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Abstract 

The q u ~  ' of ~he effecl~:.1": asyrrmr~e_~2~ ~ ~ . ~ . .  E e ~  ~ . a ~ e  ~ ~m,'~esdga~ed by 
considerations or~ ~st el~--~coraagnefic fie!ds ~n an ex*eaded P.e~s~-Nords~m back~ 
ground. It ~ found, with the. aid of e~mputcr ~alcd!al~n, so ~hat instabilities in "~he test 
field arise at the inner (Cauchy or anti-even0 horizon, the~h not ~t ~he ~hter (e~a0 
horizon. Thus it is reason~tble to infer that iu the full coupled Einsteire-Maxwe$3 theo~ 
the inner horizon will not survive as a non-singular hycersurface when as:,mmetrk. 
perturbations are present, but will instead become a space-time curvature singularity. 

The  gravhatio~zal col lap~ of  a star wb;cb ,:s too massive to form a white 
dwarf  or net~tron star p r e s e ~  a now farai~Lm pic~u~ !fsphericaI symmetry 
is  assumed, then collapse through a black hole ~o a ~ space-rime 
singularity at which cmwatures mount  to infiniE: is implied b:~ gem-ral 
relativity (Penrose, 1969a).It is also knox~ from generaltheorems i HawkAng 
& Penrose, 1970) that even when spherica~ symmetry is not asst~r~ed, a 
~ace-t ime singulari~' must neve~he!ess szill arise whenever trapped 
surfaces occur. However, the nature and loca~{ou o f  these sing~alarities is 
left completely open b y t h e  theorems. According to a ~u stated 
conjecture (Carter, 1971 ; Israel, 1967, t968; HawNng, !972), the extem:~a!. 
field of the black hole which resuhs from a gravitational collapse should 
approach that of  a Kerr-Newman (Kerr, 1963; Boyer & Lindqu,~st, 19'37; 
Newman et el., 1965) solution of*.he Einstein-Maxwell equations, charac- 
terized by just three p~irameter s: mass m, charge e, and angular momentum 
a. There is however no reason to believe that the internal field near the 
(ring) singularity of  these solutions should be an accurate representation 
of  the physical space-time resulting from a realistic collapse. Indeed, the 
presence of  closed timelike curves near tb.e singularities (Carter, 1968) 
would seem to argue against any too close relation between the models and 
physical reativ. 

The Kerr-Newman solutions with m >  a/(a 2 + e 2 ) > 0  possess the 
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eharacterislie feature lfia~ there is riot only an outer (absolute) even~: 
h~rizon (surface efthe black hole) but also an ~ner horizon (the anti-event 
horizon) (Penrose, 196919) which is a Caucl~y horizon (Hawking, 1966, 1967) 
'for any appropriate initial data hypersurface used to set up the problem. 
Our eontentio~ in this note is that if the initial data is generically perturbed 
the~_ the Cauehy horizon .~Gcs not survive as a non-singular hypersurface. 
It  is s t r~gly  implied tha~ ir~stead, genuine ~ace-time sin_~ularities will 
appear along the region wl3i~ would O~herwise l~ave been. the Cauchy 
hors 

We ccmsi&~ here only a spemal case, namely that when the angular 
momentum is zero, trot mass and charge parameters m and e are both 
presem (witt~ m > lei)-We add an electromagnetic test field as a perturba- 
tion and show (by c~mputer calculation) that singularities in the electro- 
magnetic field occttr at tb~ Cauchy horizon. It is reasonable to infer that 
when the gravitational-electromagnetic coupling is added, '~hen ~b.e Cauchy 
horizon would degenerate into a curvature singularity. 

Our unperturbed spac~time can be described by the Reissner-~Nord~ ~ 
strSm metric, given in the form'~ 

( !  - -  2m/r  + e~/r ~) dt a - -  (l -- 2m/r + e~/rz) -~ dr ~ 
4, ~'~ �9 " 2 

where r ~ ,  O. ~ :are tb.e ~ a l ,  tim~ a~d ~wo a~gtttar..coordinates respec- 
tively. The coordinate s{r~gt~larities due to the ~s t in~ zeros r+, r_.(r§ > r_.) 
ot" ( t - - 2 m [ r + e ~ ] r Z ) ,  corresponding to the event horizon and (~.ucl~y 
horizon respectively, divide the manifold covered by thi; coordi,axe 
system into the three regions r > r§ r_ < r < r§ and r < r_. Each of these 
can be parametrised by _Ne retarded and advanced null coordinates u, v 
given by 

u = t t  + y ( r ) ,  

I t + f ( r ) ,  
v = l t - t  + f ( r ) ,  

r > r+ and r < r_ 

r _ < r < r +  

r >  r+ and r < r_ 
r _ < r < r +  

(2) 

wheref(r)  = f (1 - 2re~r+ eZ[r2)-Idr and u, v have range (-~,o~) in each 
of the three regions~ The parts of the manifold can be represented by the 
'blocks' of Fig. I for constant values of the a,~gutar coordinates. The edges 
of the Necks are identified as-indicated. To the three regions A, B, C there 
correspond further regions A' ,  B ' ,  C" obtained by applying the trans- 
formation u-->~-u, v - + - v  which reverses the light cone structure. A 
maximal anal~ie extension$ oftbe Reissner-Nordstr6m solution may then 

t See, for example, C. Meller (1952). The Theory of Relativity. Clarendon Press, 
O~ford. 

:l: This procedure ~s due to J. C. Graves and D. R.-Britl (I960). Physical Review, 120, 
"!$07. 



be eo~lstructed by piecing together copies of'the ~x N~ck~ in am a~abf-dc 
fashion so that each Overlapping edge is covered by either a (u,r) or (t~r) 
system of coordinates (with the exception o f  the corners of each block). 

~ ) e  res~lting "ladder' shown in Fig. 2 is infinitely extendible in both 
dh~c t i~<  

tn  flf~ stead-lime ~ e~d~ ._-,.f~a ',~;~@ c-ol1~psing body is represented by 
a futm'e-dire~ted time.like geodesic wt'dch passes l iv~  ~he e~terior region 
C through B to the interior region A. The nat-are of~he a~Ny-~& extension 
allows us m contemplate the possfbiIity (Penrose, 196g) of  ar~,. oSs~'ve~ 
following in the wake of the. cgAapsing body from C to B, then avo~dJrg 

K ~O 

B ~ 

>,(~jV K ~=o 
"\~'2 ~ Path of 



region A by pursuing i~stead a (nec~ssan~ly) no~-geedesi~ trajectory 

specified in C. The observe~ is not however assured of  a ~-'mooth passage 
ox~er the C~amhy htmzon r = r_ between B and A'. In the i n ,  ant before. 
crossing he is in a Iroshion to observe the entire history o f ~ N e n  C and it 
may be tha~t i~ consequenc~ of receiving the full (back-scattered) effects of 
the outgoing m~iatioa field from C he ,,~511 encounter unbounded cu~atur~ 

i n  the vicinity of  r--:- r_. If  arbitrary smoelh initial d a t a  for our deetro- 
magnetic test ~eld given on a ~,~acelike h?~ersm'face in C fail to determine 
limiting values as r = r_ is approached, th~ngs leek bad for our observer. 
If  such limits are. fort.hcomiag~ he. appears ~.o !~ve chwaces of getting 

! ! 
j ~ . 

, ~ ~ 

through. We proceed to set up the n~essary apparatus for malting such 
an investigation. 

After first performing the conformal transformation ds ~ r - l d s  we 
further transform the metric, lea~qng the angular coordinates unchanged 
and defining new coordinLates - /and R by 

u ' = / g ' ,  O< r < r+,  

r +  - -  r 0 < r < ~ w h e r e  A r +  - -  r _  
R = An' rr+" = 2r+: (3) 

These coordinates cover the three ~gions C, B, a~d A'. The outgoing 
null directions are given by u '=  constant, wNIe R is an amne-parame,er 
along Rose directions, i.e. V"u'V~R = !. Dropping ~he prime on u, Fig. 3 
shoW's the disposition of  the coordinate curves. The metric is now given by 



where 

and 

187 

~ - - - - ,  0 < = <  | !r162 

= = 0 g~iv~ the.. Schwarzschild lkniting case. 
Seeing to employ the Newma~-Penro~e ~pin coeiliciem forr~a!is~ 

(Newraan & Penrosr i962) ~ve put ! ~ = v~u, tin,gent to the outgoing mdl 
hypersurfaces, and define three other ~.~'tors n*, m ~, ~ Io complete a m~ll 
tetrad satisfying the conditions that tff shall be a real future-pointing m~ll 
vector lying in the plane spanned by V~U and V'R, ~ and ~s co~ugate. 
~ shall b~, complex null vectors, and l=n a =-m~ff :  = I, ionr ~ ~ n~.-m: ~ ~ 
Wct,~ke 

~. --- V ,  R + �89 VOu 

(5) 

where g(u, R) is given by (4). 
D~ning  the t.hree complex components o f  ~e~ electromagnetic field 

tensor F~ by 
~bo = F~b ta tr? 
$, = �89 o :  - ~ :  ~ )  (7) 

and writing D =  I~ .A = rfV,, 8 =  n:V~, the sp~n coefficient form of 
Maxweli's equations is 

D4~ - &ko = --2:*$o 

~,k,~- Ar =-27r (8) 

t ~  tetrad, nine of!:he twelve spin coetfcien~ are ~ ' o -  ~;vz excep- 
fiom t~i~g 

~ote 
2-v'2 

cot 8 
a = ~,~ n:  y d . -  ,w.r  v,m~) =2-~-~ (0 



~ngalar-di.ffenmfial operator ~i. A qua~t~ty ~ ,;s said to have spin weight s 
i f  under  a tr~nsforma6on m" ~-~-J~m* i~ transforms as ,~-7 e;'~t/. It is 
~..adily seen from (7) that r~o, ~, ,  $2 have spin w~ights I, 0 and - I  respee- 
~b,~y;,-~ is ~ d e f i r ~  for a quam~ty ~/of  spin we~gh~ s by the equation 

T h e  operator ~ is simtarly ~ f i r  "-=~1: 

~r /=-(s inO) '~{~ 0 ' 0 1 ((sin" O~ " . sifto ~ I  n~ 0 o )  

(9) and (I0) reduce to 

Substituting ~bo, ~ ,  ~2 i~ t am  for ~l ir~ ( t 1 ) ~ n 6 p n i ~  -' ~, .... ' ~e ~he 
corresponding spin weight, we see tl:~t Max~etI's equm~;e~s (8) ma.5' ~: 
p m  in the form 

~o~ § ~ ~ -- o 

02) 
(~ - 2~) ~~ + @2 ~ = 0 

A ~  + ~ 2  ~ = 0 

We define the quafitifies 

t G = f x F , , , ~ e ~ o d O s i n O d ~ ,  m = - 1 ,  O, 1 (13) 

where ,  ~,.,,, is a spin s spherical harmonic given by substituting for s and t 
in the defining equations 

. 

ILia .  s )U 

/ ' |  d'~ 
I i~ ,  = ,  , ,1'/t--.I y~ �9 t--xJ . -., l,-m 



where t=0, 1, .... ; m=-f , . . . ,  1; and Y~,,. are tile ordlr,~vy spherical 
haimonlva. We note t.lle p ro~r ty  ~hat if p is a qda~hy  of  spin -":-~"wv.~ut 
1+ I then 

: ~  1 ~ , , ~  +~ pdO sia Odq~ = 0 (I5) 

Dropping the svbscript from H and uSbag (I !), (12) and (I 5), Iogether with 
the three convm-~tator relations for scalars r 

,~ (AD-- DA) q =27D~ 
(~.~ - ~ )  r = o 0 0 

where in the last equation q~ is considered to be of ~pin weight s, we derive 
a finear homogeneous second-order partial differential equation i~ H of  
hyperbolic type: 

.L~[H] = {(A -- 4?) D + (I -- 2D7) } H = 0 (17) 

S n ~ t u t k n g  for A, D, ~, we have 

- -  ~- 1 '  . . . . .  ~ t ' "  = o 0 8 )  

-Or 

~ / /  I ~ -  ..... 

where g(u, R)is given by (4). 
The ean0~cal form of (i 8), 

a. 
{au~. + ,4(u, v ) ~ ,  B(u,v)}H=O 

requires for its explicit description the inverse (for R) of the ~ansFormation 

Roxpf- i 
[2 + (I - ~) uRj 

v = (2 - ~tuR)# (2 + (1 - a) uR) c1-:) (19) 

which is not fo~-thcoming. Nor does Riemann's method of solution of the 
initiat value problem for partial differential equations of hyperbolic type 
assist us since the adjoint equation to (18) 

02 J Oa J 
A,'*[.q = au 0R - �89 (20) 

is related to (18) by 
a 2 . - ir~ ~ XI 

-.,._,-~*tx] =-~I ~ ! 
. L ~ - j  

(2D 



Le. i f . /=  x /~  a $~t~tien o f ~ -  *[J] ,= o ~fien H--= O2X/OR ~ Ss a ~o!m~o~ of 

~r to construct a Green's function, is consequendy e~uh, alent to finding 
~flxem for 08), mid excepting one trMal case no exact solutions of either 
tuave been fouM. 

W e  note Iha~ at r = 0% #yen by ~R = 2/(~ - l) ha our presem coordinale 
I - -~ ~,-gtot~- = umm hen~ (18) r e d ~  to 

giving 

Die) = 0 

Thus from (13) we have the integral conservation law 

h~tegrzlioa being r-~m'ed ,q~.i ovr~ ~ uz~. ~pne~ ~t infln.;tv. This integral 
is e~e of  the Nev ,~z~  Penrose abso!mely c o ~ e d  q ~ a ~ e a  ~ea~\-,5c~ 
1967; Nem~mn & Pe~ose, 1968). 

in the apparen~ ab~enee of expticSt aea!~,~c sohrlioz~ of( Ig)  n'o:merica~ 
solutions bare been sought by ~he usual method f~r h3~erbohc partia! 
differential equations (Smith, 1969), The characteristic directions ~.nulI 
/s are given b y  

a---R + �89 =0.  
du 

and putting 

OH OH 

the differential relationships 

('24) 

f(u,R,q,H)---q~ + .[1 ~g  

dp = �89 dq + f dR (25) 
aq = f du 

represent (18) along the respective characteristics. We also have along 
du =0, 

dH=qdg (26) 

Successive approximations to H, p, q at any point X of the characteristic 
grid in terms of their values at immediately pr~eding grid points oa the 
characteristics, through X are obtained by  iterati';r use of the finite dif- 
ference equivedents e f  (25)~and (26Vif values d p  are no~ required the fi~t 



lmluafion in (25) be~:omes re~Jtmdant since p appears ~M~:her in the second 

The  solution o f  the second equation i~ (24) is given by 09) .  The B- 
eoordhmte e r a  [mint on*~he characteristic grid given by specified wlues of  
u, v e o~ d  therefore be found using Newton's method to solve 09)  to any 
desired accuracy, b.m this is a lengthy procedure to  undertake fox every 
p o i m  of  the grid and is r employed only at points on the i~tJM 
h ~ u f f a c e .  Elsewhere a Rnnge--. Ku~ta approximatJo~t us/ng (24) gNes 
the value~ 6t' g at successive grid ~ i m s  e~ each v-characterisl~e. 
u---- 0 (19) becom~ v/R = eor~-~n-L, and by scaling v so that this e o ~ t  
is uni tywe obtain a d.'.m~_ chi l i .  ~n the accurr~cy o f  Lb~. ~p ~ : ;m q a~o ~  for 
R in the region u < 0. 

Initial values of  H, q are specified on a pair of  nui~ I/~e~ ~.~ = uo, v = re  
(uo < t3, ~o :~ 0), the initial value of/ :  if  required being'then u~iquely deter~ 
mined on these characteristics. For  the computation,  it is necessary t~ 
f l m o ~  a m ~ r  value for the ratio ~ = r_/r+ and we put  = = ~, for 
wh~b .~be m ~  divergence of  the v-characteristi~ occurs on u --- O. 
Along ~ =~ em~stan~ d R / ~  ~ ~ max'~mum and minimum of  order v 2 on 
e3ther side ~ - u  = O, T~e m~mber of  gr/d p~/n~g required to furnish a 
reasonaNy accura*~e solution tberefo~e ri~c~ sl'mr Ay ~ _~: ~nczc~s  placing 
practical limffs on the extent of  !be solmi-av, domain m this d i r ~ .  
W ~ n  ~ese  bour~ds results of  im.ems~ have been obtaineC 

Several fm~dons  have been used as ~.Afi~ data. In lyartie~!ar s e ~ g  
ro ---- 0 and choosing H, p, q to be zero ~n v = r~, the C ~/nifial Iuncficm 

j~e'(a-- R):, 0 < R < a  2 (27) 
H ~  [ O, a < R < ( e _  l ) u  ~ 

for  u = uo has~been tried with various vak,~s e f  uo - and a.  Profiles Mong 
u = c o n s t a n t  of  the solut ion ~'~" ~ e �9 oeuvre,d, ,rein (27) with u ~ = - 1 0 0  and 
a =  0"0525 are-shown in Fig. 5 while crass-sections along v =  constant 
are displayed in Fig. 6. Figure 4 shews the relative disposition of the  u- and 
v-characteristics employed, drawn to the same scale. These graphs show 
features typical of  all the numerical solutions invest/gated. 

By choosing the initial value of  DH on the boundary to l~e zero we are- 
assured by (22) o f  its remaining zero all the way up r = oo. Graphs of  H 
for any constant negative value of u are asymptotically flat in consequence. 
As u increases from -103  to 0 the number of  oscillations of  the solution 
for u = constant  goes up. remaining finite for any particular u < 0. On 
u = 0 we apparently have a n  unbounded number of  well-damped oscilla- 
tions, and as we enter the re_gion u > 0 the amp!itude of  these oscillations 
rises sharply and they appear to diverge more and m o ~  vioiemiy as fi 

J?See, for example, P. K. Hem'iN (1968). Dis~.-m~e Variable Methods in Ordinary 
Differemial Eqaations.~W~ey, New York. 

:t: All programs were .-'tin on the-University os Arias computer. 
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Fig~r~ 4. 

fur ther  ~ a ~  I~ can be seen in graphs (e) and (f) o f  Fig. 5 that these 
~r~stab!e e ~ i l a t i e a ;  ; ; ; ,  ~ihmted 'very close ~ te  the Caucby hor izon r == r_ 
in terms o f  the afCme parame~cr_ i~ 

s o t ~ o n  for  ~ = ~o~stan~ to  t ~  ~ f t  o f  any ne ighbourhood o f  u == 0 
~ppears to  settle d o w n  rapidly as v is in, creased wgi~e ~ e  aumber  o f  oscilla- 
t i o ~  ofdec reas i r~  ampli tude near  u = 0 continues ~e r;~;~ R ~ m ~  reason~ 
a b ~  to  ex~xap01ate f rom this ~o the pic~ur.e a~ ~, = ~ for  u < 0 t~mafi~g m~. 
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infinite number of  oscfllations, the amplitude of, these tending to z ~ o  as 
t~ -§ O. For  u > 0 .h.owever the solution curve waggles, showing no sign of  
tending to anv._j . . . . . . .  l l m l t  ~ p ~ s e S .  



' I ' l ~ . - a ~ c a |  proce&~r~ is a sta~l~ one, alterations oi'the step lengths in 

The ~umerir �9 therefore points to a s~ngularity in the test field 
along r ~  r_ despite th~ fac~ f l ~  the ~ l m i o n  appears Io tiave the l~mit~ng 
�9 ~due zero as u --~ O and r -+ ~ along any c ~ v r  for  which u < O. 
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It is to be expected from anMytZcal cetMde~tJe~_s of the characteristic 
inRial value problem that the specification of  unrest~cted nulI charac- 
teristic data will in general produce a shock.wave ~p the initial hypersurface 



be so unless subsidiaoj eondilions are impose~ 0~amely lhe vanishing of 
cer t~n inte~als along ~he go, orators of  the initia! cha,\acterisfic surface) 
i n  order 1o ensure tha t the  sh~ t  of charge is absent (the shockowave cannot 
lee direclly ascertained from *he m.~merical solution; the api~arent initial 
severity offl3e graphs in Fig. 6 is ~.,~.rt!y due to the scale emplwed ). 

J{ is  net  to be e x i t e d  ~.bat the preaerme of such a shock-wave should 
m~c t  eo_~ conclusions, sh~ce i!. ~s on!y the effe~ of  hack-~m~.erin_g frsm the 
wave which enters the region ,,# > 0 in which v,e are mMn|y in.rested. 
However, tO make s.ure of  this we ran programs with suitable alternative 
initial data. In the first instance the effect of such a shock-v:ave can be 
substantially l~sened and possibl-y even removed by balanciug the inffia*, 
"hump' with anoth.e, of  equal size and opposite sign placed further up the 
hyl~msurface.. The shock-wave can presumably be further reducix4~ by 
s e p a r a ~ g  two such positive humps with a larger negative hump so ~ a t  a 
ba.!~v~ is.agent, achieved (in the first case J'~2~ HodR = 0; in the second 
Sge//.~d/~= f~e  ~ ; a , , L  .. dR =0). t t  can also be removed from 
u---uo altogether by s~cf fymg non-zero eata o~b' along v = vo (u < 0). 
The shock-wave then resMes furthe~ afor~g ~ e  hy~e:~t, rfaze v = vo. There 

ne  reason to believe that the pro_seato of ~his sboc~--w-~v~: ~b,.,..~a affect 

"Neither in these cases ~or in any o~e~s considered has *here been an3' 
major qnaf~ta*Sve difference from the res~Its dispI.ayed here. Each s~* of  
initial data p r o d ~ s  a markedly stable solution wh~!e u ~_ 0 fo!i.owed by 
immediate signs of inszabi!ity on crossing in.to u > 0.. I~ therefore seems 
likely that the field singa!a~ly is a prope~y of  ,he partial differential 
equation (18) rather than any particular initial fanc'don and will con- 
~equently occur for generic cases of the latter. 

It.,hould be pointed out that the situation we eo~sider of placing a test 
solution of  Maxwelt's equations on a backgound space.~time wahie5 satisfies 
the Einstein-Ma.xw~:l}. equations is not equivalent to coasidering a small 
(ele~omagnetie) perturbation of the Einstein-~Maxwe!t equations. This is 
because cross-terms arise in the contributio~, of the Maxwell field to the 
backgound spaee-t!me :via the .m~erg~-momentum tensor, producing 
changes in the background metric of the same order as ~hat of the initial 
perturbatien.'~ A Nil treatment of such a perturbation would lead to far 
more complex equatiees than those treated here, but we do not believe 
that the resutts would be substanfial!y affected. A perturbation anMysis 
cannot in any case give'a definitive answer to the problem we consider, 
since the non-linear effects would ultimately have to be brought in_ 

From ~ s  connection of  inferences we conclude that vhe projected 
journey of our hypothetical obser.er through r = r_ l o o ~  liable ~.o pro,e a 
dangerous undertaking, for the likelihood is that the Catchy horizon is 
unste2ote and ",ahat unbounded cu~'atu~s will be met  in i~ Lmmediate 
neighbourhoqd as soon as the coupiing effect of t~e'field back oa the space- 
time is taken into account. 
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