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Introduction 

Chronic granulomatous disease (CGD) is a rare inherited immunodeficiency syn- 
drome, caused by the inability of the patients' phagocytic leukocytes to produce (suf- 
ficient) superoxide [14]. Phagocytic cells (neutrophils, eosinophils, monocytes and 
macrophages) constitute a central part of the innate (nonspecific) immune system, 
forming as such a first line of defense against various invading microorganisms, prin- 
cipally bacteria and fungi. These leukocytes phagocytose the pathogens and then kill 
them intracellularly by means of reactive oxygen species and a number of oxygen-in- 
dependent microbicidal agents. The highly reactive oxygen species (such as superox- 
ide, hydrogen peroxide, hypochloric acid and others) not only attack the ingested mi- 
croorganisms directly, they also optimize the intraphagosomal milieu for the cationic 
microbicidal peptides and proteins there present. 

The enzyme responsible for the generation of those oxygen metabolites is the 
phagocyte-specific NADPH oxidase [ 13], and it are the defects of this multi-component 
redox-center that lead clinically to the severe immunodeficiency syndrome of CGD. 

Clinical presentation 

CGD is a rare disease, with an estimated incidence of 1 : 250,000, all ethnic groups be- 
ing equally affected. While the most common form of the syndrome is X-linked, dif- 
ferent modes of autosomal inheritance are also possible. The overwhelming majority 
of patients with X-linked disease is, obviously, male; in the autosomal forms no sex 
preference is discernible. 

As an inherited and severe immune defect, CGD presents itself early in life in the 
form of acute or chronic infections, two-thirds of the patients showing the first symp- 
toms already in their first year of life [39]. Nevertheless, one of the surprising features 
of the disease is its highly variable severity; thus, in some patients the diagnosis is es- 
tablished only in their adult years. As a general rule, the organs that represent the in- 
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dividual's border against the outside world, or the lymph stations downstream of those 
organs, are most frequently affected: lungs, skin and gastrointestinal tract. From here 
hematogenous spread to almost any other organ or organ system may take place, as 
demonstrated by studies in over 500 patients. 

The isolated pathogens are usually catalase positive and/or relatively resistant to 
the other, non-oxidative killing mechanisms of the phagocytes. Catalase degrades hy- 
drogen peroxide, which is also produced in small amounts by the microbes themselves, 
and thus deprives the phagocytes of the possibility to use this microbe-generated oxy- 
gen metabolite for killing. The microorganisms most frequently found in the above- 
mentioned studies are Staphylococcus aureus, various Aspergillus species, enteric 
gram-negative bacteria (including Serratia marcescens and various Salmonella 
species) and Burkholderia cepacia. When analyzing the culture and/or serological re- 
sults, it should be kept in mind that pathogens that are harmless to a normal host may 
well be responsible for infections in a CGD patient. 

Pneumonia is the most frequent serious infection in all age groups and is most 
commonly caused by S. aureus, Aspergillus species, B. cepacia and enteric gram-neg- 
ative bacteria. Because sputum cultures are rarely informative, empiric treatment 
should be initiated the moment the clinical diagnosis of pneumonia has been estab- 
lished. In the case of severe pneumonia or of progression of disease under treatment, 
more aggressive diagnostic steps, such as bronchoscopy, needle biopsy or even open 
lung biopsy, may be warranted to determine rarer pathogens. 

Burkholderia species (mainly B. cepacia, but also B. gladioli, B. mallei, B. pseudo- 
mallei and B. picketii) are unusually virulent in the CGD patient and one of the main 
causes of fatal pneumonias [83]. These microorganisms, which are ubiquitously pre- 
sent in the environment and need free oxygen radicals to be effectively killed, grow 
slowly in cultures and may, therefore, be diagnosed (too) late. 

The next most frequent sorts of infection are cutaneous abscesses and suppurative 
lymphadenitis, the later affecting often the cervical nodes. The most commonly found 
pathogens are S. aureus and - in the case of lymphadenitis - various gram-negative 
bacteria (including B. cepacia and Serratia marcescens). Perirectal abscesses occur 
frequently and may persist for years in spite of adequate antibiotic treatment and 
meticulous care. 

Hepatic and perihepatic abscesses are unexpectedly common and typically caused 
by S. aureus. They are frequently painless, even on palpation, and present with such 
unspecific symptoms as fever, malaise, anorexia and weight loss. The laboratory find- 
ings are often normal. Osteomyelitis may be due to hematogenous spread of the 
pathogens (S. aureus, Salmonella species, Serratia marcescens) or to contiguous inva- 
sion of bone, as can be seen in Aspergillus pneumonia with consecutive destruction of 
the adjacent ribs or vertebral bodies. 

While the above affections normally represent acute disease states, CGD - as the 
name implies - is typically characterized by a chronic struggle of the immune system 
with the pathogens. Thus the granulomas, which can be found in a large variety of or- 
gans and to which CGD owes its name, are the result of chronic inflammatory cell re- 
actions, involving mainly lymphocytes and histiocytes. The cytoplasm of the histio- 
cytes is typically foamy and brown. These characteristic granulomas, while not patho- 
gnomic, should at least make CGD part of the differential diagnosis [44]. 

Clinically, the granulomas can become symptomatic by pain or signs of obstruc- 
tion. When narrowing the upper gastrointestinal tract, they may present as dysphagia, 
stomach pain or recurrent vomiting, which, in the first months of life, can be misdiag- 
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nosed as pyloric stenosis. When affecting the urinary tract, the granulomas may cause 
dysuria, penile pain, a decreased urine volume or hydronephrosis [2]. 

Another chronic affection is the inflammatory bowel disease of CGD, which 
closely resembles Crohn's disease. Found in ten percent of the CGD patients, it typi- 
cally involves the colon, but involvement of other parts of the gastrointestinal tract has 
also been described. The severity of this complication can vary widely, with symptoms 
ranging from mild diarrhea to a debilitating state of bloody diarrhea and malabsorp- 
tion, necessitating colectomy [3]. 

Other manifestations of chronic inflammation are an eczematoid dermatitis, which 
may be present already at birth and mainly affects infants and children, gingivitis, chori- 
oretinitis, glomerulonephritis and destructive white matter lesions of the brain. Very 
rarely, discoid or, even more rarely, systemic lupus erythematosus (SLE) is observed. 

The children are often underweight and of short stature. Especially the X-linked 
patients tend to grow beneath the yh percentile, which may be partially corrected in 
adolescence, when some catch-up growth can occur. The end of the first decade of life 
represents anyhow a milestone, since thereafter the infections are often less severe and 
occur less frequently, and the anemia typically found in those patients tends to resolve 
spontaneously. This anemia, with Hb values of 8-10 g/100 ml and with microcytosis, 
is an expression of the chronic disease state and does not respond therefore to thera- 
pies of iron deficiency, a common misdiagnosis. 

Lymphadenopathy, hepatosplenomegaly and hypergammaglobulinemia can all be 
found in CGD independently of any acute disease process. Very rarely, other clinical 
syndromes, such as Duchenne muscular dystrophy, retinitis pigmentosa or McLeod's 
syndrome, may be associated with the X-linked form of CGD. As a rule, carriers of 
CGD are symptomfree. The proverbial exception to this rule are the carriers of X- 
linked CGD, who may present with a few syndrome-related conditions. Roughly half 
of them are troubled by recurrent stomatitis and/or moderately severe gingivitis and 
about one-fourth of these women will develop discoid lupus erythematosus. The latter 
condition manifests itself typically in the second decade of life, with (sun)light-sensi- 
tive, discoid lesions on face, arms and upper torso, is usually mild, rarely severe, and 
does not progress to SLE [7, 80]. 

Finally, extremely lyonized carriers of X-CGD can have a - usually mildly - in- 
creased risk of infection [56]. This is, however, exceptionally rare since as little as ten 
percent, or sometimes even less, of the phagocytes expressing a normally functional 
NADPH oxidase are sufficient to keep those individuals asymptomatic. 

Molecular basis of the disease 

The NADPH oxidase is a multi-component enzyme with a redox center that transfers 
electrons from intracellular NADPH onto extracellular (or intraphagosomal) molecu- 
lar oxygen, thereby generating superoxide (Fig. 1): 

NADPH + 202 --> NADP + + 202 • + H + 

The weakly microbicidal superoxide is then - spontaneously or enzymatically cat- 
alyzed - converted into hydrogen peroxide and other, more potent metabolites. 

The electron transfer itself is a multistep process, during which the electrons are 
transported sequentially along several moieties of the oxidase: 

NADPH --+ FAD -->2 Heme --~ 202 
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Although FAD and the two heme groups are part of the redox center of the en- 
zyme, cytochrome b558, NADPH cannot bind to it unless the complete enzyme has 
been assembled during activation, and only then can electron transfer actually take 
place. 

Cytochrome b55a, a flavo-hemoprotein, is composed of two of the enzyme's sub- 
units, gp91 ph°x and p22 ph°x, in a 1 : 1 stoichiometry [36, 63, 77, 88]. Incorporated in the 
membranes of specific granules and secretory vesicles in resting cells, cytochrome bs58 
becomes expressed on the phagolysosome and on the cell surface when the gran- 
ules/vesicles fuse with those larger membrane systems during cell activation (Fig. 1). 
The stimulus for this activation is the binding of opsonized microorganisms or high 
concentrations of chemoattractants to phagocyte surface receptors. 

As part of this activation, the enzyme's three cytosolic components, p47 ph°x, 
p67Phox and p40Phox, as well as several low-molecular weight GTP-binding proteins, 
translocate to the cytochrome b558 in the membrane to form there the complete and ac- 
tive form of the NADPH oxidase (Fig. 1). 

A defect in any one of the four components gp91P h°x, p22P h°x, p47P h°x or p67 ph°x 
abolishes (or reduces) the activity of the oxidase and leads thus to CGD. Defects in 
the other enzyme components are not known. While p40 ph°x might not be essential for 
the function of the enzyme (and mutations, therefore, would not become sympto- 
matic), a defect in one of the GTP-binding proteins (racl/2, raplA), which are in- 

cytosol 
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Fig. 1. Activation of the NADPH oxidase. Assembly of the activated enzyme and phagosome formation are 
concomitant processes. Translocation of cytosolic proteins is initiated by serine phosphorylati0n in p47 ph°x 
and controlled by small GTP-binding proteins (racl, rac2, raplA). This translocation leads to a conforma- 
tional change in gp910~o× that permits NADPH binding, thus activating the NADPH oxidase enzyme 
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volved in the regulation of a great number of cellular functions, might be imcompatible 
with life. 

gp91PhOX 

The CYBB gene, which codes for gp91 phox, is located on the X-chromosome (Xp21.1), 
has a length of 30 kb and comprises 13 exons [20, 75, 86]. The translation product, a 
protein of 570 amino acids, needs for its further maturation and stabilization the pres- 
ence of p22P h°x - in such a way, that abolished expression of one protein automatically 
leads to simultaneous absence of the other [67]. Post-translational modifications are 
the glycosylation of three of its five potential N-linked glycosylation sites [89]. The N- 
terminal half of the mature protein contains four or five hydrophobic, probably mem- 
brane-spanning domains, while the hydrophilic C-terminal part is thought to represent 
the cytosolic side of the protein. The hydrophobic part contains the heme moieties (one 
shared with p22P h°x) [68] and is probably also involved in the interaction with p22 ph°x. 
For the C-terminal part a three-dimensional model has been deduced from sequence 
homology with the ferridoxin NADP + reductase flavoenzyme family [79]. Putatively, 
therefore, this part of the protein contains one binding site for NADPH and the FAD- 
binding site. In the inactive state of the enzyme, the NADPH-binding site is probably 
covered by a loop of 20 amino acids [85]. 

p22Pho~ 

p22Pho× is encoded by the gene CYBA, which is located on chromosome 16q24 and 
spans 8.5 kb and six exons [21, 64]. The resulting protein of 195 amino acids is 
thought to share one heme moiety with gp91P h°x, and has one proline-rich region in- 
volved in interaction with SH3 (src homology region 3) domains. 

p47pho~ 

NCF1, the gene on chromosome 7ql 1.23 coding for p47 ph°x, has a length of 15 kb, en- 
compassing 11 exons [29]. Its product, a protein of 390 amino acids, contains nine ser- 
ine phosphorylation sites, two SH3 domains and one proline-rich region. 

p6 7pho~ 

NCF2 on chromosome lq25 codes for p67P TM, is 40 kb long and comprises 16 exons 
[46]. p67P TM itself, with its 526 amino acids possesses a (higher affinity) binding-site 
for NADPH [81 ], two SH3 domains and one proline-rich region. 

p4OPhox 

Very little is known yet about p40 ph°x, a protein of 339 amino acids. Its gene, NCF4, 
spans 18 kb and 10 exons and is located on chromosome 22q13.1 [96]. The protein 
contains one SH3 domain [94]. 
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Activation of the enzyme 

Responding to as yet only part ial ly unravelled upstream events that transmit the sig- 
nals originating from the cell surface receptors, the activation of the NADPH oxidase 
itself seems to be initiated by a change in the phosphorylat ion of p47 ph°x [78]. The dif- 
ferent protein kinases implicated in this process apparently phosphorylate different 
groups of serines [25], with each different state of  phosphorylat ion corresponding to a 
different three-dimensional  conformation of  the protein. This process would disrupt 
the cytosolic complex of  p47Ph°x/p67Ph°X/p40 ph°× in the resting cell, exposing until then 
inaccessible SH3 and/or proline-rich domains [32, 45]. This change results in translo- 
cation of  these three proteins to the membrane,  where they associate themselves with 
cytochrome b558 (Fig. 1). The interactions of the cytosolic components with each other 
and with the cytochrome are mediated by SH3 domains binding specifically to certain 
proline-rich regions [18, 26, 31, 45, 47, 84], but other types of  protein-protein interac- 
tion seem to play a role as well [17, 66]. 

In the membrane-associated complex, p47 ph°x appears to stabilize the interaction of  
p67 ph°x - and possibly rac l  - with the cytochrome [10, 11]. P67 ph°× with its high-affin- 
ity binding site for NADPH,  on the other hand, could bind to gp91Phox, which contains 
a lower-affinity NADPH-binding  site, to form the catalytically efficient binding site of  
the active enzyme [81]. The loop of  20 amino acids that covers the NADPH-binding 
site in gp91P h°× in the resting state, is thought to move out of  the way, as a result of ei- 
ther the complex formation or of an independent control mechanism. NADPH then 

2 0 2 2 0~,. 

Fig. 2. Schematic illustration of the electron transfer mechanism of the NADPH oxidase (see text). After as- 
sembly of the NADPH oxidase complex, NADPH from the cytosol can bind to the enzyme and donate its 
electrons. These electrons are then transmitted via FAD and heme groups to molecular oxygen on the other 
side of the plasma membrane, thus generating superoxide in either the phagosome or in the extracellular en- 
vironment 
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binds to the completely assembled oxidase, electron transfer will start and superoxide 
generation starts (Fig. 2). 

Both the assembly of the enzyme and the electron flow itself are subject to a com- 
plex network of regulating and modifying influences. P40 ph°x, for instance, besides sta- 
bilizing the cytosolic complex in resting cells, seems to down-regulate NADPH oxi- 
dase activity through competition of its SH3 domain with that of other, essential oxi- 
dase components [76]. 

Furthermore, three low-molecular weight GTP-binding proteins, racl, rac2 and 
raplA, are known to play an important role in the activation and function of the en- 
zyme [1, 41]. Functioning as molecular switches in signalling cascades, with an inac- 
tive GDP-bound and an active GTP-bound state, they themselves are again under the 
control of GDP-dissociation inhibitor (GDI) and GDP-dissociation stimulator (GDS) 
proteins [1, 57]. The activated racl appears to translocate together with p47Ph°X/p67Ph°x 
and to influence the electron flow through the active oxidase [19, 24, 49]; rac2 is 
thought to translocate independently of the other cytosolic proteins [34]. RaplA, on 
the other hand, is associated with the membrane-bound cytochrome b558 [69] and may 
indirectly link the activity of the oxidase to intracellular cAMP levels [6]. 

Results obtained with a cell-free system indicate, finally, that the presence and 
polymerization of actin enhance the activation of the NADPH oxidase [58]. The im- 
pressive complexity of the activation of the enzyme and its intricate control mecha- 
nisms point to the importance of a tightly controlled, place- and time-restricted release 
of free oxygen radicals, since an uncontrolled release of these products would have 
devastating effects for the affected individual. This complexity, on the other hand, is 
the explanation for the fact that defects in different genes can lead to the same cellular 
dysfunction and disease. 

Molecular defects 

Defects in gp91phox 

Defects in gp91P h°x comprise about two-thirds of the cases, and are as such the most 
frequent cause of CGD. All possible types of mutation, except gene conversions, have 
been found in CYBB, with single nucleotide substitutions accounting for 65% of the 
defects, and deletions and insertions for the remaining 35% [74]. Very large deletions, 
extending over other coding genes localized on the X-chromosome, can result in vari- 
ous clinical entities, such as Duchenne muscular dystrophy, retinitis pigmentosa or 
McLeod's syndrome, being associated with CGD. 

In a recent multicenter review of the mutations found in 261 X-linked CGD kin- 
dreds, 65% of these mutations were found to be family specific, with the other 35% 
being clustered around a few hotspots, mainly around CpG sequences [72]. The large 
majority of X-linked mutations in CGD leads to a complete lack of gp91P h°X, due to in- 
stability of the mRNA or of the translated protein. These are called X91 ° variants, to 
differentiate them from the (few) cases with reduced or normal protein expression, 
called X91- and X91 ÷, respectively. In the cases of X91 , the reduced protein expres- 
sion is accompanied by a roughly proportional decrease of superoxide production, 
whereas the X91 + variants express normal amounts of a non-functional protein. 

While being clinically indistinguishable from the X91 ° variants, the cases of X91 + 
CGD are of great interest for the understanding of the working mechanism of the oxi- 
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dase, because they allow analysis of how different defects block various steps of the 
activation process or in the electron transport. The ten X91 + mutations known so far 
have contributed in this way to our knowledge of gp91 phox, by identifying regions 
important for the binding of one of the heme groups, NADPH or the cytosolic oxidase 
components [48, 74, 79]. 

Two patients have been found with single nucleotide substitutions in the 5'promo- 
tor region of CYBB. Interestingly, both patients possessed small subsets (5%) of neu- 
trophils with normal NADPH oxidase activity. The mutations abolished the binding of 
an undefined protein to the DNA of the promotor sequence, but enhanced the associa- 
tion of another, larger one. The investigators theorized that this might be an indica- 
tion for different subsets of neutrophils controlling the gene for gp91 ph°x by means of 
different DNA-binding proteins [62, 95]. Only one (rare) polymorphism has been 
found in CYBB to date, further illustration of the extreme sensitivity of this protein 
for mutations. 

Recently a regularly updated database (X-CGDbase) has been established, which 
is freely available for anonymous file transfer protocol (ftp) at ftp.csb.ki.se and 
ftp.helsinki.fi(in the directory pub/x-cgdbase). The WWW site is at http://www. 
helsinki.fi/science/signal/databases/x-cgdbase [72]. 

Defects in p22Phox 

About 5% of the cases of CGD are caused by defects of p22P h°x. In the nine families 
with A22-CGD investigated so far, ten different mutations were found in the 18 alleles 
involved [74]. The only A22 + mutation known, a substitution of glutamic acid for one 
of the prolines in its proline-rich region, apparently destroys the interaction with the 
SH3 domain of p47Phox, thereby interrupting the activation of the enzyme [22, 45, 47, 
84]. In CYBA four polymorphisms are known. 

Defects in p47P h°X 

Mutations in NCF1 account for about 30% of the cases of CGD. In strong contrast 
with the variation in the mutations found in the other subtypes of CGD, only four dif- 
ferent mutations have been reported in A47 CGD to date. In 15 unrelated patients de- 
scribed, 11 were homozygotes and 4 compound heterozygotes for a dinucleotide dele- 
tion in the first four nucleotides of exon 2 (GTGT --+ GT) [74]. 

This situation has long remained unexplained, but the finding of the deletion-con- 
taining gene sequence (in addition to the wild-type sequence) also in healthy individ- 
uals has hinted at the existence of one or more pseudogenes in the human genome. It 
is now believed that recombination events between NCF1 and a pseudogene, which is 
a highly homologous but non-functional gene copy, cause the extremely high unifor- 
mity of mutations found in A47 CGD [33, 71]. 

Defects in p67paox 

With around 5% of the described cases, A67 CGD also represents a rare subtype of the 
disease. In the 11 A67 CGD patients characterized so far, 12 different mutations were 
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found among the 22 alleles [74]. While the level of mRNA is usually normal, no pro- 
tein expression has been found in A67 CGD, with the exception of one A67 + patient, 
whose p67 ph°x protein is apparently non-functional due to the deletion of one amino 
acid. This deletion causes a strongly diminished binding of racl, and thereby a distur- 
bance in NADPH oxidase activation [49]. 

Defects in p40P h°x 

There are no known defects in this protein. 

Correlations between genotype and phenotype 

In general, the X91 °, X91 ÷, A22 and A67 subforms of CGD present with similar clin- 
ical severity. It might be expected, on the other hand, that the severity of the clinical 
symptoms in X91- CGD correlates with the amount of residual superoxide production 
(3-30%) found in these patients' phagocytes. This is, while often true, not a depend- 
able rule [73]. Possibly, variabilities in other host defense systems play an important 
role here. 

A47 CGD, as borne out by a few clinical studies, seems to follow in general a more 
benign clinical course [53, 91]. Given the observations that p47 ph°x under certain in 
vitro conditions seems not to be essential for oxidase activity [30, 42, 43], it might be 
speculated that some residual superoxide generation is also possible in the in vivo sit- 
uation [ 11 ]. 

Molecular diagnosis 

CGD - once clinically suspected - can be diagnosed in the laboratory by the phago- 
cytes' failure to produce reactive oxygen species. A number of methods are available 
for the assessment of superoxide production. The classical, and still widely used, test 
for this purpose is the so-called NBT slide test, where a yellow dye in solution (ni- 
troblue tetrazolium) is reduced by superoxide to insoluble blue formazan. The fraction 
of stained and unstained cells and even the staining intensity in each cell are then eval- 
uated under a microscope [55]. 

The activity of the NADPH oxidase can, furthermore, be measured by oxy- 
gen consumption (oxygen electrode), superoxide generation (reduction of ferricy- 
tochrome c, chemiluminescence) or hydrogen peroxide production (oxidation of ho- 
movanillic acid). 

Today, flow cytometry is frequently used to assess the neutrophils' NADPH oxi- 
dase activity [70]. This method, which uses fluorescent dyes for the detection of 
hydrogen peroxide, is sensitive, measures at the single cell level (and can thus distin- 
guish active and non-active cell fractions) and has the additional advantage that 
non-purified leukocyte suspensions can be used. Once the diagnosis of CGD is estab- 
lished, the missing subunit of the enzyme, and thereby the subgroup of the disease, 
can be determined by immunoblot analysis of neutrophil fractions. This simple-sound- 
ing principle is marred by the fact that the two components of cytochrome b558 
need each other for stable expression, so that the lack of one protein automatically 
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leads to absence of the other. In that case, the family history and a carrier pattern in 
the mother's neutrophils (see below) may indicate an X-linked type of disease. 
Still, since one-third of the X-linked defects are new mutations in the parental germ- 
line cells, X-linked CGD cannot be excluded in this way. If all four subunits of 
the NADPH oxidase are present on Western blot, an X + or A + variant, with a dysfunc- 
tional protein, is probable. In that situation, the cell-free assay, an in vitro system 
that reconstitutes the NADPH oxidase from its individual components, has to be 
employed, to localize the defective subunit in either the membrane (gp91P h°x, p22 ph°x) 
or the cytoplasm (p47Phox, p67Phox) [12, 54]. The causative mutation is then deter- 
mined by sequencing of polymerase chain reaction (PCR)-amplified cDNA or ge- 
nomic DNA. 

Carrier detection 

Carriers of X-linked CGD have two subpopulations of neutrophils, one with the 
"healthy" X-chromosome in an active form and therefore rendering the cells capable 
of expressing a functional NADPH oxidase, and another one with the mutated X-chro- 
mosome active and therefore incapable of inducing superoxide generation. The ratio 
between these two populations is determined by the process of lyonization, the random 
inactivation of one of the two X-chromosomes in all female cells. 

The resultant mosaic pattern for superoxide production can best be analyzed by the 
NBT slide test or by flow cytometry. Because extreme lyonization can result in seem- 
ingly unaffected carriers, carrier analysis is nowadays most often performed by se- 
quencing. In some circumstances, when the family-specific mutation is known, other 
techniques, such as allele-specific restriction enzyme analysis, single-strand confor- 
mational polymorphism (SSCP) or restriction fragment length polymorphism (RFLP), 
may also be employed. Autosomal carrier detection, which is best done by sequencing, 
is still difficult for A47 CGD. 

Prenatal diagnosis 

Prenatal diagnosis is best performed by sequencing of DNA from amniotic fluid cells 
or chorionic villi obtained during the 10th week of gestation. It should be performed 
when the known family-specific mutation is known. In principle, all subtypes of CGD 
can be diagnosed prenatally, but often the combined heterozygous mutations of auto- 
somal diseases render such a diagnosis more difficult. 

After verification of the fetal origin of the cells and determination of the fetus' sex, 
the sequencing is carried out on PCR-amplified fragments of the relevant genomic re- 
gion. The results are compared to the simultaneously obtained sequences of the indi- 
cator patient in the family, the pregnant woman and a healthy control [16]. 

If the family-specific mutation is not known, allele-specific markers can be used, 
for which several have been described. If these markers are informative in the affected 
family, they offer a more than 50% reliable method for prenatal diagnosis. 
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Treatment 

The prognosis of the syndrome originally called "fatal granulomatous disease of child- 
hood" in its first description in 1957 [5, 44] has since dramatically improved, due, in 
part, to the emergence of several specialized centers that assembled larger groups of 
patients to improve the knowledge and treatment of this disease (e.g., the National 
Institutes of Health, Scripps Clinic/Stanford University, the Paediatric Clinics of the 
University of Amsterdam and of the University of Ztirich). 

While one retrospective study in 1989 found a survival rate of 50% at 10 years of 
age (with an improved prognosis thereafter) [59], nowadays most patients survive well 
into adulthood, especially those with A47 CGD. 

Modern treatment of CGD rests on five pillars: 

1. Prevention of infections through immunization of the patients and avoidance of 
probable sources of pathogens 

2. Prophylaxis with trimethoprim-sulfamethoxazole or dicloxacillin 
3. Prophylactic administration of recombinant human interferon-gamma (rIFN-y) 
4. Most important: early and aggressive use of parenteral antibiotics 
5. Surgical drainage and/or resection of infectious foci 

CGD patients should receive all routine immunizations (including the live-virus vac- 
cines) on schedule, as well as a yearly influenza vaccination. Any skin damage should 
be promptly washed with soap and water and rinsed with antiseptic agents (e.g., 2% 
hydrogen peroxide, betadine solution). Since perirectal abscesses represent a common 
and often stubborn problem in CGD, careful rectal hygiene, including frequent soak- 
ing in warm soapy baths, and avoidance of constipation are recommended. The risk of 
pulmonary infections can be reduced by not smoking, not using bedside humidifiers 
and avoiding possible sources of Aspergillus (e.g. decaying plants, rotting wood, saw- 
dust, hay or straw). Finally, attention should be paid to optimal dental cleaning, in- 
cluding flossing and antibacterial mouthwashes. 

Prophylaxis with trimethoprim-sulfamethoxazole (5 mg trimethoprim/kg per day, 
given orally in one or two doses) can reduce the number of bacterial infections by 
more than half, as was borne out by three studies representing a total of 95 patients 
[53, 59, 90]. In case of allergy against sulfamethoxazole, dicloxacillin (25-50 mg/kg 
per day) may be given, but the prophylactic efficacy of this drug has been less well 
documented. 

The merits of an antifungal therapy are not yet well established. While ketoconazole 
was shown in one study to convey no protection against Aspergillus [59], in another 
study itraconazole proved to be effective prophylactically [60]. However, the long- 
term safety of this latter drug in CGD-related prophylaxis remains to be investigated. 

In 1991, a phase III multi-center, double-blind, randomized placebo-controlled 
study, encompassing 128 patients, demonstrated a by 70% reduced risk to develop a 
serious infection under prophylaxis with rIFN-~, as compared with placebo [37]. This 
benefit is maintained over longer periods of time, as has since been shown in two 
phase IV studies [4, 92]. The side effects of this treatment - mild headaches, low-grade 
fevers a few hours after administration - are generally negligible. Recommended are 
0.05 mg/m 2, given subcutaneously three times a week. (For infants with < 0.5 m 2 the 
recommended dose is 0.0015 mg/kg, given subcutaneously three times a week.) 

This improved host defense, which is found independently of the subtype of the 
disease, is not parallelled by an improvement in superoxide production by purified 
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neutrophils or monocytes [37, 61]. Apparently rlFN-'/boosts other, oxygen-indepen- 
dent defense mechanisms. 

One of the central guidelines in treating CGD is to initiate anti-infectious treat- 
ment promptly and to continue it until certain eradication of the pathogens. Later, in 
CGD, may be too late. Not every low-grade fever or minor infection needs maximal 
therapy, but patients should be observed closely, and action taken at the first signs of 
deterioration. 

Before initiating treatment, reasonable (and rapid) efforts should be made to local- 
ize the infection and isolate the causative agent. However, since treatment in those sit- 
uations should begin without delay, it often has to be an empirical one, to be modified 
later if shown to be necessary by the culture results. 

Empirical treatment should provide strong coverage for S. aureus and gram-nega- 
tive bacteria, including B. cepacia (e.g., a combination of nafcillin and ceftazidime). If 
there is no improvement within 2 4 4 8  h, more aggressive attempts at defining the re- 
sponsible pathogen should be made. Additionally, empirical modifications of the treat- 
ment might be warranted, such as adding high-dose intravenous trimethoprim-sul- 
famethoxazole to cover ceftazidime-resistant B. cepacia. 

While the basic strategy remains the same when a fungal infection is suspected, 
the necessity to expose the patient to a long and intensive treatment with amphotericin 
B should intensify the efforts to obtain a definite diagnosis. Fungal infections most of- 
ten affect the lungs and/or bone, and are treated with amphotericin B for 5-6 months, 
even longer if warranted by the clinical data. For the first 2-3 months the drug is given 
on a daily basis, thereafter on an alternate-day schedule. After discontinuation of am- 
photericin B, oral itraconazole should be given over several years, to prevent a recur- 
rence or reactivation of the infection. 

Local loci of infection, such as abscesses, empyemas, necrotic infected tissue and 
bone infected by fungi, are often very resistant against anti-infection therapy, espe- 
cially in an immunecompromised host, and warrant surgical resection or drainage. 
This is certainly true for pulmonary fungal infections, where cavity or necrotic lesions 
of the lung, continuous spread to the ribs or vertebral bodies or brain metastases all 
need the attention of the surgeon. But also cutaneous or hepatic/perihepatic abscesses 
require surgical or needle drainage, followed, especially in the latter case, by several 
months of parenteral antibiotics. 

If all the medical and surgical measures outlined above fail, an attempt with gran- 
ulocyte transfusions may be made. Additionally, the therapy with rIFN-y can be inten- 
sified to a daily form of administration. 

If the McLeod's syndrome is associated with the X-linked form of CGD (or has not 
been excluded by DNA analysis) special care has to be taken with the transfusion of 
erythrocytes, thrombocytes or granulocytes. Since certain Kell antigens are only 
weakly expressed in this mild form of hemolytic anemia, the patients are very rapidly 
sensitized against those antigens, which are ubiquitously present in the general popu- 
lation. As long as McLeod's syndrome has not been excluded, therefore, erythrocyte 
antigen phenotyping should be done prior to transfusing the patient for the first time, 
to administer, if necessary, only Kell-negative blood products. 

Although the immunosuppressive corticosteroids should be avoided in CGD pa- 
tients, they may sometimes be warranted by symptomatic granuloma formation or se- 
vere forms of CGD inflammatory bowel disease. Both complications respond well to 
these agents (e.g., 0.5-1 mg prednisone/kg per day) [8, 15]. After a few weeks treat- 
ment, the dose of corticosteroids should be tapered to prevent a rapid relapse. 
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CGD, as a defect of the hematopoietic stem cells, is, in principle, amenable to bone 
marrow transplantation. While this is a curative approach and has been successful in 
several cases [27, 35, 40], the overall results have been problematic, due to serious 
problems with failure of engraftment. Newer regimens, however, which make use of 
busulfan to achieve adequate myeloid suppression, may help to solve this problem, so 
that the place of bone marrow transplantation among the treatment options for CGD 
has to be reconsidered ([35] and Seger, personal communication). 

Animal  models  

While there is no known natural animal model for CGD, recently two murine models 
have been presented. The group of M. Dinauer succeeded in constructing a model 
for X-CGD through gene targeting of murine embryonic stem cells [65], and the 
group of S. M. Holland created a p47P h°X knockout mouse, using comparable tech- 
niques [38]. 

Those models will allow to study possible clinical differences between the genetic 
subgroups in detail, as well as to test the efficacy and safety of new therapeutic tech- 
niques, including gene therapy [23, 52]. 

Prospectives of new therapeutic advances 

Treatment of CGD, for all the great progress seen since the first description of the dis- 
ease, remains to this day largely symptomatic. With the advent of the new genetic tech- 
nologies, however, a cure for (some) inherited diseases seems possible. 

Gene therapy seeks to introduce a functional copy of the defective gene into the 
genome of the affected cells. For CGD, partial correction of the defect in vitro has 
been described, by treating CGD peripheral blood progenitor cells, B lymphocytes, 
monocytes or genetically modified myeloid cell lines with retroviral or adenoviral vec- 
tors that contain cDNA of one of the four genes involved in the pathogenesis of CGD 
[50, 82, 87, 93]. Only one attempt at clinical gene therapy has been published so far, 
involving five patients with the A47 ° subtype of CGD. Modifying the patients' CD34 ÷ 
hematopoietic progenitors, mobilized to the peripheral blood by granulocyte colony- 
stimulating factor, maximal levels of one corrected neutrophil in 1500 neutrophils an- 
alyzed were obtained after retransfusion of the transduced cells. These levels then de- 
clined below the detection limit during the following 3-6 months [51]. 

The optimism with regard to these trials is based on the observations that in some 
X91- patients 3-5 % of oxidase activity can result in a mild clinical phenotype, and that 
in some extremely lyonized X-CGD carriers as few as 5% fully functioning neu- 
trophils are sufficient to confer substantial anti-infectious protection. A complete 
(100%) reconstitution of the oxidase activity seems, therefore, not necessary. 

The major limitation of all gene therapy trials so far, CGD or otherwise, is the du- 
ration of expression of the transduced gene product. Nevertheless, in the case of CGD, 
the existing vector constructs might already be used to treat infections resistant to other 
forms of treatment. Another nascent therapeutic possibility is the in utero transplanta- 
tion of hematopoietic stem cells, which has already been used in various circum- 
stances and with mixed results [9], most successfully in a case of X-linked SCID [28]. 
This technique remains as yet limited to those instances where the donor cells have a 
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natural  growth advantage over their fetal counterparts - which would  not  be the case 
in CGD - but  future developments  are l ikely to relativize this precondit ion.  

Both methods  are, of  course, on ly  at the beg inn ing  of  their development ,  and much 
work remains  to be done,  but  CGD, as a very well-characterized inheri ted affection of 
the hematopoiet ic  stem cells, is l ikely to be among  the first syndromes to profit  from 
those advances.  

Summary and conclusions 

C G D  is a rare inheri ted immunodef i c i ency  syndrome,  caused by the phagocytes '  in- 
abil i ty to produce (sufficient) reactive oxygen metabolites.  This  dysfunct ion  is due to 
a defect in the N A D P H  oxidase, the enzyme  responsible  for the product ion of super- 
oxide. It is composed  of  several subunits ,  two of which, gp91P h°x and p22P h°x, form the 
m e m b r a n e - b o u n d  cytochrome b558, while  its three cytosolic components ,  p47Phox, 
p67Phox and p40 ph°x, have to translocate to the m e m b r a n e  upon activation. This is a 
t ightly and intricately control led process that involves,  among  others, several low- 
molecular  weight  GTP-b i n d i n g  proteins. Gp91 ph°x is encoded on the X-chromosome 
and p22P h°x, p47 ph°x and p67Phox on different autosomal  chromosomes,  and a defect in 
one of these components  leads to CGD. This explains the variable mode  of  inheri tance 
seen in this syndrome.  

Cl inical ly  C G D  manifests  i tself typical ly already at a very young  age with recur- 
rent and serious infections,  most  often caused by  catalase-posit ive pathogens.  

M o d e m  treatment  options, inc luding  prophylaxis  with t r imethopr im-sulfamethox-  
azole and r lFN-  7 as well  as early and aggressive ant i - infect ion therapy, have improved 
the prognosis  of this disease dramatically.  

CGD,  as a very well-characterized inheri ted affection of  the hematopoiet ic  stem 
cells, is predest ined to be among  the first diseases to profit  from the advances  in cut- 
t ing-edge therapeutics,  such as gene therapy and in utero stem cell t ransplantat ion.  
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