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Analysis of long torsional strings by proper orthogonal 
decomposition 
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Summary Nonlinear excitations cause angular vibrations in torsional strings. In long strings, the vib- 
rations are characterized by different dynamic behavior over the length. For a general case of a long 
torsional string, a simplified mathematical model is introduced and numerically simulated. In order 
to gain insight into the complex spatio-temporal dynamics, the method of proper orthogonal decom- 
position is applied. A short description of this powerful technique for continuous as well as discrete 
systems follows. By proper orthogonal decomposition, the dynamic response is projected on a subset of 
the state space in which the most dominant dynamic effects take place. The time-invariant eigen- 
functions represent the most persistent structures in the system. By this method the eigenfunctions 
of long torsional strings are investigated. The reduction of the system's dimension as well as the appro- 
ximation of the system state is presented. 

Key words torsional strings, vibrations, proper orthogonal decomposition, eigenfunctions, system 
dimension reduction 

1 
Introfluetion 
In many technical systems, torsional strings serve as power-transmission elements between the drive 
and the output. Examples are drive shafts in cars and ships and drill strings for deep drilling. Torsional 
vibrations are often caused by nonlinearities in the string. In the case of long torsional strings, wave 
reflections appear and the moment of inertia can no longer be neglected. Long torsional strings are 
represented in mechanical modeling by a continuous one-dimensional body with oscillations depending 
on time and position, and mathematically expressed by partial differential equations. Often, boundary 
conditions are given by the velocity at the drive and, in general, by a nonlinear torque at the output. 
Due to the nonlinearity, self-excited vibrations can occur. These vibrations are highly unwelcome, 
because they may cause disruption or, in severe cases, even damage the transmission element. 

Vibrations in long torsional strings result in spatio-temporal signals. For their analysis, well-known 
methods are Galerkin approximations or Fourier series. Especially in linear cases and for systems with 
fixed or harmonic boundary conditions, these methods are appropriate, particularly if the shapes of 
the ansatzfunctions or of the eigenmodes are approximately known. If the signals are complex and the 
ansatzfunctions are not obvious, experience or luck is necessary in their choice. One method to gain in- 
sight into the dynamics without the prior knowledge of the eigenmodes and ansatzfunctions, especially 
in nonlinear cases, is the proper orthogonal decomposition (POD) of the signals. 

In the present paper, we first introduce a general system of a long torsional string. Then the 
mathematical model will be formulated. The simulation and the behavior for different values of a 
characteristic system parameter will be shown through bifurcation analysis. Then, an introduction 
to the proper orthogonal decomposition for continuous functions as well as discrete signals will be 
given, and the relationship between them shown. The theoretical description will be followed by 
analytical and numerical investigations of a torsional string of a real system. We will demonstrate 
how the complex system state can be understood in a simpler manner, how the dimension of the 
system can be reduced efficiently, and how the POD can be used for approximation. 
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2 
Modeling 
A simplified model of a long torsional string between the drive and the output is shown in Fig. 1. A string 
of length l is driven on its left end at x = 0, and loaded by an external torque T. The moment  of  inertia 
O of a disc (e.g. a cog-wheel, flywheel or break) is located at its other end at x = I. Often, the angular 
velocity at the drive co o will be given. Characteristic parameters of the long string are the density p, 
the shear module G, the polar moment  of area Ip, inner and outer damping coefficients d~ and d R, respec- 
tively and the applied torque per unit length re(x). 

As an example for long torsional strings, we consider a drill string for drilling deep holes for the ex- 
ploration and production of oil and gas, as illustrated in Fig. 2. The drill string consists of tubes, and 
lengths up to 5000 meters are common. Therefore, drill strings are very slender structures. The upper 
end of the drill string is held by a hoisting in the derrick. The rotary table, a large horizontal gear wheel 
which is driven by an electric or hydraulic motor, transfers the rotary motion to the drill pipes and the 
bit. Drill collars are heavy, thick-walled pipes destinated to transfer load to the bit, and to produce ten- 
sion in the drill pipes, which otherwise would bend. 

The drill string will be considered as a one-dimensional elastic body. Due to the large torsional 
stiffness of the drill collars in relation to the drill pipes, the drill collars will be modeled as a rigid body 
at the lower end of the drill pipes. In a first approximation, the drill string can be represented by the 
string introduced above. 

Equat ion of mo t ion  By visualizing the equilibrium of an infinitesimal thin disk of a torsional string, 
its dynamics can be described by the following partial differential equation (PDE) 

pIpO + d,~o - GIpqo"- diGIp•"= m(x,t), x c ~  = [0,l], (1) 

with (') = 8/0t and ()' = 8/8x denoting the derivatives with respect to time and position. The boundary 
conditions are given by the rotational velocity o) 0 at the drive; in our example this is the velocity of 
the rotary table at the upper end, and the applied torque and the angular momentum of the disc at 
the other end 

8s {;-o: (o(O,t)=o%(t), 
h GIp[qo'(1) + d,0'(1)]  = -T[cp(/) ,qb(1)] - O0( l ) .  

( 2 )  
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In our system, the applied torque consists of the torque on the bit and the angular momentum of the 
drill collars and the bit. The bit torque depends nonlinearly on the angular velocity of the bit ~b(1) = ~bbi ~ 
by means of the friction and the shearing during the rock cutting as well as on the angular position of 
the bit c# (1) = (Gi, due to longitudinal oscillations of the string excited every revolution. Therefore, 
the load on the bit increases and decreases with every turn 

T=~(1  + C.OS@bit)To(~Obit). (3) 

The nonlinear function T o (full load on the bit) depends on the velocity of the bit and is shown in Fig. 3. 

Simulation For some types of excitation, like fixed and free boundaries, the PDE equation of motion 
given by Eq. (1) can be solved directly, but normally there is no analytical solution available for a non- 
linear boundary condition. Furthermore, only for special cases solving routines are implemented in 
software packages. In order to solve the PDE, the spatial domain 12 will be discretized via n space points 
(nodes) and n - 1 intervals of length Ax = l / ( n  - 1) each 

x- -*  xi ,  ~p --* cpi, i = 1 . . . . .  n .  (4) 

Using centrai differences for the spatiai derivatives and expanding the spatial derivatives on the bound- 
ary nodes with a third-order Tayior series, we get a set of differential equations for the nodes 

/~ =f(~oj,  qbk), i , j ,  k = 1 . . . . .  n,  (5) 

where cp~ =- ~0 = qG denotes the angle at the drive (rotary table), and cp, -= q0b~ t is the angle at the output 
(the bit in this example). The truncating error over the whole domain is of order (9(Ax3). For more 
details on the numerical solution of PDEs we refer to [13], [15]. 

Transforming all second-order ODEs into a set of first-order ODEs, the complete set of equations 
of motion is given by 

= A(#)x  + f(x,/~), x = [~pr~br]r~2", q~ = [q9i], i =  1 ..... n, (6) 

with A and f denoting the linear and nonlinear part of the system. Parameter # is employed to 
enable a variation of characteristics such as the angular velocity co o of the drive or the length 1 of the 
string. Finally, the initial-value problem is solved with a standard variable-order variable-step routine. 
The result is the dynamic flow q)t(o): N2, __, ~2, of the system at the discrete space points x i, i = 1 ...... n. 

There are several possible ways to represent the flow of the system: 

�9 Time plots, depicting the velocity with respect to time at every location x i. In Fig, 4 time plots are 
shown for the drive (rotary table), the output (bit) and a level between them. Due to the unbounded 
increase of the angles with time, such a representation of the angles is not appropriate. 

�9 Cylindrical state space: the angles q0 i increase with time, and they are unbounded. On the other hand, 
they are periodical with a period of 2~r. In order to overcome the unbounded system state, the tra- 
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------~ q0 Fig. 5. Cylindrical state space 

jectories of each space point can be represented in a cylindrical state space by the following mapping, 
Fig. 5: 

( t ,~gi ,~i)~lR • lI~ x ~--+(t ) i , (o i )~S x R, O i =  qgimod2~z. (7) 

Unwinding the surface of the cylindrical state space, the state space becomes a rectangular one. 
Its width of 2n represents the angle qo and its height corresponds to the angular velocity ~b, Fig. 6. 

�9 Rotating coordinate system (Fig. 7): if there exists a bounded phase difference between the space 
locations, the state space will be represented in a system rotating with a cross section at an arbitrary 
space point k 

(t,q)i, O i ) -~ ( t ,  Oi ,@) ,  (g i=(pi - -cpk ,  i = 1  ..... n. (8) 

Due to the fact that now only relative coordinates are considered, there is a loss of information: 
the angle and the angular velocity of the k-th component is equal to zero, 
4k-0,  q~k-= 0. 

Bifurcations In real technical systems, torsional vibrations can often be observed. Such vibrations in 
drill strings have been well-known for a long time, [4]. They are highly unwelcome, and in severe cases 
they can even damage the string. 

The variation of the parameters of the system will lead to various flows. The investigation of the 
influence of these parameters, for example, the velocity of the drive (rotary table) # = 050 = co~, shows 
that periodic as well as chaotic behavior can occur. In Fig. 8 the trajectories of the bit are depicted for 
different velocities of the drive in a typical range of practicably relevant velocities. For co o = 10. t rad/s 
and co o = 11.0 rad/s, the bit performs different periodic motions while for co 0 = 11.6 rad/s chaotic 
behavior appears. 

The pictures are not  phase plots in original sense. The overlapping of the trajectories results in the 
projections of the whole state space on a single 2-D state space. 

An appropriate way to investigate qualitative changes characterized by bifurcations is the method of 
Poincar~ mapping, [9]. A bifurcation diagram for the varying angular velocity of the drive is shown in 
Fig. 9. It illustrates the intersection points of the trajectory of the bit with the Poincar~ plane 22 = { (Pb~t - 
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(Pr~] qbbi,- coo = 0 A % ,  - ~ort> 0} depicted against the increasing bifurcat ion parameter /~ which re- 
presents  the angular  veloci ty co o of  the bit  in a typical range of  velocities. For the value coo = 10.1 rad/s 
two intersect ion points  occur, for coo = 11.0 rad/s one, and for co o = 11.6 rad/s the chaotic mot ion  mani-  
fests in infinitely m a n y  points.  For velocities greater  than 12.6 rad/s the vibrat ions vanish, and a stable 
rota t ion with fixed phase difference between bit and rotary table occurs. 

3 
Proper  o r t h o g o n a l  d e c o m p o s i t i o n  
For the analysis of  the spat io- tempora l  dynamics,  p roper  or thogonal  decompos i t ion  (POD), which is 
often also called Karhunen-Lo~ve (KL) t ransformat ion,  has been recently used as an efficient tool in 
several disciplines. 



POD goes back to [10], [11] and [6], [7], and has been successfully employed for the analysis of 
dynamical systems by several researchers, see e.g. [12], [2], [3], [8], [1] and others. POD is used in the 
context of turbulence, picture recognition, data compression and chemistry. 

With proper orthogonal decomposition, the spatio-temporal dynamics will be projected on a subset 
of the solution space in which the most dominant dynamics take place. The time-invariant eigenfunc- 
tions represent the most persistent structures in the system, while the corresponding amplitudes are 
uncorrelated. Nontypicalpatterns, like noise in the dynamics, are faded out. The variance of a time func- 
tion serves as a measure for its dominance. For appplying POD, no a-priori knowledge of the 
system and no ansatzfunctions are necessary, and often the dynamics can be approximated very well 
by only a few eigenfunctions. Due to this fact, an efficient reduction of the system's dimension can 
be reached. 

Cont inuous  funct ions Spatio-temporal dynamics may be given by the continuous function u(x, t) 
in space and time. In order to gain insight into the dynamics, we are interested in coherent time-inde- 
pendent structures of the signal. The structures are manifolds, on which the most part of the kinetic 
energy is stored in a time average. On these manifolds, the system state rests with major variance. Let 
the function be of the class of square integrable functions on the interval [a, b], u~U [a, b]. In physical 
terms,the kinetic energy of such systems is bounded. 

The space U in which the dynamics of the system takes place can be decomposed into the two linear 
subspaces U 1 and U 2 as the direct sum U = U~ @ U 2, [14]. For the projection of an element ue U onto the 
two subspaces holds, that u = u~ + u2 with u~U~ and uaeU2, Fig. 10. 

In this way, the function u will be projected onto the sub@ace U (~ = span { ~ ..... q~ } being the 
space spanned by v functions ~ ..... ~ of a set of orthonormal square integrable basis functions 
{@i} i~N~L 2 [12, b] 

v 

u(v)= 2(u,O~)O~, (9) 
i=1 

where 

(u, v) = ~ u(x, t) v(x,  t) dx, (10) 

denotes the inner product of the functions u and v defined on the interval [a, b]. The basis functions 
will be a set of orthonormal functions 

b { 
~Oi(x)Oj(x)dx=@ (3~j= O, i # j ,  

1, i=j .  (11) 

We understand "coherent structures" as the functions which are most similar to the members of 
u(x) on the average, or, in other words, they will represent the mean "energy" of the signal u projected 
on the basis functions ~i 

} 2 i =  lim [(Oi, u(x,t))]2dt , i =  1,2 ..... 
T~oo k 0 

(12) 

With respect to the inner product (10) Eq. (12) leads to the integral equation 

4 =- ((K(x,y), G(Y)), G(x)), (13) 
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Fig. 10. Decomposition of U into the two linear subspaces U I and U~ as the direct 
sum U = U 1 q) U> Projection of an element u ~ U onto the two subspaces, such 
that u = u~ + u 2 with u,eU t and U2f fU  2 
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with the semi-positive definite kernel 

1 T 

K(x,y) = lim u (14) 
T ~ r  ~ t  0 

Considering the orthogonality condition Eq. (11) results in the Fredholm integral equation 

b 

SK(x,y) Oi(Y) dy = Ail/li(X). (15) 
a 

Sorting the eigenfunctions 0~ with descending eigenvalues 2i, 

)~1->22-> "" ->)~v -> "" _>0, (16) 

which corresponds to the ordering of the variances of the eigenfunctions 0i, the eigenfunctions represent 
the manifolds from most to least dominance. 

Due to the fact that the eigenfunctions span a subspace in which the dynamics takes place, every 
function u within this subspace can be represented as a combination of the eigenfunctions. Therefore, 
the system state can be approximated by a summation of the first v eigenfunctions 0i weighted with time- 
depending amplitudes ai( t ) 

u I~) = ~ ai(t ) ~ti(x ). (17) 
i = 1  

For the time functions ai(t) hold from Eqs. (17), (9) and (10) 

b 

ai(t) = yu(x,t)~idx. (18) 
a 

The convergence of the series (17) for v ~ ~ is given by Parseval's equation: multiplying both sides 
of (17) with u and integrating afterwards over the domain [a, b] leads to 

b 

~u2(x)dx= Z a~. (19) 
a i = 1  

From Eq. (13) together with Eqs. (14) and (11), we get the important property of the time functions ai(t) 

1 r 
lim =~ai( t) aj(t) dt = 2i3iy (20) 
T .  oo 10  

The time functions are uncorrelated. The eigenvalue 2i of an eigenfunction 0r is a measure for the 
variance of the system state projected onto this eigenfunction. 

Given two orthonormal sets {Ok} and {<bk}, with 

v 

u(x, t) = ~ a~(t) G(x), (21) 
k = l  

investigated by POD, and 

u(x, t) = ~ bk(t) ~k(x), (22) 
k = l  

{~bk} being any other orthonormal basis, then the following relation is obtained: 

k = l  k = l  k = l  

where <e> denotes the time average. For all v more energy is stored in the first v eigenfunctions of 
the POD than in any other eigenfunctions. That is the optimality condition of the Karhunen-Lo6ve 
transformation. 



Discrete functions The given data set u;(t) = u(x;, t) can be split into a mean part fi and a second part 
! 1 with zero-time average. Then the signals have the following properties: 

u ( t ) = [ u l ( t )  . . . . .  U , , ( t ) ] r = f i §  U,fi, l l l ~  ~, E ( u ) = f i ,  E { t l } = 0 ,  (24) 

thereby E{o} denotes the time average of its argument. As in the continuous case, a linear projection 
P of t I onto a subspace with orthonormal basis {~1 ..... ~,,} is given by 

t/ 

PI! = ~(t~i, ll)t) i, (25) 

where (e,o) denotes the inner or scalar product of two vectors. The data set can be expanded by the 
series 

n 

u = ~ + y~ a~ (t) % (26) 
i = 1  

For the time functions a;(t) hold from (25) 

ai = (~i, I1) = ~,rR = ~ r ( u  -- fi). (27) 

The data set can be written in matrix notation with a = [al(t) ..... a~(t) ]r, ~ = [41 ..... ~=] as 

u(t) = fi + ~ga(t), ~ x ~,a,u, f i ~ .  (28) 

It is the aim of the KL-transformation to find the basis vectors in such a way that the corresponding 
time functions are uncorrelated. Assuming E{a} = 0 means all covariances of a vanish, and the 
covariance matrix becomes diagonal: 

_ r = E { ( a  - E { a } ) ( a  - E { a } )  r } = E { a a  r } = d i a g { ) ~  . . . .  2~} .  ( 2 9 )  C~ - C~ 

In order to determine a basis ~ ,  the second moment E{uu r } of the data u is calculated. Using (28), 
(29) and E{a} = 0 this leads to 

E{uu ~} = ufir + VCooV~. (30) 

Together with rules for calculating covariance matrices 

C,~ = E { u u  r } - E{u}E{u r} = E {uu r} - flu r = ~gCatg r (31) 

and the properties of orthonormal vectors 

@ r , j  = bij__+ ti, r ~  = E, (32) 

we obtain an eigenvalue problem for the basis vectors @; 

(C~ -- ).;E)~i = 0, i = 1 ..... n, (33) 

where E denotes the n • n identity matrix, Using the fact that the covariance matrix C of the data 
set is real, symmetric and of order n, there exist exactly n real eigenvalues with n corresponding real 
orthogonal eigenvectors qG Sorting the eigenvalues in decreasing order, 21 > ,t 2 > ... > X~, the 
eigenfunction ~t represents the most persistent spatial structure corresponding to a time function 
a~(t) with greatest variance. 

For dynamic systems, the phase space can be approximated by the first v eigenfunctions as the sum 

v 

u{") = fi + ~ ai~i.  (34) 
i = l  

We introduce the approximation error a (~/depending on the number v of used eigenfunctions, 

T 

e (',) = lim ~ II u - fic'> 112 dr. (35) 
T ~ c o  0 
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For the choice of v, a practical condition is given with the error limit ~ by 

v = {vle(~) < c~}. (36) 

With formulation (34), the complex set of data can be understood in a simpler manner and, moreover, 
due to v < n, it can be used for storing the set efficiently. For an approximation with K eigenvectors 
for M time steps and n space points, we use one average vector fi of dimension n, v eigenvectors ~ of 
dimension n each, and v.M timefunctions a~. For storing all time steps in all locations, we need n.M 
storage places. For a very large number of time steps, the relation of the storing place is n/v. 

Relat ionship between cont inuous  and discrete eigenfunct ions From the discretization of the inter- 
val x~.(2 = [a, b] into a set of points x ~ xz, i = 1 ...... n, it follows, that the eigenvector ~ = [~t ..... ~ ]  r~ 
N" describes the continuous eigenfunction O(x) only at the n points x~. Furthermore, by applying the 
inner product, the orthogonality condition holds only for these points x~. 

To bring the eigenvector and the continuous eigenfunction into line, the eigenvector t~ must be 
scaled, Fig. 11 

k~ = KO. (37) 

The linear scaling factor rc can be obtained in the first approximation from the comparison of Eqs. (18) 
and (27), by applying rectangular rule K~ect or trapezoidal rule Grap for the integration 

1 1 

Krect-- n~~'Ktrap--N/ @~ -}- n--12 @2 .j_ ~1"@2 

i = 2  

(38) 

Furthermore, there exists a great variety of algorithms for a quadrature of a function. Representing 
the eigenfunction with polynomials 

@ = [@i] ---~p(x) = ~ arnX m, (39) 
k=0 

the eigenfunction can be approximated by the scaled eigenfunction 

~(X) p(X) (40) 

For many applications, no scaling of the eigenvectors will be necessary due to the linearity of the scaling. 
It will be only used in cases when a continuous function is necessary, i.e. for projections from discrete 
eigenvector. 
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4 
Analysis of torsional vibrations by proper orthogonal decomposition 
As announced in Sec. 2, the equation of motion (1) will be solved with regards to the boundary condi- 
tions given in (2). The results are time series of the angles q0~ and angular velocities qb~ of the nodal 
points x~, i = 1 . . . . .  n. For applying the POD on the data set we must take into account that the values of 
the angles are unbounded, and a decomposition would not work as introduced in Sec. 3. Therefore, we 
analyze the system state in a co-rotating coordinate system as mentioned above. The loss of information 
by means of a rotating frame can be accepted, because we are interested only in the torsional v i b r a -  

t i o n s  and not in the mean motion of the system. In many technical systems, the mean motion is given or 
desired, and only differences are of interest. 

The set of equations of motion (6) can be rewritten with respect to a co-rotating coordinate frame 
which is fixed with the drive 77 

/ l = A * u + f * ( u ) ,  u ( 0 ) = u  0, (41) 

with A* and f* denoting the linear and nonlinear term, respectively. The flow of the new system 
state is O,* (u0). After solving the initial boundary value problem (41), we get a data set u of the torsional 
vibrations with the following property: 

u =  [0,(~oi-(pr~),0,(qb~-qS~t)] r, i = 2  .. . . . .  n, u ~  2~. (42) 

Due to the two zero rows u~ - 0 and Un+ 1 ~ 0,  two zero rows and two zero columns occur in the 
covariance matrix Q .  Therefore, the rank of the covariance matrix is 

rank(Cu~ ) = 2n - 2, (43) 

instead of full rank 2n. Additionally, in practice, the covariance matrix is often numerically nearly 
singular. For calculating the eigenvectors and eigenvalues, we use singular value decomposition 
(SVD), [51. 

The drill string was discretized by n = 65 space points and 2n = 130 ODEs, respectively. Totally, 
approx. 6000 time steps have been calculated. Applying the POD on the data set u, we obtain eigenvectors 
~ and time functions a i (t), i = 1 ...... 2n. The first six eigenvectors are shown in Fig. 12 for co o = 10.1 rad/s 
and a length of the drill string of 2000 m (they correspond to the phase plot Fig. 8). The first eigenvector 
points in the direction of the velocity with the most persistence, the second in the direction of the most 
persistent angle. From the shape of the sixth eigenvector, it follows that there exists more than one point 
having the same sixth eigenmode, while the other eigenmodes are only concurrent in the point x = 0 at 
the drive. 

In comparison to other methods, like Galerkin expansion or Fourier series, it is obvious how powerful 
POD is. Eigenvectors as well as eigenvalues (see below) were directly determined out of the correlation 
of the flow of the system by means of a mathematical measure. 

The PDE (1) is linear but the boundary conditions (2) are nonlinear. Due to the excitation lying not 
nearby an eigenfrequency of the system, the following can be observed: the calculation of the eigen- 
vectors and time functions for different values of the bifurcation parameter/~ (here it is the angular 
velocity co o of the drive) yields the eigenvectors which are almost constant, while the time functions ai(t)  

change qualitatively with #, Fig. 13. 
From (34) it follows that the data set u could be approximated by the first v eigenvectors. Figure 14 

shows the attractor of the bit trajectory, the directions of the first two eigenvectors projected on the state 
space of the bit, and the approximation of the attractor by the first four eigenvectors in a co-rotating 
coordinate frame for a drive speed of co o = 10.1 rad/s. The good approximation by means of only a few 
eigenvectors is obvious. 

The eigenvalues )oi of the eigenvectors ~i decrease exponentially down to some limit (approximately 
the machine unit) with the first 20 eigenvectors, and then remain nearly constant as depicted in Fig. 15. 
It can be shown that the approximation error e(~) from (35) reveals a similar behavior to the eigenvalues. 
That means that the approximation error decreases only slowly after a c h a r a c t e r i s t i c  number of eigen- 
modes. An approximation with more than v = 20 eigenvectors is not useful. An interesting point is that 
the eigenvalues occur in pairs or triples several times. 

As mentioned above, the dynamics can be represented in a subspace U/'/, which is the span of the 
first v eigenvectors 

v 

fi(vl =_ fi + ~ a i ( t ) ~ i ,  fi("/aU(~/= span{~l  ..... ~v}. (44) 
i=1 
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Fig. 12. First six eigenvectors of the torsional vibrations of the drill string in state space from POD for co o = 10.1 
rad/s and l = 2000 m 

Inser t ing (44) in the system Eqs. (41) yields 

fl = A * i f i  + ~ l a i ( t ) ~ i ]  + f * [ f i  + i ~ , l a i ( t ) ~ i ] .  (45) 

Mult ip lying (45) f rom the lef t -hand side with ~j, and  apply ing  the or thogonal i ty  condi t ion  (32) leads 
to a set of v ODEs for the v t ime funct ions a~(t) 

( t J = l l l ? f l + ~ a i l [ l ? A * ~ i + l [ t J T f * [ f l + ~ a i ( t ) l [ l i l ' i = l  i = 1  (46) 

v 

=cj  + ~J~ aibij + f j**(a  1 . . . . .  a~), j =  1 . . . . .  v, (47) 
i = 1  
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w h e r e  

c/ = * f  O, bb; = $ f  A * * ; ,  f [ *  = * f  f *. 

I n  o r d e r  to  so lve  t h e  v O D E s  g i v e n  in  (46), v in i t ia l  c o n d i t i o n s  a re  n e c e s s a r y  

a / o ) = q ( ( U o - a ) = C o ; -  q ,  j =  : . . . . .  v. ( 4 8 )  



The dimension of the system 2n can be reduced by POD to the level of v. Looking at the distribution 
of the eigenvalues, Fig. (15), typically v = 20 eigenvectors give a good approximation. The reduction 
factor is p = 2n:v  = 130:20 = 6.5:1, which is 15% of the system's original dimension. 

8o 

5 
Conclusions 
An analysis of the spatio-temporal dynamics of long torsional strings by means of proper orthogonal 
decomposition has been presented for the first time. After introducing a string model, we have described 
the mathematical model used in the subsequent sections. We have outlined the problems with rotating 
coordinate frames, discussed the properties of the proper orthogonal decomposition in a readily 
comprehensible way, and demonstrated how to analyze a mechanical system by means of it. The 
advantages of efficient approximation and powerful system dimension reduction have been presented. 
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