a method in terms of computer efficiency (i.e. the number of arithmetic operations 
required for a given result, [2]). 

As regards the generation, several theoretical formalisms are suitable to obtain the equations of 
motion in their scalar form. Moreover, the choice between absolute, relative or mixed coordinates must 
be considered with regard to the envisaged applications and could be discussed here. However, within 
the context of this paper, we only consider the relative coordinates approaches, and we 
distinguish those based on a virtual principle [3, 4], from those which directly use the classical 
Newton/Euler equations of motion in a recursive form [5, 6]. If the former have been successfully 
used in several applications such as spacecraft or mechanisms analysis, the latter seem to be particularly 
well-suited to large multibody systems, thanks to their recursive nature. We have finally adopted 
such formalisms in relative coordinates, in particular to deal with railway vehicle dynamics. 

Another important aspect of the generation process is purely of a computer nature, and concerns, 
the way the system of equations is obtained: numerically or symbolically. The latter method exhibits 
several advantages over the former, the most significant being the reduction of mathematical 
expressions to be computed, and the absence of an algorithmic reconstruction of the equations of 
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motion at each step of a given numerical procedure. In the multibody dynamics domain, several 
symbolic programmes have been developed and cited in [1] at the same rank as numerical multibody 
softwares. 

We have definitively adopted the symbolic approach in multibody simulation since our last 
developments in the ROBOTRAN software [7] allow us to generate without any difficulties the symbolic 
equations of motion of large multibody systems, on the basis of recursive formalisms. 

Concerning the resolution of the equations of motion, and in particular their numerical 
integration, both the final form of the equations and the numerical method to integrate them have 
to be considered. In case of constrained multibody systems-which certainly represent the major 
part of the possible applications - the mathematical model consists of a differential/algebraic system 
("DAE" system) which cannot be solved by classical integrators. A first possibility is to reduce the 
DAE system to a purely differential one ("ODE" system), compatible with classical schemes. An 
alternative consists in directly solving the global DAE system with an implicit integration 
scheme [8, 9]. 

At the present time, we have opted for a well-known reduction procedure, based on the "coordinate 
partitioning method" [10], which, at the expense of some CPU time penalty, is particularly reliable 
for the kinematic loop closure. This specific aspect of the modelling is fundamental for the 
geometrical problem of wheel/rail contact in railway dynamics [11], which represents the major part 
of our multibody applications. 

2 
Multibody formalism: a semi-explicit recursive scheme 
The choice of a multibody formalism is governed by numerous aspects such as the field of 
applications, the type of coordinates, the computer implementation and the desired numerical analysis. 
In our case, the complex articulated structure of the railway bogies we had to analyse (see Fig. 1) 
induced us to keep a relative coordinates approach, in accordance with the ROBOTRAN programme 
philosophy [1], and to generate the equations of motion on the basis of the well-known "Recursive 
Newton/Euler Method". This latter has been initially developed in robotics for the inverse dynamic 
problem [12, 13]. Indeed, its recursive character allows to compute in a minimum of arithmetic 
operations the generalized forces Q to be applied to the joints, as a function of the generalized joint 
positions q, velocities 0 and accelerations 

Q = Q(q, 4,/])- (1) 

Since the efficiency of the method is also attractive for simulation purposes, we have modified 
the original scheme which provides the equations of motion in their implicit form (1), in order to 
obtain recursively the following semi-explicit form for an unconstrained system: 

M(q)q + C(q,O) = Q(q, q), (2) 

where: M is the symmetric generalized mass matrix, C contains the Coriolis, centrifugal and gravity 
terms as well as external forces and torques. 

2.1 
Forward kinematics 
Consider in Fig. 2 a rigid body i carried by a rigid body h via a joint i, and let assume that every joint 
of the system has only one d.o.f. (degree of freedom): revolute or prismatic. This hypothesis, underlying 

Fig. 1. BAS 2000 articulated bogie (B.N. 
Eurorail-Belgium) 



the ROBOTRAN programme, allows without any restriction to model up to six d.o.L joints by using 
intermediate fictitious massless bodies. For the i th joint, let first define the unit vectors ~ and ~i  
such that 

- for a prismatic joint, ~ is the unit vector along the translational direction and @~ = 0, 
- for a revolute joint, @~ is the unit vector along the axis of rotation and }F ~ = 0. 

We also define z ~ a= q~ qj~, the relative displacement vector in the (prismatic) joint i, and f~ _a 4~ ~ ,  
the relative angular velocity vector associated with the (revolute joint L 

For body i, one can write (see Fig. 2): 

Absolute positions 

pi__ ph + p~i for the i th joint 

x~= p~ + [~ for the centre of mass of body i. 

Absolute velocities: 

angular: a~i = Cob + f~  = ~oh + qi~i for body  i, (3) 

linear: iu = ph + &h.p~ + 4 i ~ ,  (4) 

~i = pi + ~j.)i .[ii, (5) 

Absol,ate accelerations: 

angular: d~i = d~h + &i qyq~ + qiq~i, (6) 

linear: f~i= ph + (gOb + ~_oh~y.lh).phi + 2r kI1u + ~ti~i, (7) 

~' = p~+ (g~+ ~ 6  ~) . r  ~. (8) 

In order to obtain the dynamic equations in a compact form, it is convenient to define the following 
quantities: 

~ L ~ + Coi~ i, (9) 

and 

The forward kinematic recursion of the classical Newton/Euler recursive scheme can then be written 
in a vectorial form as follows: 

Initialisation: 

~ 0 = 0 ,  d~ ~  ~0=0 ,  ~ 0 = _ g  

x89 

joint i body i 

Fig~ 2. Body i in a multibody structure 
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Recursion: 

For i = 1 :N 

h = index of the carrying body  

o.)i = o)h ~_ ~'~i : (.oh .~_ q i l ~ i  (11) 

~j)i ~- (j.~h .~_ ~.~i ~ i  ~i + ~ i o i  (12) 

[ l i=  ~ i  + 6r (13) 

h hi ot i & i f  - g = 0t h + I~ "P~ + 26r ~ + q ~tl'i (14) 

end 

In order to express the mass matrix in the final form of Eq. (2), we suggest to isolate the generalized 
accelerations q in this first recursion by splitting up the 6) i, lY and ai quantities as follows [7]: 

~j)i= 2 uMq--ik--k ~_-- ~Oc,. i (15) 
k<i  

p i  • B~qk q_ [}c, (16) 
k__<i 

•i 2 i k " k  i ( 1 7 )  = A uq  +~c,  
k<_i 

where ~k~i represents a summation on body i and all its ancestors (i.e. belonging to the chain of 
bodies between i and the inertial frame). 

The recursive computation of Eqs. (15) - (17) can then be done in a similar way as previously shown. 
This leads to the following scheme; 

Initialisation: 

0 �9 0 0 ;  0 __ ik ik = [I c - 0 ;  = 0 ;  = 0  i = 0 : N ,  k > i  ~C - -  g ;  r ~ : 0 ;  r c =- O M A M 

Recursion: 

For i = 1 :N 
h = index of  the carrying body  

Oli= mh + oi~i (18) 

O,)C" i __-- O.~C" h _1_ ~_l)i.l~li ~i (19) 

Pc - 6'c5' + ~c  (20) 

i h Rh hi ~ = arc + ec" P~ + 2~1)i'ltrffiq i" (21) 

For k = 1, i 

ik O ~ , = O ~ + 6 k i o  i, (B M= -ik OM) , (22) 

ik hk ~ hk hi ,~kilrffi (~ki A M = A M + O M �9 p~ + ~ _ ,  with = 1 if k = i, 0 otherwise. (23) 

end 

end 

2.2 
Backward dynamics 
To achieve the dynamic recursion, one can easily obtain the following form for the vectorial equations 
of the motion of body i (see Fig. 3), on the basis of the Newton/Euler laws: 



( Fig. 3. Body i dynamics 
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The translational equation of motion of body i is 

F i - -  ~ FJ + F i 4- m i -  - - ext - -  g = m'~', (24) 
) d  

where m ~ is the mass of body i, F ~ represents the force acting on body i through the joint i, evaluated 
at point O ~ (see Fig. 3), F~x t iS the external force resultant applied on body i centre of mass (except 
gravity g), Y#r denotes all the bodies '~j" directly carried by i (j and k in Fig. 3). 

Using Eq. (8) and the definitions (9) and (10), Eq. (24) can be rewritten as follows: 

F i = ~ F J + G  i, with Gia=mi(~i+[Ji.lii)--F~=. (25) 

The rotational equation of motion of body i with respect to its centre of mass is 

L i -  LJ + - - i , i . F , _  FJ -- 
je{ j~; 

(26) 

where F is the inertia tensor of body i with respect to its centre of mass, L i represents the torque 
acting on body i through the joint i, evaluated at point 0 ~, L~ t is the external pure torque resultant 
applied on body i centre of mass. 

Using (25), Eq. (26) can be rewritten as follows: 

L i= ~ {L j + ]5~J'F j} +' l i i .G i - -  L~, a + Ii.d~i+ &ili.mi" 
j d  

(27) 

Equations of motion (25, 27) can be recursively computed from the endbodies of the multibody system 
to its base. tt leads to the "classical" backward recursion of the Newton/Euler scheme which provides 
the inverse dynamics model of the system under its implicit form (1). In order to get the mass matrix 
M and the C vector (Eq. 2), we also need to split up the F i and L i quantities to isolate the 
contribution of each generalized acceleration/ff 

Fi= ~F~qk § Fc, (28) 
k 

_ ik -k  i G i -  ~GMq + G c, (29) 
k 

L i _ w Lik  ..k i 
- -  2~  M q  + Lc"  (30) 

k 

These new quantities (with a low index "M" and "C") can be computed in a recursive manner by 
introducing relations (15, 16, 17) into the dynamic Eqs. (25, 27). One finally obtains the following 
scheme: 



For i = N, 1 

i i i i l i i  ) i 
G c = m (~c + Pc -- Fe~ (31) 

F c = Z F J + G  c 
jei 

Lc = Z (L;c + ~ . F j )  + ;ii i l  .G c -- Lex t i  + ii.r 
jE[ 

(32) 

(33) 

agz 
For k = 1, i 

i k _  i ik +OM .1 ) G M -- m (A M ~ ik ii (34) 

= Z + G 
jd 

L~ = Z (L~ + ~J.FJM k) ~ii ik i ik + l .G M + I .0  M 

(35) 

(36) 

end 

end 

The i ~h equation of motion of system (2) is then obtained by projecting vectorial Eqs. (32-33) and 
(35-36) on the i th joint axis 

c[i] ~g~.F~+ ~ = O . L  c i = l : N ,  (37) 

M [ k , i ]  = M [ i , k ]  =~i'wk-- --M § --~bi'~Mlik i = l : N ; k = l : i .  (38) 

Finally, one can write 

~ M [ i ,  klq k + C[i] = O[i].  (39) 
k 

2.3 
Comparison with an O(N) formalism 
To estimate the semi-explicit Newton/Euler method within a numerical simulation context, 
a quantitative comparison with an O (N) formalism [14] is certainly suitable in terms of the number 
of arithmetic operations ( §  - ,  *,/) required for the computation of the generalized accelerations 
q. To achieve a consistent comparison, this implies to solve the system (2) with respect to the 
generalized accelerations in case of the semi-explicit Newton/Euler formalism. We perform it 
numerically using the Cholesky decomposition technique. The corresponding arithmetic operations 
have been rigourously counted up and added to those required by the generation of system (2). The 
following results have been obtained using the ROBOTRAN symbolic programme for both the 
semi-explicit Newton/Euler ("NER") and the Order N ("ODN") schemes. 

The first example consists of a "linear tree" multibody system composed of N bodies (N = 1 : 100) 
connected by one d.o.f, joints alternatively revolute ( "R ' )  and prismatic ("P") (see Fig. 4a). 

The second one consists of a "binary tree" multibody system composed of N bodies (N = 1 : 100) 
in which each body carries two children bodies as shown on Fig. 4b. 

Figure 5 gives the total number of arithmetical operations ( + ,  - ,  *,/) with respect to the 
number of d.o.f. (N), required by the Newton/Euler semi-explicit formalism ("NER") and by the 
(Order N)-formalism ("ODN"). 

First, let N* define the pivot number between the two formalisms as the number of d.o.f, from 
which the "ODN" scheme becomes more attractive than the "NER" one, in terms of arithmetical 
operations (see Fig. 5). This results from the linear evolution of the "ODN" scheme with respect to 
the number of d.o.f. 

These results show that N* is approximately equal to 12 for the linear tree, and grows to 31 for 
the binary tree. These values lead us to conclude that the semi-explicit Newton/Euler scheme is certainly 
attractive for many practical applications. 
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Fig. 4. a A "l inear  tree" mul t ibody system; b A "b inary  tree" mul t ibody system 
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2.4 
Constrained multibody systems 
In  case  o f  k i n e m a t i c  c o n s t r a i n t s  b e t w e e n  t he  g e n e r a l i z e d  c o o r d i n a t e s  o f  t he  sys t em,  h (q) = 0, it is 

easy  to ve r i fy  o n  t h e  b a s i s  o f  a v i r t u a l  p r i n c i p l e  t h a t  the  c o r r e s p o n d i n g  g e n e r a l i z e d  c o n s t r a i n t  fo rces  
c a n  b e  w r i t t e n  as ](q)r;~, w h e r e  ] = Oh/r?q r is the  c o n s t r a i n t s  J a c o b i a n ,  2 r e p r e s e n t s  t he  L a g r a n g e  

m u l t i p l i e r s .  
T h e  s y s t e m  (2) b e c o m e s  in  t h a t  case  

M(q)q + C(q, gl) = Q(q, 4) + ] ( q )  r2, (40) 

h(q) = 0, (41) 

a n d  c o n s i s t s  o f  a d i f f e r e n t i a l / a l g e b r a i c  sys tem.  
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As previously mentioned, we have opted for a reduction procedure leading to a purely differential 
system. The size of the latter is minimal, and corresponds to the number of d.o.f, of the mechanical 
system under consideration. 

Without going into details, let summarize the main steps of the procedure, based on the well-known 
"coordinate partitioning method" [10]. 

On the basis of the set of constraints h (q) = 0, presumed to be independent, one can partition 
the generalized coordinates q into independent ("u") and dependent ("v") coordinates, and reorganize 
the vector q as follows: 

(42) 

The constraints and their first and second time derivatives can then be numerically solved with respect 
to the dependent variables 

h(q)  = O ~ v  = v(u) ,  

fz(q, gl) = lvfz + lUf~=Oc:~i '= BVUit, with BVU ~= - (J~)- l]  u 

h ' (q ,q ,q)  = l v f ' + l  "o + J o  = 0 ~ i J  =BV"/i + b', with b' A= _ (jv)_,jO" 

(43) 

(44) 

(45) 

Reorganizing the equations of motion (40) on the basis of the partitioning (42), and substituting 
i~ on the basis of Eq. (45), one can easily obtain a purely differential system in terms of the independent 
variables u 

~ ( u ) a  + ~ ( u ,  ti) =0 ,  (46) 

in which both the dependent accelerations i~ and the Lagrange multipliers 2 have been eliminated. 
Classical first- or second-order integration schemes are suitable to solve such a system. Their 

reliability and efficiency depends, of course, on the envisaged application. 
With respect to the recursive formalisms, we have to finally point out that an O (N)-formulation 

usually replaces the constraints forces with equivalent external forces, leading to a more complicated 
procedure than the Lagrange multipliers technique. Nevertheless, we have shown in [7] that it was 
possible to take conjointly advantage of the O (N) philosophy and of the Coordinate partitioning 
method to recursively compute these unknown forces, and to specify the independent accelerations ~. 

On the other hand, one must recognize that the semi-explicit Newton/Euler scheme presented 
above, has the advantage that the constrained forces contribution is simply computed and added to 
the equations via the original Lagrange multipliers, leading to the well-known term J r2 (see Eq. (40)), 
easily computable. 

2.5 
Discussion 
At this stage, we feel it relevant to point out the appeal of the previous formalism with respect to 
those one can find in the literature. 

First of all, however, we shall emphasize that from our point of view, a comparison between 
formalisms with respect to the CPU time requirement is really delicate in the case of constrained 
multibody systems because: 

1. one cannot dissociate anymore the formalism to generate the equations from the method to integrate 
them (i.e. coordinate partitioning reduction [10], constraints stabilization [15,16] or DAE implicit 
solvers [8, 9]). 

2. as a consequence, the CPU time should be compared on a whole simulation and, moreover, for 
different kinds of applications. Indeed, the "relative" performances between the methods are really 
problem-dependent (e.g. stiff systems). 

3. among the possible methods, some of them exhibit an obvious efficiency but unfortunately lack 
reliability and accuracy with respect to the resolution of the non-linear algebraic constraints. In 
the domain of railway dynamics, this is quite out of the question, with regards to the 
wheel/rail contract problem [ 11]. 

In other words, we deliberately restrict the present comparison to formalisms in relative coordinates 
which are able to provide directly the minimal set of equations of motion of tree-like multibody systems. 



It means that formalisms based on absolute coordinates are not considered here since they naturally 
lead on to kinematic constraints between bodies. 

Among these formalisms, we unavoidably consider the O (N) approaches whose several versions 
have been developed by different schools (e.g. [!7, 14]). That is the reason of the previous quantitative 
comparison (see Fig. 4). It shows that our formalism is certainly attractive for applications whose 
size is lower than 12 . . . . .  31 d.o.f., depending on the topology of the system (Fig. 5). From this point 
of view, notice that in most cases we systematically split up large systems (e.g. a railway vehide) into 
several sub-systems (e.g. carbody, bogies), to increase both the friendliness and the efficiency of the 
modelling [18]. Since the order of the method is in that case a function of the size of the sub-systems, 
the proposed semi-explicit method really represents a competitive choice as regards the CPU 
time requirement. 

Concerning the other formalisms in relative coordinates which also provide the equations of motion 
under the semi-explicit form (2), we have to point out that our formalism is purely recursive, even 
for the computation of the mass matrix M(q).  If the fully recursive nature is not to be considered 
as an original feature, its interest will be clearly revealed in the next section. Indeed, we have developed 
specific symbolic techniques to deal with recursive schemes, whatever their origin (Newton/Euler, 
O (N),. . .) ,  whose goal is to eliminate the useless steps and to vectorize the independent tasks. 

3 
Symbolic generation 
The symbolic approach exhibits some substantial advantages in comparison with a pure numerical 
processing. Both the legibility and the compactness of the symbolic equations represent the goal of our 
symbolic programme ROBOTRAN [1, 7], depending on the user request. The computational efficiency 
being fundamental in simulation, we have decided to take conjointly advantage of the symbolic 
manipulation techniques, and of the recursive approaches to generate the multibody equations of 
motion. 

We would like to emphasize that ROBOTRAN is a stand-alone symbolic programme that we have 
dedicated to multibody systems dynamics. This is the domain for which the programme holds a certain 
degree of generality. It means that symbolic manipulations are ful!y managed by ROBOTRAN, without 
any connection with a commercial symbolic package. This allows us to endow ROBOTRAN 
with symbolic capabilities that we couldn't have developed with a general purpose symbolic software. 
For example, consider the optimized symbolic generation of recursive schemes (see below) or the 
memory storage management during the symbolic process. The latter task, which could seem useless 
in view of the recent computers size and capabilities, is, however, essential in case of large symbolic 
computations. The ROBOTRAN memory requirements have been drastically reduced and allow us 
to deal with very large multibody systems (up to I00 d.oof.) without any difficulties. 

3.1 
ROBOTRAN symbolic manipulations 
The ROBOTRAN software (C language) is dedicated to the kinematics and the dynamics of multibody 
systems described in terms of relative coordinates. From the first version of the programme until 
now, the following symbolic manipulation procedures have been developed and included in the 
code [7]: 

- Elimination of the "zero" quantities (zero-addition, zero-multiplication), 
- Detection and simplification of redundant expressions such as "a - a" or "a + b - a", where "a" 

and "b" represent themselves a general expression, 
- Creation of auxiliary variables to precompute quantities which occur several times in the equations, 
- Trigonometric simplifications on the basis of the fundamental formulae. For example, ROBOTRAN 

is able to recursively simplify expressions such as C2"C4"C56"C56"$8 + C2~C4~$56"$56"$8 

+ C2"$4"$56"C8 + $2"C4"$56"C8 - $2"$4"C56"C56"S8 - $2"84"856"856"88 where CAB and 
S X Y  represent cos (qA + qS) and sin (qX+ qY), respectively. After simplifications, it simply becomes 
C24"$8 + $24"$56"C8. 

3.2 
Recursive scheme symbolic generation 
Within the context of this paper, we suggest to give more details about the way ROBOTRAN generates 
multibody system kinematic or dynamic equations which obey a recursive structure, such as the 
O (N) scheme [14] or the Newton/Euler scheme in its implicit or semi-explicit form. 

Indeed, one of the intrinsic characteristics of recursive schemes consists in the fact that the result 
of a given step of the recursion is of course a function of the previous steps results, but not necessarily 

~95 
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of all of them, as the qualitative example illustrates in Fig. 6. The darkened elements in Fig. 6 are 
useless for the final results. It is thus unnecessary to compute them, and therefore to print them. 

For a given multibody system, one can observe that some of the equations of a recursive scheme 
such as Eqs. (18-23) and (31-38) in their scalar form are useless because they don't  contribute towards 
the final results, i.e. the "last" recursion steps such as Eqs. (37, 38) denoting the mass matrix M(q) 
and the vector C(q, ~) of system (2). 

To detect the useless steps for a given multibody model, all the recursive (useful and useless) 
equations are first stored by ROBOTRAN inside a double-linked list, during the symbolic generation. 
Before printing the final equations, the list is covered via C-pointers from the end (results) to the 
beginning (data), to check and mark dependencies, and to cancel the useless elements (i.e. equations) 
whose printing can be finally avoided. 

The saving is "application-dependent" but can reach 30% in terms of arithmetical operations. 
This cannot be neglected. 

Another interesting characteristic of a recursive scheme, from which it is possible to profit via 
a symbolic programme, is that the results of a given step of the recursion are a function of the previous 
steps results, but not necessarily of  the last one(s), as shown on the example given in Fig. 7. One can 
easily observe that A2 needn't A1 to be computed as well as C2 needn't C1. One can then imagine to 
compute them in parallel (A1 and A2, CI and C2), leading to a so-called "vectorized form" of 
the recursive scheme. 

The automation of such a "vectorization process" is within ROBOTRAN's capabilities in the same 
way as the detection of useless equations. Moreover, the process is optimal in the sense that, for a given 
equation of the serial scheme (e.g. "C2 = B + B2" in the previous example), ROBOTRAN assigns 
to the left hand side a vectorial step index "VSI", defined as the number of the step in the vectorized 
form VSI(C1) = VSI(C2) = 3, VSI(R) = 5 in the example 

VSI(left-hand side) = 1 + max {VSI( j  th term of  right hand  side)}. 
J 

In the example, VSI(B) = 0 and VSI(B2) = 2 being previously computed, it gives: VSI(C2) = 3. 
In this way, one can ensure that the number of vectorial steps is minimal. Moreover, the method 

is fully independent of the recursive scheme type. Indeed the vectorization process is purely of 
a symbolic nature. 

In practice, one observes that the reduction of the number of steps between a serial and a 
vectorized recursive scheme is really amazing. Using, for instance, the semi-explicit Newton/Euler 
scheme, ROBOTRAN generates 18 vectorial steps against 560 serial steps for a 3D pendulum (9 d.o.f.), 
and 23 vectorial steps against 1448 serial steps for a railway bogie (22 d.o.f.). 

Recursion steps Computed element____~s 

I N - ~  [] 
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6 N ~ / / { 3  N 
7 : Results 

Fig. 6. A qualitative recursive scheme 
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Fig. 7. Recursive scheme vectorization 
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To avoid any confusion, we should emphasize that the ROBOTRAN vectorization doesn't reduce 
the number of arithmetic operations, but only reorganizes the recursive equations in a vectorized form. 
We only hope that the latter form will be advantageously exploited in vectorial computer architectures 
in the future. 

We already profit from this new process, since ROBOTRAN is able to generate the equations in 
the MATLAB syntax. Indeed, the latter programme reaches its best performances with vectorized 
instructions. To quantify this for a medium-size multibody model, a railway bogie, we obtained a time 
reduction factor of about 2.8. 

4 
Application in railway dynamics 
All these developements have been applied to a large number of railway vehicles, and in particular 
to non-conventional railway bogies designed by the Belgian company B.N.- Eurorail. We have 
particularly focused our attention on the so-called BAS 2000 bogie (Fig. 1, [I9] ), which consists of 
a complex articulated mechanism: 13 bodies connected by revolute or spherical joints, 
6 three-dimensional kinematic loops, carried by four independent wheels via a verticat primary 
suspension. 

From a modelisation point of view, the bogie represents (see Fig. 8): 24 relative variables linked 
by 12 kinematic constraints leading to 12 d.o.f. 

Such an application is really enriching from a multibody point of view. Both the kinematics and 
the dynamics of the bogie have been generated by ROBOTRAN using recursive formulations. As regards 
the wheel/rail contact problem, we had to develop a new geometrical contact model for independent 
wheels [i 1], since classical models deal only with rigid wheelsets [20]. 

4ot 

A typical numerical example 
In accordance with the Belgian company B.N.-Eurorail demands, several numerical treatments and 
analyses (quasi-static equilibrium, straight track modal analysis, non-linear simulation) have been 
performed on different configurations of the BAS 2000 bogie. Here below, a non-linear simulation is 
proposed and is related to the bogie dynamic behaviour on a pure straight track. The model, 
Fig. 9, consists of a BAS 2000 bogie carrying half a carbody, whose articulation with the previous 
one (point P) is assumed to move perfectly at constant speed along the track centre. 

Figure 11 represents the evolution of the A-carbody yaw angle (gJ) with respect to time, and points 
out a transversal "rebounding" phenomenon of the bogie, strongly influenced by the wheel/rail flanges 
gauge (Fig. I0). 

One observes that for a small gauge (2 mm on the Figure), the rebounding effect disappears. The 
bogie then leans continuously against one of the rails (the left one in the present case). 
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4.2 
Computational efficiency 
The main motivation of the previous developments (recursive multibody formalism in symbolic 
form) was to reduce the CPU time of the numerical simulation of bogies and tramways for the Belgian 
B. N. company. Indeed, the BAS 2000 bogie is part of a whole tramway, consisting of three carbodies 
carried by three bogies. With the vehicle, whose complexity arises from its size (51 bodies, 20 loop 
constraints) and from the wheel/rail contact (12 independent wheels), a simulation using 
a non-recursive formalism based on the d'Alembert Power Principle and implemented numerically 
[21] was next to impossible in practice. 

The reformulation of the latter formalism under a symbolic form was the first step. A time saving 
factor between 5 and 6 has been found with respect to the previous approach. Notice that not only 
the dynamics but also the loop constraints, their time derivatives and the wheel kinematics are 
generated symbolically. This represents the major part of the model. 

As regards the semi-explicit recursive scheme, its first appeal was to allow the full symbolic 
generation of very large multibody systems without any difficulties. Secondly, it has allowed to reduce 
the CPU time by a factor 4 to 5 with respect to the non-recursive method for the simulation of the 
BAS 2000 bogie. This saving factor is clearly problem dependent. 

Altogether, these improvements have allowed to simulate the entry curving of a whole tramway 
with a full non-linear geometrical model for the wheel/rail contact in less than three hours on a 1.4 M 
flops SUN Station. 

5 
Conclusions and prospects 
The more complex and sophisticated are the mechanical systems to analyse, the more the reliability 
and the efficiency of the mathematical model have to be increased. 

From the efficiency point of view, we have particularly looked into the problem of the equations 
generation by developing a modified recursive Newton/Euler scheme to minimize the arithmetic 
operations cost. 

As regards the symbolic generation, we have shown that the latter technique was really suitable 
in case of recursive schemes and exhibited some amazing capabilities to vectorize the equations of 
motion, independently of the envisaged scheme. 



A very enriching application, the BAS 2000 articulated bogie, has allowed us to successfully apply 
these developments and convinced us that the limitation of the symbolic computation for large models 
was definitively surmounted. 

Future developments will be related to: 

- theuse•fthesymb•licappr•achincase•fmu•tib•dysystemswith•exib•eb•diesaspr•p•sedin [22], 
- the implementation of implicit integration schemes in conjunction with the symbolic approach; 

the latter indeed can be useful1 in computing anal~icalty and recursively the tangent matrices of 
the Iinearized system (the formalism presented above already computes the mass matrix), 

- the use of the numerical paralM computation in case of large multibody models when split up 
into several sub-systems. 
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