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One-dimensional transient wave propagation in fluid-saturated 
incompressible porous media 

Reint de Boer, Essen, Wolfgang Ehlers, Darmstadt  and Zhangfang Liu, Chongqing 

Summary: In this investigation, the general formalism for the field equations governing the dynamic response of fluid-saturated 
porous media is analyzed and employed for the study of transient wave motion. The two constituents are assumed to be 
incompressible. A one-dimensional analytical solution is derived by means of Laplace transforrn technique which, as a result of 
the incompressibility constraint, exhibits only one independent dilatational wave propagating in the solid and the fluid phases, 
respectively. The fluid-saturated porous material is supplied with characteristics similar to those occuring in viscoelastic solids. 
This work can provide the further understanding of the characteristics of wave propagation in porous materials and may be 
taken for a quantitative comparision to various numerical solutions. 

Eindimensionale transiente Weilenfortpflanzung in fliissigkeitsgefiillten inkompressiblen poriisen Medien 

Ubersicht: In dieser Arbeit wird der allgemeine Formalismus ffir die Feldgleichungen, die das dynamische Verhalten der 
fluidsaturierten Medien bestimmen, analysiert und ffir die Untersuchung der transientcn Wellenbewegung ausgewertet. Es 
wird angenommen, dal3 beide Konstituierenden inkompressibel sind. Mit Hilfe der Laplacetransformation wird eine 
eindimensionale analytische LSsung abgeleitet, die als ein Resultat der Inkompressibilit/itsbedingung nur eine unabhfingige 
dilatante Wellenfortplanzung zeigt. Das fluidsaturierte por6se Material ist mit Charakteristiken versehen, die denen 
viskoelastischer Festk6rper/ihnlich sind. Diese Arbeit soll das weitere Verstehen der charakteristischen Eigenschaften der 
Wellenfortpflanzung in porSsen Materialien erleichtern. Die Ergebnisse k6nnen zum quantitativen Vergleich mit verschiede- 
nen numerischen L6sungen verwendet werden. 

1 Introduction 

The investigation of wave motion phenomena in fluid-saturated porous media is attracting more and 
more attention because of its significance in a great number of practical engineering problems. The 
general widely accepted opinion is that there are two dilatational waves and one rotational wave, 
which has been concluded on the basis of the theory given by Blot [1]. Blot's theory, which is based on 
the assumption of compressible constituents, and some of his results have been taken as standard 
references and the basis for much of subsequent analysis in acoustics, geophysics geomechanics and 
other fields up to the present. Recently, some new wave propagation theories [2-5] have been 
proposed and many numerical results [5-7] have been presented. However, because the coupled 
differential equations are generally difficult to solve exactly, it appears that numerical approaches 
have to be adopted to attain solutions. Meanwhile, much effort has been made to search for an exact 
solution so as to evaluate the availability of various numerical solution methods (e.g., finite element 
method and boundary element method). Garg et al. [8] examined the response of an infinitely long 
linear elastic fluid-saturated soil column subject to a Heaviside step function velocity boundary 
condition at one end, by use of Blot's theory, and derived closed-form analytical solutions only for the 
two extreme cases of zero and infinite drag. Recently, Simon et al. [9] also presented an analytical 
solution for the transient response of fluid-saturated porous elastic solids within the framework of 
Blot's theory; however, in the above approaches, the so-called Blot's dynamic compatibility relation 
of the solid and fluid materials must be satisfied. The latter paper also predicted the existence of two 
kinds of dilatational waves in the one-dimensional case, however, too many material parameters were 
involved in the procedure, where these material parameters may be physically not very clear. 
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In the present article, an analytical solution to analyze transient phenomena in fluid-staturated 
elastic porous media is presented. The fluid-saturated porous material is modelled as a two-phase 
system composed of an incompressible solid phase and an incompressible fluid phase, thus meeting 
the assumptions of many problems in engineering practice, e.g., in soil mechanics. On the basis of 
general porous media theories [10 13], following mixture theories extended by the concept of volume 
fractions, governing equations are given considering linear elastic deformation for the solid skeleton. 
An exact solution is obtained via Laplace transform technique for the one-dimensional problem 
taking into account initial and boundary conditions. Of interest is that numerical results, as a direct 
consequence of the incompressibility constraint, demonstrate the existence of only one independent 
compressible wave in the solid and the fluid phases. The included material parameters, compare, 
Table 1, are physically evident and can be taken from simple laboratory tests. It should furthermore be 
noted that the fluid-saturated porous material is endowed with characteristics similar to those 
occuring in viscoelastic solids. The presentation may also be used to make a critical comparision 
between various numerical and analytical results, as well as to provide an alternative understanding 
of the mechanism of wave propagation in fluid-saturated porous materials. 

2 Field equations 

Within the framework of modern porous media theories (the reader is referred to de Boer and Ehlers 
[12]), the fluid-saturated porous medium is understood as a binary mixture of superimposed but 
immiscible constituents cp i with particles X i (i = F ,  S )  denoting the fluid and the solid phases, 
respectively, each of which is regarded as a continuum following its own motion. This macroscopic 
treatment implies a model in which at any time t, each spatial position x of the current configuration is 
simultaneously occupied by particles X i of both constituents (pi. These particles proceed from 
different reference positions Xi. Thus, each constituent (pi is assigned its own motion function ;(i 

x = ;(i(X~, t). (1) 

The volume fractions 

n i = n i ( x ,  t) (2) 

are defined as the local ratios of the constituent volumes v r with respect to the bulk volume v. Associated 
with each q)i is an effective density ~r and a bulk density ~o i. The density functions are related by 

e i =  n i e  iR . (3) 

Constituent incompressibility, as is assumed for the present binary model, implies that the 
effective densities are kept constant during deformation: 

o~ iR = const. (4) 

Excluding mass and heat exchanges between the solid and the liquid phases and excluding the 
supply terms of moment  of momentum, the concept of volume fractions and the balance equations for 
the constituents are given referring to de Boer and Ehlers [12] as follows 

1. concept of volume fractions 

n s + n F = 1. (5) 

2. balance of mass 

~i i + o~ i div xi = 0. (6) 

3. balance of momentum 

div T i + ~i(bi -/i~) + p i =  0, (7) 

pS + = o .  (8) 

4. balance of moment of momentum 

T i = T iT. (9) 
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The material  time derivatives (. I.)~ are defined by 

& . . )  
(.5.)~ - & + grad ( . . . ) - i i ,  (10) 

where i~ and ~ characterize the const i tuent  velocities and accelerations of q0 i, T ~ the partial Cauchy  
stresses, 0 ~ the supply terms of momentum,  and b ~ the external body  force densities. The symbol  
grad (...) means partial differentiation with respect to the spatial posi t ion x, div (...) is the divergence 
opera tor  corresponding to grad (...). 

Considering incompressible constituents,  the combina t ion  of (3), (4) and (6) yields 

t~i i -1- n i div i i  = 0, (11) 

i.e., the balance of mass equat ions reduce to balance equat ions for the volume fractions [12]. Then, by 
use of  (5) and (11), the relation 

ris F = riFF - grad n F- (iF -- i s )  (12) 

holds. Alternatively, one obtains 

div (nSis  + nFiF) = 0. (13) 

In the case of b = b s = b e, the balance equat ions of m o m e n t u m  (7) can be rewritten in the forms 

div T s + oS(b - :~s) - O F = 0, (14) 

div T r + ~oF(b -- xF) + O F = 0, (15) 

where, additionally, (8) has been used. 
As a consequence of the incompressibili ty constraint  (4), the stress tensors and the interaction 

force are additively decomposed  into two terms 

T s = _ n s p I + T e  s,  

T F =  _ n F p I + T e  e , 

O r = p grad n F + OE r ,  

(16) 

(17) 

(is) 
where p characterizes the effective pressure of the incompressible pore fluid (de Boer and Ehlers [12]). 
In (16)-(18), the index (...)e expresses the so called "extra quanti t ies" for which consti tutive equat ions 
must  be formulated.  Insertion of (16)-(18) into (14) and (15) produces 

div T e  s - n s grad p + 0S(b - :~s) - Pe e = 0, (19) 

div TE F - -  r f  grad p + ~oF(b - -  X F )  -{- P E  F : 0. (20) 

For  further considerations,  it is convenient  to substi tute the velocities/:i  and the accelerat ions/~ by 
the corresponding derivatives of the displacement vectors u~ 

x = Xi + ui, (21) 

i i  ~-  lii~ Xi  = l l i"  (22) 

The investigations to follow are restricted to an isotropic, linear elastic porous  solid filled with an 
inviscid liquid. The consti tutive equat ions  for the extra stresses and the extra m o m e n t u m  supply yield: 

T e  s = 2#SEs + 2S(Es - I) I, 

Z F : div Te F ~ 0, 

OE F : _ S v ( l l  F - -  l i s )  , 

where #s and 2 s are the macroscopic  Lain6 constants  of the porous  solid, and 

1 
Es = ~ (grad Us + grad T Us) 

(23) 

(24) 

(25) 

(26) 
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is the linearized Langrangian strain tensor. The relation (24) corresponds to the fact that, in covering 
the fields of ground-water flow through soils or pore water flow through earth dams, masonry or 
concrete dams, respectively, the viscosity force z r is negligible in comparison with the other terms 
incorporated into (20) (additionally compare, de Boer and Ehlers [12]). The volume fraction n s is 
determined from (11) by integration, 

n s = nSs(det Fs) -1  = nSs(1 + E s  . I ) -  1, (27) 

where, in the scope of infinitesimal deformations, all terms of higher order are neglected. Moreover, 
since E s  I < 1, n s may be approximated by nSs which is the solid volume fraction in the initial 
configuration. In the case of isotropic permeability, the tensor Sv, describing the coupled interaction 
between the solid and the fluid, is given by de Boer and Ehlers [12] 

(nF)2 ~FR 
Sv - kv I = SvI, (28) 

where 7 FR is the effective specific weight of the fluid, and k v is the Darcy permeability coefficient of the 
porous medium. Now, inserting (23)-(26) and (28) into (13), (19) and (20), we may write the field 
equations as follows 

(2s + #s) grad div Us + #s div grad Us - n s grad p + ~S(b - fis) + Sv(ap - Us) = 0, (29) 

- n r grad p + Qr(b - fiF) - S~(fiF - tis) = 0, (30) 

div (nSus + n~fv) = 0. (31) 

In the framework of the infinitesimal theory, the superposition principle holds, i.e., 
the loading by body forces and by external forces can be treated separately. Furthermore, 
by only considering the loading by external forces, the equations of motion, (29) and 
(30), can be written as 

(2s + #s) grad div Us + #s  div grad Us - n s grad p - oSfis + S,~(6F - tis) = O, (32) 

- n  F grad p - ~oV/ir - S~(fiF -- Us) = 0. (33) 

The set of equations (29)-(31) or, without body forces, the versions (31)-(33) are the general 
statement of the boundary and initial value problem for saturated elastic porous media if appropriate 
boundary conditions and initial conditions are given. 

3 O n e - d i m e n s i o n a l  transient  wave  propagat ion  solut ion 

The balance equations described above are usually solved by numerical methods. However, 
in the case of one-dimensional small strain, an analytical solution is possible, in which 
the small variation of the volume fraction is approximately neglected. Now, the focus is 
put on a one-dimensional infinitely long column, Fig. 1, separated from a half space consisting 
of a liquid-saturated porous elastic skeleton material. The motion of both the solid and 
the fluid materials is constrained to take place in the vertical direction; loading as a function 
of time, a(z = 0, t ) =  f ( t )  by a permeable punch with ideal permeability, is applied to the 
half space boundary. The z axis is taken as the normal on the boundary and thus, for 

~(o,t)= f(t) p(O,t)=O J 

I Fig. 1. Geometry of the investigated problem 
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the one-dimensional problem, the governing equations (31)-(33) are directly simplified as 

(2 s + 2# s) u,~ - nSp,~_ - oSu,u + S~(v,t - u,~) = 0, (34) 

- n V p , =  - o~F1),tt -- Sc(1),t -- U,t ) = O, (35) 

nSu,t= + nFv,t~ = 0, (36) 

where the vertical values of Us and uF are substituted by u and v. In (36), homogeneous pore distribution is 
assumed. Furthermore, u,z or u,z~, respectively, mean the first or the second differentiation ofu with respect 
to the spatial coordinate z; the partial time derivatives are denoted by u,, and u,,,, etc. 

For the present investigations, the loading function at the free boundary is given by 

a(O, t) = f( t) ,  p(0, t) = 0 (37), (38) 

(Fig. 1), where f( t)  is an arbitrary function of time which describes surface loading onto the skeleton 
material. The boundary condition (38) furthermore implies a free liquid surface assuming the half 
space boundary to show an adequate permeability. The initial conditions are 

u(z, O) = O, v(z, 0) -- 0, (39), (40) 

u,,(z, O) = O, v,t(z, 0) = 0. (41), (42) 

Taking the Laplace transforms of (34)-(36), with initial conditions (39)-(42), and using matrix 
notation, one obtains 

Am,z~ + Bm,z + Cm = 0, (43) 

where m r = (L(u), L(v), L(p)). The functions L(u), L(v), L(p) are the Laplace transforms of the solid 
displacement, the fluid displacement and the pore pressure, respectively 

L(u) = }~ e-rtu dr, (44) 
0 

L(v) = ~ e - %  dr, (45) 
0 

L(p) = i ~ e-"tp dr, (46) 
0 

where r is the Laplace transform parameter. In (43), the corresponding matrices A, B, C are defined by 

2 s + 2 S  0 i ]  
A = 0 0 , (47) 

0 0 

0 0 - ns~ 
/ 0 ( j  

- -  l ~ S F  - -  t l F r  

C = S~r - 9er 2 - S~r . (49) 

0 0 

Assuming m to be solved via 

m = inoe~Z~ 

(48) 

(50) 

where mo and c~ are functions of the transform parameter r, one obtains the eigenvalue problem by 
substitution of (50) into (43) 

(~2A + eB + C) mo e'~ = 0. (51) 
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By use of ( 4 7 )  - (49 ) ,  the corresponding characteristic equation is 

(nF)2 (2s + 2#s) .4 _ [(ns)2 0F + (HF)2 0S] F2(Z2 _ SvF~2 = O. (52) 

Eqn. (52) may be solved to yield two pairs of roots 

~1,2 = +-var- + br, 

where 

~3,4 ~ O, 
(53),(54) 

(nS)2 QF + (nF)2 0 s Sv 
a ~  b =  (2s + 2#s) (r/F)2 ' (~S + 2#s) (nF)2" (55), (56) 

The eigenvectors associated with el,2 and Y~3,4, respectively, are 

q~,2 = - ~ ,  1, -T-nSnF ] ~  + brJ' 

T q3,4 = [0, 0, 1]. 

(57) 

(58) 

Thus, the transformed solution for the transient response of the porous medium is 

m = Clqle ~ + C2q2 e~lz q- C3q 3 q- C4zq4. (59) 

In order to insure boundedness at infinity, the coefficients C1 and C4 are 

C1 = O, C,, = O. (60), (61) 

Then, the solution has the form 

m = C 2 q 2  ea2~ q- C 3 q 3 ,  

in which Cz and C3 may be determined from the transformed boundary condition 

(62) 

nSL[f(t)] -(S~ + nSoFr)rL[f(t)] 
= , C3 = (63), (64) C2 n~(2s + 2#s) ~ 2  + br n~2(2 s + 2# s) (ar 2 + br)" 

By use of the convolution integral and transform formultion (Abramowitz and Stegun [14]), the 
inverse transformation of Eqn. (59) produces the exact solution for the transient response problem in 
the fluid saturated porous medium 

t 

1 f f(t -- z) e--- u(z, t) = (2 s + 2 S )  
0 

~ Io 2a 

t 

nS f b ( b l ~ 2 a a Z 2 )  u ( z ] / a z ) d z '  
n F~-~(  2 s + 2 #  s) f ( t - ~ ) e - ~ I o  

0 

v(z, t) = 

(65) 

(66) 

(67) 
1 

p(z, t) = (rf) 2 (,~s + z ) ' /2  s" [nSoFL'tt(z' t) + SvL,t(z, t)], 

where 

L(z, t) = i Q(t - .c) G(z, z) dz, 
0 

(68) 
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t 1; 
Q(t)= ~ f ( t - z )  e -~a~Io 2aa'C dz, (69) 

0 

G(z,t)= e - ~ ' I o  b]/Tt2-az2 u ( t - g a z  ) -  e za go ~aa t . (70) 

Moreover, it is not difficult to determine the one-dimensional extra stress aE s 

aEs_ b b b az2 z u(z ] /a z )dz  + f ( z -  ] /az)  e z,/~ z 
2 ] / a ,  f ( t  - z) e-5; I1 ]/~2 _ az 2 

0 (71) 

In the above equations, Io(z) and Ii(z) are the modified Bessel functions of zero and one order, 
respectively, and U(t) is the unit step function (Heaviside function). A computer program may be 
provided to evaluate u, v, p and o-E s for any form of the surface loading function numerically. 

General properties of the analytical solution 

In the preceding section, a one-dimensional analytical solution via Laplace transform technique was 
presented for an incompressible linear elastic skeleton material saturated by a single incompressible 
pore liquid. 

The resulting expressions for the solid and the liquid displacements, Eqns. (62) and (63), and for the 
liquid pressure and the solid extra stresses, Eqns. (64) and (68), exhibit a strong history dependence 
comparable to that in the theory of viscoelasticity. In particular, the different response functions do 
not only depend on time, but furthermore depend on the previous loading history. This point can 
easily be understood from the squeezing out of water (when, e.g., the material is subject to external 
loads), combined with effects of internal friction included into the momentum supply term !] f (de Boer 
and Ehlers [12]). Thus, a saturated porous skeleton material is provided with certain features similar 
to those appearing in viscoelastic solids. 

The wave motion in the porous medium may be expressed by the solid and the fluid displacements 
or the solid extra stresses, respectively, but it cannot be expressed by the pore pressure which, of 
course, is nothing else than the Lagrangian multiplier corresponding to the incompressibility 
constraint of the binary medium. The incompressibility condition of the model furthermore produces 
the ratio of the solid and the liquid displacements to yield 

u(z, t)/v(z, t) = --nF/n s. (72) 

i.e., as a matter of fact, there is only one disturbance propagating in the medium. The unit step function 
(Heaviside function) included into the formulae (65)-(71) regulates the relation between the disturbed 
spatial position and the necessary propagation time. Thus, the propagation velocity Co included into 
the argument of the unit step function U yields 

Co - - - (73) 
t X/(nF) 2 + 2 

If the pore liquid is absent or if gas is contained in the pores of the matrix, the term 0 e is 
zero or can be neglected in comparison with 0 s. Then, since in this case n v means porosity, one 
obtains the propagation velocity c' of the dilatational wave in incompressible empty porous 
solids as 

c' = ]/(2 s + 2#s)/o s, (74) 

where the corresponding volume changes are only due to changes in porosity. The above expression 
can be compared with the well-known result of classical elasticity theories. 



Finally, if only the solid constituent is present and if furthermore n F --, 0, which corresponds to 
a non-porous incompressible solid material, then, the propagation velocity c" of te dilatational wave 
is zero 

c" = 0. (75) 

This is a direct consequence of the incompressibility constraint. 

4 An illustrative example of a one-dimensional soil column subject to three different surface loadings 

In this section, a number of numerical results for the exact solution in a one-dimensional 
water-saturated soil column is presented. The loading function at the surface is 0(0, t) = f(t), where 
f(t) is chosen to be a sine function, a step function or an impulse function, respectively. The physical 
properties of the soil are assumed as shown in Table 1. 

Table  1. Mater ia l  proper t ies  

n s = 0 . 6 7  n F = 0 . 3 3  
Qs = 1.34 M g / m  3 ~o F = 0.33 M g / m  3 
E = 30 M N / m  2 v = 0.20 
Z s = 5.5833 M N / m  2 #s  = 8.3750 M N / m  2 
q k  F = 0.01 m/s  7FR = 10.00 k N / m  3 

In contrast to the various papers on Biot's approach, the following section concerns an illustration 
of the characteristics of one-dimensional transient wave motion for the incompressible binary model 
under discussion. In particular, the solid and the liquid displacements, the solid extra stresses and the 
pore pressure are given with respect to time and with respect to different spatial positions within the 
framework of three loading forms, sinusoidal, step loading and impulsive loading. 

4.1 Responses to sinusoidal loading 

0.06 

In the case of sinusodial loading, the responses of the solid and the liquid displacements versus time 
and versus depth measured from the free surface are shown in Fig. 2 5. From the comments on (72), it 
is clear that there exists only one independent dilatational wave propagating through the medium, i.e., 
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loading  
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Fig. 6 and 7. 6 Response of solid skeleton effective stress vs. time to sine loading; 7 Response of solid skeleton effective stress 
vs. depth to sine loading 

the solid displacement can be given as a function of the fluid displacement and vice versa. It is 
furthermore concluded from (72), in the case of the geometrical linear theory with approximately  
constant  volume fractions, that the sum of the solid and the liquid volume fluxes vanishes, namely,  as 
a direct consequence  of  the incompressibil ity constraint  

nSUs + nF~F = nS~s -- nF(nS/nF) US = O. (76) 

The effective stress functions of the solid skeleton and the pore water pressure variations versus 
time and versus depth are shown in Fig. 5 -9 .  It is not  difficult to understand that the solid extra 
stress waves are very sensitive to the external loading close to the surface and tend to vanish in 
a certain distance from the loading face. This effect can be interpreted as a result of viscous damping 
caused by internal friction from the interaction mechanism between the skeleton and pore liquid 
materials. 
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Fig. 10 and 11. Response of solid displacement vs. time to step loading; 11 Response of solid displacement vs. depth to step 
loading 

Furthermore, it is worth paying attention to the result that the pore water pressure can show 
negative values (pore water suction) in the vicinity of the loading surface. This result is due to the 
recovery of the elastic skeleton matrix close to the surface during sinusodial loading, where the pore 
liquid does not squeeze out but is absorbed into the pores accompanied by liquid suction. 

4.2 Responses to step loading 

The responses of the medium due to step loading can be utilized to analyze a consolidation process 
with a free pore water surface Figs. 10-17. In particular, Figs. 10-13 show the solid and the liquid 
displacements changing with respect to time and depth. With growing time, the solid moves 
downwards and the liquid is squeezed out from the pore volume. This process again exhibits 
viscoelastic properties as a result of internal friction. During the consolidation process, the solid 
extra stresses increase with time at a given depth, Fig. 14 but decrease with the distance from the 
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Fig. 12 and 13. 12 Response of fluid displacement vs. time to step loading; 13 Response of fluid displacement vs. depth to step 
loading 
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Fig. 18 and 19. 18 Response of solid displacement vs. time to impulse loading; 19 Response of solid displacement vs. depth to 
impulse loading 
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Fig. 20 and 21. 20 Response of fluid displacement vs. time to impulse loading; 21 Response of fluid displacement vs. depth to 
impulse loading 

loading surface at a given time, Fig. 15. At any depth, the pore pressure decreases up to zero, 
Fig. 18, when previously, the pressure increasing process has taken as a function of depth and time, 
Fig. 17. 

4.3 Responses to impulse loading 

The responses of the medium due to impulse loading can be taken from Figs. 18-25. As a matter 
of fact, when an impact is applied to the loading surface, the displacements of the solid and the 
liquid phases reach their maximum values within a very short time, and then very quickly 
decrease to some smaller values, Figs. 18-21. The wave propagating process clearly appears 
in the solid extra stress and the pore pressure curves given with time at different depths and with 
depth at different times, Figs. 22-25. Note the sharpness of the pore pressure functions at different 
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Fig. 22 and 23. 22 Response of solid skeleton effective stress vs. time to impulse loading; 23 Response of solid skeleton 
effective stress vs. depth to impulse loading 
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Fig. 24 and 25. 24 Response of pore pressure vs. time to impulse loading; 25 Response of pore pressure vs. depth to impulse 
loading 

depths at time t = 0.01 s, compare, Fig. 27, which corresponds to the impulsive loading. The variation 
in pore pressure from positive to negative values close to the surface again exhibits the elastic recovery 
of the solid skeleton combined with a water absorption process. 

5 Concluding remarks 

An exact solution for a transient analysis of a one-dimensional column of a liquid-saturated elastic 
porous skeleton was presented in this paper. The saturated porous medium was modelled as 
a two-phase system with two incompressible constituents, where the general field equations were 
directly adopted according to the work of de Boer and Ehlers [12]. The exact solution was obtained 
by taking the Laplace transform of the governing equations with the initial and boundary conditions. 
The transient response of the medium was demonstrated with respect to three boundary loading 
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functions. As a result of the incompressibility constraint, only one independent dilatational wave 
in the two phases was obtained, while, consequently, the disturbance propating velocity included 
into the unit step function was the same for both the solid and the liquid constituents. Apparently, 
the solution holds for two incompressible constituents within the framework of the geometrically 
linear theory approximately neglecting the variations in volume fractions during the deformation 
process. Nevertheless, the solution exhibits all the features of wave motion. Furthermore, the 
assumption of two incompressible constituents does not only meet the properties appearing in 
many branches of engineering practice (e.g., soil mechanics, etc.), but it also avoids, on the basis of 
an exact mechanical approach, the introduction of many complicated material parameters as must 
be considered in the theory of Biot and his subsequent disciples. Moreover, the present solutions 
allow for the evaluation of the accuracy of some numerical procedures for transient problems in 
such media. 
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