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Introduction 

This edition of Seminars in Immunopathology is devoted to apoptosis, the physiologi- 
cal process by which unwanted cells are removed. Rather than covering the entire field 
of apoptosis, the chapters focus on the clinical implications of cell death, both in terms 
of causing disease and possible new treatments. In particular it considers apoptosis in 
the immune system, in which it has been linked with autoimmune disease, neoplasia, 
graft rejection and infectious disease. 

The current flood of publications on apoptosis has been indicative of the rapid 
progress in the field, but has also made it difficult for anyone not working directly on 
cell death to maintain perspective. This problem has been compounded by the signifi- 
cant proportion of claims that have subsequently been shown to be incorrect. Further- 
more, although apoptosis can be observed in many circumstances, it does not neces- 
sarily have any significance. The chapters in this volume give examples of situations 
in which apoptosis of cells of the immune system has a relevance beyond mere corre- 
lation with physiology or pathology, and is critical to the final outcome. 

Historically immunologists have been among the first groups to realise the signifi- 
cance of physiological cell death. One reason may have been that some of the early 
workers in the field happened to be studying lymphoid cells. Another is that bcl-2, 
which was found because it is commonly rearranged in follicular lymphoma, was the 
first component of the cell death mechanism to be identified. 

The apoptotic effector mechanism 

The central mechanisms of apoptosis are highly conserved, as some mammalian cell 
death genes can function in invertebrates and vice versa. For example, the finding that 
human bcl-2 could function in Caenorhabditis elegans [59] indicated that apoptosis in 
mammalian cells was implemented by a process resembling the process of pro- 
grammed cell death that had been studied by genetic means in the worm [22]. Al- 
though the effector mechanisms of cell death are conserved, the effects and impact of 
dysregulation of cell death pathways vary depending on the cells in which it occurs. 
Furthermore, the signal transduction pathways that can activate the death effector 
mechanisms are very diverse, and are only beginning to be elucidated. 
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Table 1. The apoptotic pathway. The key effector proteins of apoptosis are the caspases which exist in a la- 
tent form within the cell. Very many signals can lead to activation of the caspases, culminating in apoptosis, 
but the pathways are carefully controlled 

Death signals 

Receptors 
Signal transduction 
Regulators 
Adaptors 
Proteases 
Substrates 

Secondary substrates 

Cytokines (addition or removal), steroids, abnormal nucleic acid, viruses, 
metabolic changes, free radicals, drugs, anoxia, extracellular matrix, etc. 
Cytokine receptors, steroid receptors, integrins, p53, etc. 
Jaks, ras, kinases, transcription factors, NF~B, calcium ions, etc. 
BCL-2 family, FLIP, ?IAPs 
CED-4, Apaf-l, FADD, RAIDD 
Caspases 1-11, granzyme B 
DFF, PAK2, PARR huntingtin, PKC theta, DNA dependent protein kinase, 
lamin A, etc. 
DNA, proteins 

In essence, apoptosis is a carefully controlled program of proteolysis (Table 1). The 
key effector molecules of apoptosis are a family of caspases: cysteine proteases that 
cleave their substrates following particular aspartate residues [7, 53]. Precursors of 
these caspases exist in an inactive state within most of our cells, and can be activated 
by cleavage, without having to be synthesised [37]. Thus, most of  our cells carry the 
latent seeds for their own destruction. The caspases cleave a large number of substrates 
within the cell, and this is thought to be the point of no return for the cell. Clearly it is 
important to make sure that these enzymes are tightly regulated. 

Regulation of" caspases 

The pro-caspases are activated either by an upstream caspase [32, 53], or by a family 
of adaptor proteins that directly associate with the pro-domains of the caspase precur- 
sors. These adaptor proteins include FADD, RAIDD and CED-4/Apaf-1 [4, 10, 14, 21, 
29, 67]. Somehow these adaptor proteins link the caspases with apoptosis activation 
signalling pathways, but the details are only known in a few cases. 

Regulation of caspase activation can occur at a number of points. One way the 
BCL-2 family of  proteins appear to inhibit apoptosis is by binding to particular adap- 
tor proteins, preventing them from activating the caspases [43, 44, 62]. Other proteins, 
such as FLIP, interfere with the function or activation of other adaptors by binding to 
their protein association domains [30]. 

There are several viral apoptosis inhibitory proteins (such as CrmA and p35) that 
function by binding to and thereby inhibiting the active caspases [12, 17, 38, 64]. 
Some evidence suggests that the IAP family of  apoptosis inhibitory proteins protect 
against cell death in the same way, although it has also been proposed that these pro- 
teins act upstream to somehow prevent caspase activation [19, 34]. 

Apoptosis activation pathways 

Cells respond to a wide range  of stimuli by activating ~their suicide mechanism. As 
apoptosis is used to balance mitosis, and thus maintain a homeostasis of cell number, 
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cells must be able to respond to signals from other cells [39]. For  example,  cells may 
know that they are superfluous when their receptors no longer receive signals from 
growth factors or the extracellular matrix [11, 13, 58]. Sometimes cytokines or hor- 
mones, such as tumour necrosis factor (TNF) or cortisone, are used not to keep cells 
alive but to tell a cell to kill itself [33, 63]. 

Some death stimuli may originate within the cell. Cells carefully monitor  their own 
metabolism, and their cell cycle status. I f  a cell resting in GO detects activation of  S 
phase genes it may decide to kill  itself, assuming that it had been infected by a virus or 
had suffered a potentially oncogenic mutation to its cell cycle machinery. It is possible 
that this is one of the roles of  the product of the p53 gene [60, 66]. Over 400 drugs and 
toxins have been shown to induce an apoptotic response in one cell type or another. 
This probably indicates that apoptosis is used as a "stress response" to remove cells 
that are metabolical ly disturbed [57]. 

Cl inical  and pathological aspects of apoptosis in the immune sys tem 

There are many stages at which lymphocytes may undergo apoptosis (Fig. 1). For ex- 
ample, cells that fail to productively rearrange their antigen receptors are eliminated by 
apoptosis [48]. Developing T cells that fail to recognise self MHC and cells that recog- 
nise self antigens bound to MHC are eliminated in the thymus [51]. Mature lympho- 
cytes have a l imited lifespan, and are also removed by apoptosis. Fol lowing an im- 
mune reaction, lymphocyte numbers return to normal, most l ikely by apoptosis of  the 

stem cell pro-B,T pre-B,T virgin mature effector cells 
cells cells (plasma cells 

antigen receptor positive & killer cells 
helper cells) rearrangment & negative 

expression selection 

homeostasis of cell number ..- 

killing by CTL 

-~ killing by radiation, p53, chemotherapeutic drugs 

dependence on growth factors 

-~ viral induced apoptosis ~.~ 

Fig. 1. Occurrence of apoptosis in lymphocytes. Lymphocytes may undergo apoptosis for a variety of rea- 
sons at any stage of their differentiation. The number of cells undergoing apoptosis can be altered indirectly, 
for example when mutations to DNA-dependent protein kinase prevent productive rearrangement of antigen 
receptors (SCID), or directly, such as when the bcl-2 gene is rearranged and constitutively expressed 
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extra cells. During many stages of their development the survival of lymphoid cells is 
regulated by cytokines such as interleukin-7, and in the absence of these growth fac- 
tors the cells die [5, 35]. As these cells can be rescued by BCL-2, once again their 
death must be due to an apoptotic process that BCL-2 can block. Interestingly, the 
processes of positive and negative selection, which are also thought to occur by apop- 
tosis, occur normally in bcl-2 transgenic and lpr mice, so it must be signalled by a 
pathway that does not require CD95 and is not subject to control by BCL-2 [2, 42, 45]. 

Like other cells, lymphocytes can become infected by viruses. The only way to 
eliminate such cells is by apoptosis. Some cells may respond to the viral infection by 
committing suicide, while others are killed by cytotoxic T cells. 

It is clear that lymphocytes can undergo apoptosis normally or abnormally at many 
different stages and under many different circumstances. Pathologies causing abnor- 
mal apoptosis and the pathology caused by abnormalities in apoptosis will, therefore, 
depend on which cells are affected and the molecular nature of the abnormality. Many 
of the molecules involved at different stages of apoptosis in lymphocytes will be dis- 
cussed at length in sections of this volume. Some of them are briefly introduced below. 

bcl-2 

The bcl-2 gene was first identified as the gene translocated and thereby activated in 
follicular lymphoma [54, 55]. Genetic studies in C. elegans suggest that the BCL-2 ho- 
molog CED-9 functions by preventing the adaptor molecule CED-4 from activating 
the caspase CED-3 [22, 43]. Presumably BCL-2 functions in a similar way. 

bcl-2 has been found to be translocated in a number of lymphoid tumors in addi- 
tion to follicular lymphoma, and is found to be expressed at abnormally high levels in 
many other types of cancers [50]. Experiments with transgenic mice have shown that 
bcl-2 does not directly transform cells, but can cause cells to accumulate, increasing 
the number of cells susceptible to other oncogenic genetic changes [36, 47]. Cells ex- 
pressing bcl-2 are also resistant to induction of death by p53, so if these cells suffer ex- 
tra genetic mutations they can not be eliminated by p53-dependent apoptosis [15, 49]. 
Transgenic mice expressing bcl-2 in their lymphocytes develop cancer and on certain 
genetic backgrounds develop an autoimmune disease resembling systemic lupus ery- 
thematosus [46]. Thus, as well as being oncogenic, loss of the ability to undergo apop- 
tosis can promote autoimmune disease. 

While many BCL-2-1ike proteins (such as BCL-x, BCL-w, etc.) inhibit apoptosis, 
apoptosis can be promoted by other BCL-2 like proteins (such as BAX, BAD, BIK, 
etc.) [52, 61, 65]. This has raised the possibility of using these proteins therapeutically 
as BCL-2 antagonists, hopefully to cause tumor cells overexpressing bcl-2 to undergo 
apoptosis [16]. 

TNF receptor family 

TNF was the first cytokine identified that could induce cells to undergo apoptosis [33]. 
It therefore represents the proximal end of a signal transduction pathway that can cul- 
minate in cell suicide. However, receptors for TNF, and other members of this family 
of receptors including CD95 (Fas/APO-1), are not simply obligate death signallers. In 
many cases ligation of these receptors does not cause apoptosis, but may cause other 
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cellular responses including proliferation or cytokine secretion [1, 3, 6, 23]. Mice bear- 
ing mutations of CD95 (lpr) or its ligand (gld) develop lymphadenopathy and autoim- 
mune disease [18]. The same appears to be the case in humans [24, 40]. Although apo- 
ptotic signalling pathways originating from CD95 leading to activation of caspase-8 
are among the best understood, other signalling pathways activated by ligation of 
CD95 have been recognised but are only just beginning to be understood. It is not yet 
fully resolved how much these pathways (rather than the apoptosis pathways) con- 
tribute to the phenotype of lpr or gld mice. 

Although much attention has been focused on CD95 and the TNF receptors, other 
members of this rapidly growing family are also certain to be involved in human disease. 

Cytotoxic T cells 

The role of cytotoxic T lymphocytes (CTL) is to protect the body from infected and 
mutated cells by causing them to undergo apoptosis. If  they fail in this task infections 
can spread, and there may be a higher incidence of cancer [56]. CTL can also be harm- 
ful, for example by causing graft rejection. 

Because apoptosis is a process of cell suicide, it was initially puzzling why the tar- 
get cells killed by CTL displayed classical apoptotic morphology [41]. Observations 
that granzyme B, a serine protease in the granules of CTL, resembles the caspases in 
substrate specificity, suggested that one of the ways CTL kill is by using an enzyme 
that replaces or activates the caspases when introduced into the target cell [59]. Pre- 
cisely how cytotoxic granules are released from CTL, and how their components func- 
tion within the target cell is an area of intense investigation. It has become apparent 
that CTL may also kill in some circumstances through membrane-bound CD95L or by 
secretion of cytokines [9, 31]. 

Apoptosis in HIV infection 

Observations that many viruses carry genes encoding anti-apoptotic proteins support 
the notion that apoptosis is used as a cellular defense against viral infection, with the 
infected cell altruistically killing itself to protect other cells in the organism [26, 57]. 
Nevertheless, apoptosis seen in the context of a viral infection does not necessarily in- 
dicate that it is occurring as an attempt at self defence. Apoptosis of CD4 T cells is cer- 
tainly seen in people with AIDS, but the death of these cells may be caused in a num- 
ber of ways, and not all the cells that die are necessarily infected [8, 25]. Several pro- 
posals have been made to attempt to save these cells using either pharmacological 
or genetic inhibitors of cell death. Until this is done, either in animal models or in hu- 
mans, it will not be possible to know whether the "saved" cells retain the ability to 
function normally. Of course, more effective therapies will require determining the 
pathways by which HIV infection leads to apoptosis. 

p53 

The p53 tumor gene is the most frequently mutated gene in human cancers [60]. Mice 
lacking p53 commonly develop thymic lymphomas [20]. p53 is able to cause cell cy- 
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cle arrest allowing DNA repair, but may also induce apoptosis, so it is thought that loss 
of these activities allows the growth of mutated cells and their development into can- 
cers. Apoptosis induced by p53 can almost invariably be inhibited by expression of 
bcl-2, so it must occur by the caspase-mediated mechanism that bcl-2 can control [15]. 
It is not yet known, however, what connects p53 to the apoptotic pathway. More 
progress has been made in understanding how p53 regulates the cell cycle [27, 28]. 

The significance of apoptosis seen in diseases affecting the immune system 

Ultimately, every disease process involves either an increase or decrease in cell num- 
ber, and as apoptosis is one side of the equation determining cell number, every disease 
process will involve alterations in the number of cells undergoing apoptosis. In most 
cases abnormal survival or death of cells is a late consequence of the disease process, 
so therapeutic approaches that aim at the apoptotic mechanisms will not alter the num- 
ber of cells that die, or will not have a beneficial effect on the disease process. How- 
ever, a growing number of diseases are being recognised in which apoptotic processes 
play a direct role in either causing or exacerbating disease. 

The first step is to discover the nature of the mechanisms of apoptosis, and how 
they are regulated. Progress in this area has been extremely rapid. The next step is to 
determine which pathways operate in different disease states. The sections of this vol- 
ume describe how this is being done for cells of the immune system, and at times they 
also describe how this knowledge is being applied in attempts to find novel therapies. 
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