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Antiplane shear problems of perfect 
and partially damaged matrix-inclusion systems 

X. Zhang, Xian and N. Hasebe, Nagoya 

Summary: Antiplane shear problem of an infinite medium containing a circular inclusion of different material is 
investigated in this article. Perfectly bonding between the matrix and the inclusion, as well as partial debonding in the 
form of a circumferential crack occurring at the interface of these two constituents, are considered. Using the complex 
variable method in conjunction with a semi-inversed technique, exact expressions for the stress, displacement and stress 
intensity factor in the problem are obtained for various external loading conditions, including that brought about by stress 
singularities. A number of numerical results of stress intensity factors for a partially damaged matrix-inclusion system are 
given, and a discussion is made on the general features of the antiplane shear problem of inhomogeneous matrix-inclusion 
systems. 

Scherung von perfekten und teilweise besch~idigten Matrix-EinschluB-Systemen auflerhalb der Ebene 

(t)bersicht: In dieser Abhandlung wird das Problem der Scherung auBerhalb der Ebene fiir einen unendlichen K6rper mit einem 
kreisf6rmigen EinschluB aus unterschiedlichem Material untersucht. Es wird die perfekte Verbindung zwischen der Matrix und 
dem EinschluB ebenso wie teilweise Abl6sung in der Form eines Umkreisrisses an der Schnittflfiche zwischen den beiden 
Bestandteilen betrachtet. Unter Verwendung der komplexen Variablenmethode in Verbindung mit einem Halbinversionsver- 
fahren werden exakte Ausdrficke ffir Spannung, Verschiebung und Spannungsintensitfitsfaktor fiir verschiedene ~iul3ere 
Belastungszust~inde, einschlieBlich dem Einflul3 von Spannungssingularitfiten, erhalten. Es werden numerische Ergebnisse ffir 
den Spannungsintensitfitsfaktor ffir ein teilweise besch~idigtes Matrix-EinschluB-System gegeben, und die allgemeine Form des 
Problems der Scherung aul3erhalb der Ebene ffir ein nicht homogenes Matrix-EinschluB-System wird diskutiert. 

I Introduction 

In recent years, composite materials have been finding an ever growing application in various 
branches of engineering. Being a necessity to the damage tolerance design, the evaluation of stresses 
and stress intensity factors in structures of composite materials has become a significant subject in 
fracture mechanics, to which many references have been dedicated. England [1] studied an arc crack 
around a circular elastic inclusion by the method of complex variables. Using dislocation density as 
Green's functions, Erdogan et al. [2] solved the problem of an infinite medium containing a circular 
inclusion and a neighboring, arbitrary oriented crack. A more complicated situation, with 
a debonding around and a crack occurring from a circular rigid inclusion, was treated by Hasebe et al. 
[3] as a mixed boundary value problem under uniform tension. Recently, Luo and Chen discussed an 
interface crack in a three-phrase composite constitutive model by the use of the method of complex 
variables [4]. 

It should be pointed out that the references mentioned above are concerned with plane strain or 
plane stress problems. As for the problem of antiplane shear, apart from a few papers treating of 
straight cracks between different materials ([5] for instance), no reference seems available for 
circumferential interface cracks, a fact manifesting that the problem has not been treated sufficiently 
and conclusively. 

This article deals with the antiplane shear problem of an infinite medium containing a circular 
inclusion of different material. Its content is now outlined as follows. Both perfect bonding and partial 
debonding in the form of a circumferential crack between the matrix and the inclusion are considered. 
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The external forces consist of uniform antiplane shear at infinity and stress singularities. Using the 
method of complex variables in conjunction with the semi-inversed method, exact expressions for the 
stresses, displacements and stress intensity factors in the problem are developed. Finally, numerical 
values of stress intensity factors are presented as well as a discussion on the features of the antiplane 
shear problem in the matrix-inclusion system. 

2 P r o b l e m  a n d  b a s i c  f o r m u l a t i o n  

In this article we deal with the antiplane shear problem of an infinite matrix containing a circular 
inclusion of different material. The region in the z plane occupied by the matrix is denoted with $1 and 
that by the inclusion with $2. The two regions are separated via the interface L, which stands for r = 1 
(Fig. 1). It is well known that the stresses and the displacement in an antiplane shear problem are 
related by [6] 

Owj Owj (1 a, b) 
zx~j= Gj ~x ' z m = Gj ~y , 

where the displacement wj should satisfy the following equation: 

O2wj ~2wj 
- -  + - -  = O, (2)  ~X2 Oy2 

where j = l, 2, Gj stands for the shear modulus of the material. The subscripts 1 and 2 are used to 
distinguish similar quantities of the matrix and the inclusion. 

To solve the problem we introduce two analytic functions ~j(z), j -- 1, 2 and write [6] 

rx,j - iz m = ~j(z)  

+ 

wj = 2Gj ' ~j(z) = 

Also, it is ready to show that 

(3) 

dc~j(z) (4 a, b) 
dz 

r,,j - iro~j = ei~ for j = 1, 2. (5) 

In this way, by a basic property of an analytic function [7], equation (2) is automatically satisfied, 
Therefore, the unknown functions ~j(z) should be determined from the boundary condition of the 
problem at inifinity and the continuity conditions of traction and displacement at the interface of the 
two constituents, r = 1. In the case of perfect bonding between the matrix and the inclusion, the 
continuity conditions take the following form: 

z,,, = ~,,~, wl = w2 for r = 1. (6a, b) 

Y 

$I 

Fig. 1. The matrix and inclusion 
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The function 451(z) is originally defined in region St and ~2(Z) in 8 2 (Fig. 1). Now they are extended 
into their counterpart regions, $2 and $1, respectively, after the following formulas [8]: 

o ,z, forzin   ,7, 

The regions of existence for ebb(z) and (~2(Z) nOW cover the whole z plane except possibly the interface 
r = 1. In addition, the following properties hold for 4~1(z) and ~2(z): 

4 ) - ~  = 4~j-(t), rbj-(t) = 4~j+(t) for j = 1, 2 (9a, b) 

where t denotes a point on the interface r - - 1 ,  and the superscripts + and - are used to 
indicate that the affixed function values are approached within region $2 and region $1, 
respectively. With use of (7, 8, 9a, b), the continuity conditions (6a, b) at the interface can be 
written as 

t2~2+(t) -- (~1 +( t )=  t2q~ l - ( t ) -  ~2-( t ) ,  (10) 

Glt2~2+(t) + Gz~l+(t) = G2tZcbl-(t) + Glq~2-(t). (11) 

In (11), we have replaced equivalently (6b) with 

dwl dw2 
- for r =  1. 

dO dO 

Now the solution to the problem is reduced to the finding of two complex functions, 4~x(z) and 
4~2(z), analytic in the whole z plane sectioned by the interface r = 1, and satisfying (10, 11) as well as the 
boundary conditions at infinity. 

3 Solutions for a perfectly bonded inclusion 

3.1 Uniform shear in the x direction at infinity 

The boundary conditions for this particular case are following 

Zx~ = ~0, ryt = 0 for z -~ ~ .  (12a, b) 

To solve the problem it is noticed that since there is no singularity of stress or displacement in the 
whole z plane, ~bl(Z) and ~b2(z) should be holomorphic in both $1 and $2. Besides, 

q>l(Z) ~ ~o for z ~ ~ ,  (13) 

because of the boundary conditions (12a, b). On account of the above observations, we assume 

in S 2 z2~)2(z) -- (J51(z) = To Z2 +f l ( z ) ,  (14) 

in S1 z2q~l(z) -- ~b2(z) = ZoZ 2 +f2(z), (15) 

in $2 GlZ2~2(z) "{- G2~I(Z) = G2~o z2 +f3(z),  (16) 

in S1 G2Z2~l(Z) + GI~2(z) = G2"to z2 +f4(z), (17) 

wherefl(z),f3(z) andfz(z),f4(z) stand for holomorphic functions in S 2 and $1, respectively. To satisfy 
(10), fl(z) and fz(z) should equal to each other on the interface r = 1. As a result, both of them must 
be a constant [7]: 

fl(z) =f2(z) =/~ = const. (18) 
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A similar analysis with respect to f3(z), fa(z) and (11) leads to 

f3(z) =f4(z) = 1' = const. (19) 

Substituting (18, 19) into (14-17)  and solving for the latter, we obtain: 

2G2"c0 z2 + G2fl + ]) (G2 - Gx) ZO Z2 -- Gift + ? 
in $2 O2(z) = (G1 + G2)z 2 ' qh(z) = G1 + G2 ' 

(G1 + G2) Zo z2 + Gift + 7 - G 2 f l  + ]; 
in $1 4)1(z) ---- (G1 + G2) 2 2 , 4~2(z) - G1 + G2 (21a, b) 

Constants fl and 7 in (20a, b, 21 a, b) can be determined from the following conditions: the function 
O2(z) should be holomorphic in $2, thus, 

G2fl + ? = 0 (22) 

and due to (20b), (21a) and (7), 

/3 = - 4~1(0) = - Zo (23) 

Substituting (22) and (23) into (20a) and (21 a), the final solution turns out to be 

2G2zo 
in $2 ~2(z) - G1 + G2' (24) 

G2 - Gx Zo 
inS1 4~ l (z )=zo+  GI +G~ z 2" (25) 

Furthermore, using (4 a, b), the displacements in the matrix and the inclusion can be determined 
from (24, 25) 

2Zo 
in $2 w2 - r cos 0 + Co, (26) 

G1 + G2 

Zo [ G 2 - - G x  cos01 
= - + Co (27) inS1 wx ~ r c o s 0  G 2 + G 1  r 

with Co being a constant signifying the rigid body displacement of the matrix-inclusion system. 

(20 a, b) 

3.2 Uniform shear in the y direction at infinity 

This particular case can be treated in a way similar to that described above. The final result is 

in S2 4~2(z) - 
2G2zli 

G1 + G2'  
(28) 

inS~ t~l(Z).= _ir~ [ 1 G 2  - G~ I] 
GI + G2 " ~ ' 

(29) 

where zl denotes the uniform shear stress at infinity. And, 

2T 1 
in S2 w2 = - -  r sin 0 + C2, 

G1 + G2 
(30) 

zl [ G2 - GI sin01 
inS~ w l =  ~ r s i n 0 - G x - - + G 2  r + C2. (31) 
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3.3 S ingular  solu t ions  

First, we introduce the following basic singular solution in an antiplane shear problem for 
a homogeneous  medium: 

1 
(bo(Z) = - .  (32) 

z 

The stress and displacement associated with this singular solution are 

1 
zr,o = - ,  ZOto = 0 (33a, b) 

r 

and, 

1 
Wo = ~ l o g r  + Co. (34) 

The solution indicates that  there is a source of radial antiplane shear stress of unit intensity at point 
z -- 0. This is another  basic form of external loading under which the matrix-inclusion system can 
statically be deformed in antiplane shear. 

Now consider the case, when a source of intensity A (A: a real number) is located at point z = a in 
the matrix. Obviously, in this case 4~2(z) is holomorphic  in both $2 and $1, whereas 4h(z ) has a simple 
pole at z -- a so that  

A 
in $I cbl(z) - + a holomorphic  function,  (35) 

z - - a  

A z  
in $2 ~1(z) - 1 - ciz + a holomorphic  function.  (36) 

On ground of the above considerations, it is put  forward that  

in 8 2 zZ(~z(Z)  - -  (~)I(Z) = ao 22 + a l z  + a2 + - -  

in S 1 Z2(~I(Z) -- ~2(Z) = ao 22 + a l z  + az + - -  

Similarly, 

in $2 

A z  2 A z  
+ _ + ~1(z), (37) 

z - - a  a z - -  1 

A z  2 A z  
+ - -  + ~2(z). (38) 

z - - a  f l z - - 1  

( __mAz ) 
G 1 2 2 ~ 2 ( 2 )  "k- G 2 ~ l ( z  ) -- G2 ao 22 -k- a l z  -k- - -  + + a  3 -]- ~3(z), \ z - a  d z -  1] 

in S 1 G2z2~1(z) + Gl~2(z) = G2 ao Z2 + a l z  + - -  + +a3  + ~4(z), (40) \ z -  a a z -  1] 

(39) 

where ~i(z), i =  1, 2, 3, 4 are holomorphic  functions in S 2 o r  $1 and m is a constant  to be fixed. 
Following an argument  as that  applied to fi(z), i = 1, 2, 3, 4 in (14-17) ,  we have 

~1(z) = ~2(z) = 6 = a const.,  ~3(z) = ~4(z) = rl = a const. (41 a, b) 

Since these constants can be regarded as having been included in the constants a2 and a3 in ( 3 7 -  38) 
and ( 3 9 -  40), respectively, they can be taken as zero. Solving for ( 3 7 -  40) thus simplified, we obtain 

inS2  ~2(z)  = GI + GE ' Z ~ 2G2 aoz 2 + a l z  + z - a /  + GEaE + a3 + a z - - i  J" (42) 

Since 4~2(z) is holomorphic  at z = 0, the following equations must be true: 

al = 0 ,  a a + G 2 a 2 = O ,  G E + m = 0 .  (43a, b, c) 
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Substituting the above equations into (42) results: 

2G 2 1 {  Az2~ 
in Sz cb2(z) = G~ + Gz ~ a~ --k z ~ aJ" 

On the other hand, for the matrix we have 

' { ( inS1 ~ t ( z ) -  ( G I + G 2 )  z 2 (G1 +G2)  a o z e + - -  

Using the boundary  condit ion at finity 

4~1(z) ~ 0 for z --, oe 

and noticing that  (37) implies 

a2 = - ~1(0), 

all the constants in (44, 45) can be fixed as 

ao = a l  = a2 = a3 = 0, m = - G 2 .  

(44) 

Az2 ) (G1- G2) Az) (45) 
z : a ]  + a2Gx + a3 + : z -  i " 

(46) 

(47) 

(48 a, b) 

Combining the above results, the final expressions for ~l(z) and ~2(z) are as follows: 

2AG2 1 
�9 , ( 4 9 )  in $2 q~2(z) = G1 + G2 z - a 

A G1 - G2 A 
- + ( 5 0 )  

in $1 cbl(z) z - a G1 + G2 z(?tz - 1)' 

A 
in $2 w2 - log [R 2 + r z - 2Rr cos (~b - 0)] + C, (51) 

G1 + G2 

A log [R 2 + r 2 - 2Rr cos (q~ - 0)] A(G1 - G2) In r + C, (52) 
in $1 wx - G1 + G2 GI(G1 + G2) 

where R and q~ stand for the modulus  and the argument  of the complex number  a (a = Reir 
respectively. 

In case the singularity lies within the inclusion, that  is, when lal < 1, the problem can be treated 
similarly. The result is: 

A A~(G2 - G1) 1 
+ (53) 

in $2 ~2(z) - z -  a G1 + G2 a z -  1' 

A(G2 - G1) 1 2G1A 1 
�9 - + , (54) 

in $1 ~ l ( z )  = G1 -b G2 z Gx + G2 g - a 

A 
in $2 w2 = Gz(G1 + G2) [(G2 -- G1) log r + G2 log {R z + r 2 - 2Rr cos (~b - 0)}] + C, (55) 

A 
in S~ w~ - Ga(G~ + G2) [(G2 - G1) log r + G~ log {R 2 + r 2 - 2Rr cos (q~ - 0)}] + C. (56) 

Another  interesting case occurs when the singularity is located precisely on the interface, i.e., 
a = ao, laol = 1. Solution for this case can be obtained by letting a ~ ao either in ( 4 9 -  52) or in 
(53-56) .  Both approaches give the same result. It  is, 

2AGz 1 
in S 2 ~2(Z) = Gt + G2 z - ao' (57) 

A G1 - G2 A 
+ (58) 

inS1 cbl(z) - z - ao GI + G2 Z(aoZ - 1 ) '  
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and 

A 
in $2 W 2 - -  - -  log [1 + r 2 -- 2r cos (q5 - 0)] + C, (59) 

G1 -k- G2 

A { G ~ G  2 -- G~ log r + 
in $1 wl = ~ + G1 

G1 

G1 q-G2 
log [1 + r 2 -- 2r cos (q5 - 0)]} + C. (60) 

4 Solutions for a partially debonded inclusion 

Suppose there is a partial debonding  on the interface between the matrix and the inclusion in the form 
of a circumferential crack on r = 1 for 10[ < 0o, Fig. 2, the following antiplane shear problems for this 
partially damaged  system will be considered. 

4.1 Uni/brm shear in the x direction at infinity 

In this case, the bounda ry  condit ions at infinity (12 a, b) still applies. The continuity condit ions at the 
interface r = 1, i.e., (6a, b) remain valid for 101 > 0o. For  10[ < 0o they should be replaced by traction 
free condi t ion on the crack surfaces, 

10l < 0o, rr, = 0 for r = 1. (61) 

To solve the problem, we start from the observat ion that as can be seen from (61), continuity of 
stress at the interface is still valid over the whole interface r = 1. Therefore, the function vr,2 - rr,, is 
cont inuous  in both  $2 and Sx, and vanish at r = 1. As a result, z2~b2(z) - ~ba(z) and zZ,/q(z) - ~b2(z ) are 
holomorphic  respectively in $2 and S~, taking a same value at r = 1. In view of this, both  of them 
should be equal to a polynomial  in the z plane. Since ~ ( z )  and ~2(z) are regular at infinity, the order of 
the polynomial  must  not  exceed 2. Combining the above points, we obtain, 

in S 2 Z2~2(Z) -- 4~1(Z) = ao + alz  + a2 Z2, (62) 

in $1 z24~l(z) -- qb2(-7) = ao n t- a l z  n t- a2 z 2 .  (63) 

By a similar considerat ion and noticing that w~ and w2 are discontinuous across the crack 
surfaces, we write 

in $2 GlzZ~z(Z) q- Gzq~l(Z) = bo + blz  + b2 Z2 + f ( z ) ,  (64) 

in S 1 G2z2qbl(z) + G ~ 2 ( z )  = bo + b l Z  -}- b2z z + f ( z ) ,  (65) 

/ 
% 

Fig. 2. The partially damaged matrix-inclusion system 
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where 

C O At- CIZ -~- C2 Z2 -~- . . .  + Cn Zn 
f ( z )  = (66) 

X(z) 

and X(z) stands for a single-valued branch of function ]//(z - e i~176 (z - e-i0o) under the condition 
lim X(z)/z  ~ 1. 

Note that f ( z )  takes values of opposite sign on the crack surfaces such that 

f +(t) = - f - ( t )  t = e i~ (67) 

and therefore is used to take account of the jump of displacement across the crack surfaces. 
Substituting (66) into (64, 65) and subsequently solving (62-65),  the following expressions for 

�9 l(z) and q~z(z) are obtained: 

1 
in S 2 (~2(z)  = 

(G1 + G2) z 2 

CO "q- s -J- C2 Z2 -J- . . .  + CnZn t 
x bo + aoG2 + (bl + alG2)  z + (b 2 + a2G2) g 2 + X(Z) ~' (68) 

1 
in $2 ~l(z) - 

G1 + G2 

CO "q- ClZ "~ C2 Z2 -~- . . .  71- CnZn t 
x bo - aoG1 + (bl - alG1) z + (bz - a2Gi) z 2 + X(z) ~' (69) 

1 
in S~ ~l(z) = 

(G1 + G2)z 2 

C O "31- C1Z Jv C2 Z2 "3!- "'" "]- CnZn t 
x bo + aoGi + (bl + aiG1) z + (b2 + a2Gi) z 2 + X ( z ) . ,  , (70) 

1 
in S1 ~bz(Z) = 

G1 + Gz 

Co + clz  + czz 2 + "" + c,z" t 
x bo - aoG2 + (bl - alG2) z + (b 2 - a2G2) z 2 + X ( z ) . , .  (71) 

Applying (8), ~bz(Z) in S~ can also be obtained in the following form: 

1 
in Si ~b2(z) - 

G1 + G2 

x ~'(b~o + ~oG2) z 2 + (b-7~ + ~-TG2) z + (F22 + ~-~2G2) - 
X(z) ( 

~oZ 3 + ~ z  z + ~ z  + ~ + ~ / z  + ... +Y,/z"-3}. 

In deriving the above formula, the following relation has been used: 

: r  = -zX(z). 

By comparing similar terms in (71) and (72), we obtain, 

C 3 = --C'--O, C 2 = --C'-'~, C 4 .~- C 5 . . . . .  C n -~- O, 

bo - aoG2 = bz + ~2G2, bl - alG2 = bl  + -if'fiG2, 

bz - azG2 = bo + -d-dG2. 

(72) 

(73) 

(74 a, b, c) 

(75 a, b) 

(76) 
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Similarly, by applying (7) to 4~1(z) in S 2 and following a procedure similar to that described above, 
we obtain, 

bo - aoG1 = b2 + ~22G1, (77) 

bl - a lG1 = bl + -d-(Gl, b2 - azG1 = bo + -~ooGa. (78a, b) 

From (75a, b), (76), (77) and (78a, b), the following additional result is obtained: 

ao = -a--S, al = iaR, (79a, b) 

bo = b2, bl = bR, (80a, b) 

where aR and bR are real numbers. The remaining constants contained in the expressions for 4~(z) and 
4~2(z) should be determined by the following conditions. 

Since for z ~ or, 4~l(Z) ---, to, therefore, 

b2 + a z G l  + c3 = "c0(G1 Jr- G2). (81) 

Since for z ~ 0, ~b2(z) should be holomorphic, so that 

b2 - a2G2 + C3 ~- O, (82) 

bl + iaRG2 + U22 + ~3 cos 0o = 0. (83) 

Since on the crack surfaces, any traction should be absent, we have, 

on L + t2cb2+(t) + cb2-(t) = 0. (84) 

The above equation, (84), turns out to be equivalent to the following conditions: 

c3 = G2zo, c2 = - G 2 z o  cos 0o + ic2R, (85a, b) 

where c2R is a real number. 
The term al = iaR in the expressions for ~bl(Z) and 4~2(z) corresponds to the following stress field: 

rr~ = O, ~o~ = aR/r. (86 a, b) 

A similar explanation applies to the term of Im [c2] -- c2R (see (85 b)). Since a stress field of the type of 
(86a, b) lacks physical reality and is inconsistent with the nature of this problem, we should take 

a R ~- C 2 R  ~-  O .  (87) 

Using (74a, b,c)-(76),  (77)-(83), (85a, b) and (87), all unknown constants contained in the 
expressions for ~bx(Z ) and qSz(Z ) can uniquely be fixed. Substitution of these fixed values into (68) and 
(70) yields 

inS2 4~2(z)- G ~ + 6 2  1 -  ~ + ~ z -  z ~ - C O S 0 o  1 -  , (88) 

inS1 q ) l ( Z ) -  G~ + G 2  G1 1 -  ~ + ~ - ~  z -  z ~ - C o s O o  1 -  . (89) 

A parameter of engineering importance in this problem is the mode l I I  stress intensity factors at 
crack tips, A and B. The factor at tip A can be evaluated from the following formula: 

KA = lim ]/2rtr(0 -- 0o) rrt. 
(1~0o + 

Noticing (5), (88) and the following result: 

lim /2re(0 - 0o) r = i ~  e -i~176 

r~ ~ X(z)  ~ : m  Oo 
0 ~ 0 o  + 

(90) 

(91) 
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the stress intensity factor at tip A can be worked out as 

(sin ~ ?) K A = G1 + G2 ~ -~-  - cos 0o sin . (92) 

The stress intensity factor at tip B can be found similarly and it turns out that 

K e = K A. (93) 

4.2 Uniform shear in the y direction at infinity 

In this case, the external loading is effected by a uniform antiplane shear stress zrt = z x at infinity. 
The basic functions in the problem, ~l(Z) and ~2(z), can be determined via a way similar to that for 
the uniform shear in the x direction. The final result is as follows: 

iGEZl 1 + + - z +  +cosOo 1 + (94) in $2 ~2(z) -- 61 + G2 j ~ j 

izl G1 1 + + z +  - c o s 0 o  i +  (95) 
G 1 -1- G 2 J S - ~  z-2 �9 

in S1 # l ( z )  - 

T h e  stress intensity factors at crack tips A and B are, 

KA = --KB -- G1 + G2 cos ~ -  - cos 0o cos . (96) 

4.3 Shear tractions on the crack surfaces 

In the preceding two subsections, we solve antiplane shear problems of the matrix-inclusion 
system with a partially debonded interface. The solution approach used is the semi-inversed 
method. With some physical reasoning, the basic form of the solution for a particular 
problem is firstly proposed, and the unknown coefficients contained therein are then fixed 
with various conditions the solution should satisfy. In what follows, this solution method 
will also be applied. 

Let us consider the general case in which all antiplane shear stresses vanish at infinity, whereas on 
the crack surfaces the following external antiplane shear traction is applied: 

zrt = cos nO n = 0, 1, 2, ... (97) 

For this general case we first propose 

in $2 zz~E(Z) - ~bl(z) = 0, (98) 

bl - .  1 
in S2 Glz2#2(z) + G2~l(Z) - z._ 1 + b.+lz ~+1 + X(z----)) 

~c1-. c2-. c-1 ~ 
X L ~  + ~ "JI- "'" "Jr- Z all- CO + r "~ "'" "q- Cn+lZn+l "q- Cn+ZZn+ A '  (99) 

in $1 

in S1 

Z2~l(Z) - r = 0,  (100) 

bl -n 1 
G 2 z 2 ~ I ( Z )  + Glt~2(z) - z n -1  + b n + l z n + l  "1- X(z----) 

F c l - ,  c2- ,  c_ 1 21 (101) X LZ--~Z~_ 1 "It- ~ "~- "" -~- Z "~- cO "~ r "Jr "'" "Jr Cn+l Z"+I "q- C.+2 Zn+ �9 
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By solving for (98-101), it is obtained that 

1 1 ~ b l - .  1 
in $2 ~bz(Z) = G, + Ge " z -5- [z  ~T-~ + b"+tz"+~ + X(z~) 

x mz~ ' + ~ + . . .  + z Jr- cO -~- c l Z  ~- "'" 7L C n + l z n  "-~ C n + 2 Z n + 2 j J '  

in S 2 

in $1 

e~(z)  = z2~2(z) ,  

1 1 ~ b a - .  1 
eb,(z) = G, + G2 ~ ( z  ~ - ~  + b.+,z "+1 + X(z~) 

x m=-~_ , + ~ + .. .  + = + co + c , z  + .. .  + c ~  ~ + c,+=z "+2J j, 

(102) 

(103) 

(104) 

i n  Sx (~2(Z) = Z2(j~I(Z). ( 1 0 5 )  

To determine the unknown constants in the above expressions, we write the expression for cbz(z ) in 
$1 directly from (102) by employing (8). This gives, 

Z2 t b.+ 1 z 
in Sl r -- G1 + G2 tb---~-nz"-i + z"+l X(z) 

M C--'-~-nZn-17Lc--'-~-nZn-2-~-'''-'~'~'TZ-~-~o7L---V'"'~Z ~ + z . + Z j j .  (106) 

Since (105) and (106) should be identical, comparing the coefficients for similar terms in these two 
equations results: 

b.+ 1 = b l - .  (107) 

C I _  n ~ - - O n + 2 ,  C 2 -  n ~ - - C n + l ,  C 3 -  n ~- --Cn~ C -  1 ~ - -C4~  C 0 ~ - - C 3 ,  C 1 ~ - - C  2 

(108 a, b, c, d, e, f) 

Similarly, an alternative expression for cbl(z) in $2 can be written directly from (104) by employing 
(7). But this does not give new result. 

To utilizing the boundary condition at infinity, that is, 

cbl(z) ~ 0 for z --, ov (109) 

we first notice that the following expansion hold for 1IX(z) in Izl > 1" 

X(z) - - D. , (110) 
n = l  

where 

Z 
D . =  ~ u K u . + l - ~ C o s ( n +  1 - 2 K )  0o, 

K = I  

2n - 3 
ul = 1, u . -  u ._ l ,  n = 2 , 3 , 4  . . . . .  

2n - 2 

(111) 

(l12a, b) 

Using the expansion (110), it is easy to show that the condition (109) will be met provided the following 
equations hold' 

b.+l + Cn+2Dl = O, (113) 

Cn+2D2 + c,,+ID1 = 0, (114) 
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cnq_ zD 3 -I- c,+ lDz + c,D1 = 0, (115) 

c ,+2D, -1  + Cn+lDn-2 + c , D , - 3  + "'" + c5D2 4- c4D1 = 0, (116) 

Cn+ 2D n 4- Cn+ lOn_ 1 --}- cnOn_ 2 ..k- ... -I- c4D 2 -~ c3D 1 = 0. (117) 

On the other hand, by using the following expansion for 1IX(z)  holding in [z[ < 1, 

i _  D , z  "-1  (118) 
X ( z )  . = 1 

the regular condition of ~2(Z) a t  z = 0, that is, ~2(Z) should be holomorphic at the origin, can be 
treated readily. This condition, in addition to once more giving (113-117), leads to the following 
equation the unknown coefficients should satisfy: 

c l - , D , + l  + c 2 - , D .  + c 3 - , D , - 1  + "'" + c - l D 3  + coDa + ctD1 = O. (119) 

There are b i - . ,  b, + 1 ; c i - n, C2 - n, " ' ,  C - 1, C0,  C 1 . . . . .  Cn + 1, Cn + 2 : in total 2n + 4 unknown coefficients in 
(102-105), and we have had (107), (108 a, b, c, d, e, t), (113 - 117) and (119) in total 2n + 3 equations. 
Another equation needed is afforded by the boundary condition on the crack surfaces, (97). Noticing 
X+( t )  = - X - ( t ) ,  this condition finally reduces to 

zr~ - G1 + G2 + b---~_.t" = cos nO. 

This equation is satisfied by taking b l - ,  a real number determined by 

(120) 

G1 + G2 (121) 
bx - ,  - 4 

With b~-,  thus fixed, b,+~, c,+2, c,+1, ..., c2, c1, Co, c-1, c-2, -.., Cl-n can successively be 
determined from (107), (113-117), (119) and (108 a, b, c, d, e, t). Substituting these values into (102) 
and (104), we obtain the explicit expressions for O2(z) and ~bl(z), and by this way completely solve 
the problem. 

The stress intensity factors at the crack tips are 

 )Oo . . . . .   c sin l 
The solution for any particular case can easily be obtained from the general solution. For instance, 

for n = 0 in (97) we have 

1 I z-z2] 
in $2 ~2(z) = ~5z2 z + ~ ,  

1 [ z - z  2] 
in $1 4~1(z) = 2z--- 7 z + - - ~ j ,  

Oo 
K A  = K B  = - -  s in - - ,  

2 

It is easy to see that by taking b~_. an imaginary number determined by 

�9 G I + G 2  
b x - " = l  4 

(123) 

(124) 

(125) 

(126) 
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and fix other unknown coefficients in (102) and (104) in accordance with this value of bl - , ,  we obtain 
an exact and explicit solution for the case when on the crack surfaces the following external antiplane 
shear traction is exclusively applied: 

z~t = sin nO. 

In this case the stress intensity factors are 

K a = - -  K B = 2c~ c o s  n + 0o 

wherec r  ~ = cr/i, K = 1 - -  n, 2 -- n, ..., O, 1. 

(127) 

+2 o  cos(. 1)oo+ + ClOCOS l , 28, 

Finally, since any form of external antiplane traction on the crack surfaces, f(0), can be ex- 
pressed by a Fourier series consisted of cosine and sine terms, the general result can be utilized to solve 
the problem when on the crack surfaces there is an arbitrary distribution of z~t. 

4.4 Singular loading 

By using the result developed in the preceding subsection, the problem in which the partially damaged 
matrix-inclusion system is effected by a singularity of the type of (32) can be treated simply by the 
method of superposition. 

Suppose there is a singularity, i.e., a source of intensity A located at point z = a on the x axis in the 
matrix. The solution to this problem for a perfect matrix-inclusion system has been given by (49, 50), 
and stress r~t at the interface is expressed by 

2AG2 ( U  cos20  cosn0 ) 
z~t-  GI + 9 2  + a ~ + "'" + a ~ + "" (129) 

This distribution of r~t should be absent on the crack surfaces of the partially damaged 
matrix-inclusion system. Therefore, to eliminate r,t on the crack surfaces we should apply 
a distribution of rrt on them, which is equal in magnitude but opposite in sign to that given by 
(129). This is a problem when the partially damaged matrix-inclusion system is exclusively loaded 
on the crack surfaces, and the solution is given by (102) and (104). The final solution to this sin- 
gular loading problem is obtained by adding a solution of type (49, 50) to another one of type 
(102, 104). Other cases of singular loading can be dealt with similarly. 

5 Numerical results and discussion 

The antiplane shear problem of matrix-inclusion systems has been solved in the preceding sections 
rigorously. Using various exact expressions developed therein, antiplane shear stresses and 
stress intensity factors for the systems can easily be obtained. In this section, numerical values 
of stress intensity factors at the crack tips of a partially damaged matrix-inclusion system (Fig. 2) 
are given. 

First we deal with the case when there is a singularity of intensity Ao located at the center of the 
inclusion. In this case, the following stress zrt would develop for a similar perfect matrix-inclusion 
system ((53, 54) and (5)): 

7~rt = Ao = const, for r = 1, (130) 

which is independent of material constants. The stress intensity factors at the crack tips of the partially 
damaged matrix-inclusion system should be sought under the condition that on the crack surfaces the 
following antiplane shear stress is applied: 

zrt = - A o  for r = 1. (131) 
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Numerical values of the stress intensity factors have been obtained from (125) and is presented in 
Fig. 3 for various geometric and material parameters. 

Nextly we consider the case in which there is a singularity of intensity Ao located precisely on the 
interface r = 1. Using (57, 58) and (5) it is found that the following stress rr, would develop on the 
interface r = 1 for a similar perfect matrix-inclusion system: 

GzAo 
rr, - (132) 

G1 + G2' 

Equation (132) shows a wonderful fact, that the stress r,, developed on r = 1 is always a constant, 
irrelevant to the location of the singularity as long as it lies on the interface r = 1. Consequently, the 
stress intensity factors in the partially damaged matrix-inclusion system are independent of the 
location of the singularity also. These stress intensity factors have been worked out from (125) and is 
presented in Fig. 4. 

In case the singularity is located in the matrix at a point x = a on the real axis, the stress 
v,, developed in a similar perfect matrix-inclusion system would be 

2AoG2 ~, cos nO 
z r t -  G1 -+- G2 ~ a" for r = 1 (133) 

n = l  

And, when the singularity lies in the matrix at a point y = a on the imaginary axis, the stress 
Zr, described above would take the following form: 

G 12AOG2-4- G 2 [ ~ 0).+ 1 Sina --W-nO ~ i" cos nO] - + -- ( - 1 )  - -  for r = l  (134) "Crt 
n= 1,3,5 n= 2,4,6 an J 

K 

A o  

1.2 

0.9 

0.6 

0.3 

__K 
A, 

1.0 
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0.2 

t I I I I -- 0 
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C,-,dC~= O. 1 
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l l i I 
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Fig. 3 and 4. 3 Numerical values of stress intensity factors (K A = Ks); 4. Numerical values of stress intensity factors 
(Ka = K~) 

Table 1. Numerical values of stress intensity factors (K = KA/Ao = KB/Ao, a = 2.0) 

0 rt/24 ~/20 ~/16 ~/12 ~/8 

G1/G2 K 

0.1 0.5541 0.602 0 0.662 9 0.740 8 0.828 3 
0.5 0.406 4 0.4415 0.4861 0.543 3 0.607 5 
1.0 0.304 8 0.331 1 0.364 6 0.407 5 0.455 9 
2.0 0.203 2 0.220 7 0.2431 0.2716 0.303 7 
5.0 0.101 6 0.1104 0.1215 0.135 8 0.1519 

10.0 0.055 4 0.060 2 0.066 3 0.0741 0.082 8 
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Table 2. Numerical values of stress intensity factors (a = 2.0) 

0 n/24 n/20 n/16 n/l 2 n/8 

G l,/G2 KA/A o 

0.1 - 0.267 7 --0.272 2 --0.283 2 -0.308 5 --0.372 5 
0.5 -0.1963 --0.1996 --0.2077 --0.2262 -0.2731 
1.0 -0 .1472 --0.1497 --0.1558 --0.1690 -0 .2049 
2.0 -0.098 1 -0.099 8 -0.103 8 -0.113 1 --0.1366 
5.0 -- 0.0491 - 0.049 9 - 0.051 9 - 0.056 5 - 0.068 3 

10.0 -0 .0267 -0 .0272 --0.0283 -0.0308 -0 .0372 

0 n/24 n/20 n/16 n/12 n/8 

G1/G2 KB/Ao 

0.1 0.0374 0.0371 0.039 8 0.0502 0.0866 
0.5 0.027 4 0.027 2 0.029 2 0.036 8 0.063 5 
1.0 0.020 5 0.020 4 0.0219 0.027 6 0.047 6 
2.0 0.0137 0.0136 0.0146 0.0184 0.031 8 
5.0 0.006 8 0.006 8 0.007 3 0.009 2 0.016 0 

10.0 0.003 7 0.003 7 0.004 0 0.005 0 0.008 7 
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Employing (122) and (128), numerical values of stress intensity factors in the above two cases 
have been obtained and are presented in Table 1 (for the singularity lying on the x axis) and Table 2, 
(for the singularity lying on the y axis) respectively. 

It is seen from both the numerical data and the theoretical analysis, that the stress intensity 
factors are identical for a homogeneous medium and a matrix-inclusion system, provided ex- 
ternal loads are applied on the crack surfaces. When external loads in the form of singularities 
are applied, stress intensity factors for the homogeneous medium and the matrix-inclusion system 
are different from each other only in a constant factor G2/(G1 + G2). On this ground, the special features of 
a matrix-inclusion system in antiplane shear are less remarkable than those in plane problems. 
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