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It is well known that the combustion of gases, powders, and gas-free systems can proceed 
in a very nonstatlonary manner. Filtratlonal combustion, viz., propagation of the hetero- 
geneous exothermic reaction zone in a porous medium accompanied by percolation of the oxi- 
dizer, in this respect, is not an exception. Sharp nonstatlonary effects in the form of spin 
propagation of the reaction zone have been observed with filtration regimes in propagation 
were discovered in front propagation while stimulating experimentally the processes accompany- 
ing in sltu combustion of oil [3]. 

The nonstationary nature of the process with external conditions constant is a result 
of the instability of stationary regimes. The effect of the parameters and the arrangement 
of the combustion process on its stability can be understood by studying the nonstatlonary 
response of the reaction front to a small perturbation of its stationary structure. 

_The main result of such an analysis is the determination of the boundaries of the regions 
in which stationary and nonstationary propagation regimes of filtrational combustion waves 
are realized. A secondary result is a calculation of the growth increments and damping 
decrements of different perturbations in the region of instability of the stationary regime. 
Assuming that the perturbation mode with maximum increment predominantly develops, it is 
possible to make certain assumptions as to the nature of the nonstationary propagation of the 
combustion wave. 

The stability of the filtrational combustion front relative to small scale deformations 
with wavelength much less than the thermal layer have been analyzed before in [4]. Without 
stopping to consider the details, we note that in the cases of greatest practical interest, 
when the percolation rate exceeds many times the velocity of the front, the shortwave 
asymptotics are not representative for studying the stable combustion. A reaction front 
that is stable to small-scale perturbations, as will be shown in what follows, can turn out 
to be unstable to planar and long wavelength perturbations. 

FORMULATION OF THE PROBLEM 

We are investigating the stability of stationary propagation regimes for an exothermal 
interaction zone for particles in a porous medium interacting with the oxidizer in a gas 
flow, percolating in the direction of motion of the front or opposite to it [5-8]~ In the 
quasihomogeneous approximation (the scale of the heterogeneous medium is assumed to be small) 
the system of filtrational combustion equations, which express the balance of heat (1) D oxi- 
dizer (2), gaseous (3), and condensed (4)components, and components in the reaction wave, 
as well as the law for percolation of a gas into a porous medium (5), has the following form: 

or (1) C(~'F+ U~ ~ )  = ~AT--cgOgrad T + QOow, 

o(o ~ + u ~ o (pg=) _-- _ div (Ga) q- Dpg~a - -  ppo w, (2) ox 

~ q _  uO ~ =  _ div (~) + pgPoW, (3) 

O~Ot f- u~ = w, Pc = po(l - -  ~q),~ pp = [LtpPo~l, (4) 

G = pg V ~, ; = - k p g r a d p ,  (5) 
C = Ccpr ~gpg+ cppp ~p = I -- ~g. p = Rp~o-' = R'pgr. 

Equations (1)-(5) are written in a system of coordinates moving from right to left in 
the direetion-x with the velocity of stationary combustion u ~ Here t is the time; T, 
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temperature; v, and G, velocity and mass flux of the gas; Pg, Pc, and pp, gas content, 
starting condensed substance, and solld-phase product per unit volume of the medium; p, pres- 
sure; a, concentration of.the oxidizer; Po, starting content of condensed substance; ~, D, 
and. l, coefficients of percolation, diffusion, and thermal conductivity in the porous 
medium; ~, porosity; R, gas constant; R' = R~-*, ~, ~g, and ~p, stoichiometric reaction co- 
efficients with respect to the oxidizer, gas, and condensed reaction product; C, heat 
capacity (at constant pressure) per unit volume of the medium; Cg, Cc, and Cp, heat capa- 
cities per unit mass of gaseous reagent, starting substance, and condensed product, coupled 
as a result of the assumed constancy of the heat of reaction Q by the relation 

= ~% + ~ p .  

Taking into account the sharp increase in the reaction rate w with temperature, we ap- 
proximate w by the generalized function (infinitely thin reaction zone model) 

w = O ( T p ) 8 ( T  - r p ) ,  rp = r ( 1 ) ,  

normalized to some quantity $, depending on temperature Tp in the reaction zone (x = ~). 

We neglect the gas in the pores and its change (gpg/Bt, Bpg/gX) in the mass balance, 
assuming that most of the oxidizer arrives in the reaction zone with the percolating flux, 
i.e., G >> pgu. The last inequality is practically almost always satisfied in filtrational 
combustion processes, since the velocity of propagation of the front is much less than the 
linear velocity of percolation [6, 7]. 

Equation (3), in this case, takes the form 

div(G) = ~ o w .  (3 ' )  

Completing the formulation of the problem, we will write out the stationary distribution 
of parameters in the region of the starting substance (x < O) and product (x > 0), obtained 
by integrating the system of stationary (%/%t = O) combustion equations (1)-(5) [8]: 

x < 0 :  T = T ~ = T  oq-q~/z, G==G~=cons t  1, G v = 0 ,  

o : 0 ,  l=~/c ~ q:Qm~ ~ C ~176  ~ ~ = 0 ,  P~=Po, Pp 

(6) 
x > 0 :  T----T ~  G ~ = G  ~ G y = 0 ,  

. _  o 
%---- ']p, Oc~ = Oo = 

The mass velocity of the stationary combustion of matter m ~ proportional to the con- 
version depth in the reaction front n o is determined by the Zel'dovich--Frank--Kamenetskii p' 
integral 

The quantity C ~ remains continuous with the transition through the boundary x = 0 (pg << Pc, 
pg << pp), 

co = po~o + oo%= p%~o + r4~,~o + ok~, 

while the flux of heat and matter, according to the model adopted for the source, are discon- 
tinuous in the reaction zone 

drO I 
G~ -- G~ = Pg m~ ~ I==o -- ~' ~ Ix=o = Qm~ (8) 

STABILITY ANALYSIS 

In order to study the stability of stationary solutions of the system (1)-(5) with 
respect to small perturbations, we will define the distortion of the reaction front in the 
form 

where y is the coordinate tangent to the front; ~, frequency; k, wave number; c, amplitude 
of the perturbation. 
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We seek the nonstationary solutions for T, p, G, and the combustion velocity m(t) in 
the form of a sum of stationary distributions T ~ (x), p~ G~ m ~ and small corrections, 
arising from the perturbation of the front: 

T = T O (x) + r '  (x) exp ((or + iky), p -= pO A- P' (x) exp (tot ~- iky),  

G = G O + G ' (x )  exp (tot H- iky) ,  m = rn ~ A- m �9 exp (tot -t- iky) .  

The temperature, pressure, and flux fields must satisfy the following conditions on the sur- 
face of the nonstationary front (the derivatives along the normal coincide with the deriva- 
tives along x to within the squares of the amplitudes of the front distortions)*: 

x = ~, p~ = P2, G2~ = Gt~ + p, gm, ( 9 )  

T~ = T~., ~, �9 O T / ~ x  -- X �9 BT, /~x  = Qm. (i0) 

Linearizing (3'), (4), (5), and (9) relative to small corrections and neglecting, as in 
the thermal diffusion theory of flame stability [9], the dependence of the transport coef- 
ficients (in this case, the permeability f ffi ~/2RoT) on temperature, it is possible to 
obtain the distribution of perturbations of th~ flux and a relation between the amplitudes 
of the pulsations in flow rate G~' 0 mass combustion rate m', and the displacement of the 
front e : 

G~x = G~ exp (kx  ~- tot ~- iky),  (ii) 

f~ = kp#2Rc~T  ~ i = t ,  2. ( 1 2 )  

Relations (ii) and (12) are valid only for front distortions with wavelength much less than 
the dimensions of the uncombusted (11) and combusted (In) regions, i.e., when the inequalities 
kZ1 >> 1 and kZa >> 1 are satisfied. 

In the case of one-dimensional perturbations, i.e., planar deformations of the heated 
layer, it follows from the equations of continuity (3') and (9) (Gy = 0) that 

G~, = c o n s h ( - - / i  < x < 0), G~  = consh  (0 < x < l~), 

G ~ -  V~l = v rm,  G ' = ~ -  G'~I = pgm' .  

The last of the relations written out, taking into account boundary conditions, determined 
by the filtrational combustion scheme, establishes a relation between the amplitudes of the 
perturbations of the combustion velocity and the flow rate, replacing Eq. (12) in the case 
of planar deformations of the front: 

k = 0,  G1 = gom'pg �9 ( 1 3 )  

The coefficient go for the main filtrational combustion schemes equals, respectively: 

i) Forced accompanying percolation (the gas flux is given behind the combustion front) 

G ~ - -  G ~ C'~ = 0, go1 = -- 1, 

2) Forced counter percolation (the gas flux is given in a direction counter to the 
motion of the combustion front) 

G~I-- G ~ G~I = O, g.~ = 0,. 

3)  Natural accompanying percolation (the pressure is given on the outer boundary of the 
layer of product region, and the boundary of the starting matter is impermeable to gas) 

G x l =  Gxl------0, g 0 3 =  0, 

4 )  T h e  n a t u r a l  e n c o u n t e r i n g  p e r c o l a t i o n  

G~ = G-'-~ ------ 0, go4 = -- i, 

5) Percolation under conditions with a given pressure differential 
�9 l I 

Gzi = cons t ,  P l  (z  ---- - -  11) ---- P2 (x = l~) ----- 0, go5 ---- - -  t / ( l  -~ rl/r~), 

r t  = l l / f l ,  r2 = l J ] ~ .  
*The continuity of T and p in the reaction zone follows from the finiteness of the heat and 
matter fluxes; the discontinuity of the gradients on the front is determined by simultaneous 
integration of (1)j (3), and (4) in the reaction zone. 
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The perturbation of the temperature field T' (x) is determined the linearized equation (I) 

- -  C ~ - -  (k l -V c~o)) T~ ----- CgGi~-~z, f = t ,  2,. 

whose solutions taking into account (ii) are decreasing functions a t  infinity 
�9 X 

, ~ ZlX C~l q --~(1+~/2) , 

T1 = . % e  C ~  (f~ - s /Z)  e , T2 = A 2 e  ~2':, 

i [t -- V1 + 4 (i -- + (14) (14) 

~2 = e)cx~/(C~ ~, s = 2k l ,  ~ g =  pgCgq~ cl = cepo. 

Satisfying relations (i0) in the reaction zone and linearizing them relative to small 
quantities, we have the equations for determining the constants Ax, An, g, G~', and m': 

? 

A2 _ A1 $ e ~ l  
z (15) q q C ~ (S  -- s/2) ' 

lz2 _ CgU~ (i + s/2) ~ A~ z~l + O n ' .  (16)  
q c o (~ - ~ / 2 )  + 7 -  = 

One more equation, which relates the unknown constants, can be obtained by noting that 
the main terms in Eq. (i) in the reaction zone are the rate of heat liberation Qw and the 
derivative 32T/3x 2. The integrals of these terms over the reaction zone are finite, while 
the results of integrating the remaining terms does not exceed the square of the amplitude 
of the perturbation. 

The solution of the equation 

--~ . ~ r / a x  ~ = Qpo$(Tp ) 5 ( T -  Tp) (17) 

determines in the linear approximation the distribution of the gradient 3T/3x in the heat 
liberation zone.* Using the formal rule for substitution of variables 

6 ( T - $ ~ ) = 6 C x - - ~ ) / I O T / O z l ,  Tp = r ( ~ ) ,  

let us integrate the upper equation over the reaction zone 

x = ~ :  [\0z ] ~ -~- = 2Qpoe(Tp). (18) 

The second term on the left side of the equality is a second order infinitesimal and can be 
dropped. Relation (18) replaces the assumption usually used as to the quaslstationary nature 
of the combustion velocity of matter in a nonstationary front, which does not take into ac- 
count the perturbations of the source, owing to the nonstationary nature of the gradients in 
the reaction zone. % 

Substituting the temperature distributions (14) into Eq. (18) obtained above and taking 
into account the stationary relations (6)-(8), we have: 

k =  - r +  z j -  cO = q (19) 

The temperature coefficient of the combustion wave k, which characterizes the nonlinear prop- 
erties of the combustion wave, is one of the main parameters determining the stability of the 
stationary propagation of the reaction front. For real sources, the value of k can be 
determined according to the experimental or theoretical dependence m~176 In the simplest 
case of a zeroth-order reaction (w ffi koe-E/RT), k and m ~ have the form 

*In order to avoid misunderstandings, related to the apparent uncertainty in ~T/~x in the 
presence of a 6 source, we point out that this discrepancy is easily removed if we take into 
account the fact that the 6 source can be interpreted as a bounded function, localized in a 
finite, arbitrarily small region, with continuous distribution of the temperature gradient. 
We note in this connection that the result (18) is easy to obtain by approximating the 6 
source by a step function, solving Eq. (17) and then passing to the limit of an infinitely 
narrow reaction zone. 
%The thermal diffusion stability of a laminar flame taking into account the boundary condi- 
tion (18) is studied in [I0]. 
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Relations (12), (15), (16), and (19) form the system of equations for calculating the 
unknown coefficients Ax, An, e, ~'~ and m'. The equation closing this system is determined 
by the propagation regime of the combustion wave. 

KINETIC REGIME FOR PROPAGATION OF A FILTRATIONAL COMBUSTION WAVE 

In the kinetic combustion regime, the starting condensed matter is completely used up in 
the reaction zone (~p = n(x > ~) ~ i), while ~he oxidizer occurs on both sides of the front 
and does not limit the process. For a zeroth-order reaction with respect to the oxidizer, 
the diffusion equation separates from the general system and does not explicitly participate 
in the subsequent analysis, merely limiting the region of applicability of the results by the 
condition for realization of the kinetic combustion regime [8] 

G~ao > ~ p o ~ ,  

where G O is the flow rate of the gas entering the reaction zone; no, concentration of the 
oxidizer far from the front. 

The mass rate of combustion is related uniquely to the velocity of the reaction front u 
relative to the uncombusted matter: 

m = pou,  ~ = - -  d~/dt,  m ' =  -- e o p 0 .  ( 2 0 )  

The requirement that there be a nontrivial solution to the system of homogeneous equations 
(12), (15), (16)~ (19), and (20) leads to the dispersion relation 

~ o -  2 k ( 1  + ~ 0  + ~ o  ~, + ~ ~--=:/~,/- ~ o ~ o  2 (~ - o ,  
+~11)  

Q C O 
~-~1 ~--- ~ __ el  el/tO' ZIO ~ i ~- V I ,-~ 4Q -}- 82, Z20= l - -  ] / i  + 4Q ( i  - -  5~) ,<}- s ~, ( 2 1 )  

5g (i § s/2) e, ~ 
g1:g (e--s}2) gz=g~_siT 

For front distortions (s > 0), the quantity g is determined by the expression 

(%] 
In the case of one-dimenslonal perturbations, Eq. (12) was replaced by (13). The form of the 
dispersion relation (21), in this case, does not change and the quantity g depends on the 
scheme of the combustion process and equals one of the values calculated previously. 

Stability of a Plane Combustion Wave (s = 0). Let us analyze (21), limiting ourselves 
to small values of the parameter 6g = ~gCg/ec, i.e., weak absorption (liberation) of gas in 
the reaction computed per gram of Initial-substance (I~gl << I). 

In the linear approximation with respect to 6g, Eq. (21) for the frequency of the per- 
turbation ~ takes the form (s = 0) 

e ~ § bl~ + b2 = O, 

b i : -- k~ J- k I [(4(z -- i) -- (z6~] @ cz (l -- (z) @ ~Sg, (22) 

Together with the quantity goi, the value of ~ is determined not only by the characteristics 
of the system, but also by the percolation regime. For natural percolation, regulated by 
the gas consumption in the reaction zone, a = i, both for accompanying (gos = 0, G~ = O) and 
for counter (go4 ---i, G~ =--~gm ~ oxidizer fluxes. 

For forced percolation (Go is the absolute value of the given gas flux) with an accom- 
panying flow, we have 

C2~0 
gol  = - t ,  c o : - Co, c 7  = c 7  - ~g~,o~ o, ~ = ~ = 

co_~ ~ - -  CgGo" 
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and with a counter flow 

Taking into account the relation between the oxidizer flux and the velocity of propagation 
of the front in the kinetic regime, as well as the restriction on the parameter ~, related 
to stalling of combustion in a counter flow [8], we will indicate the range of variation of 

in accompanying (u,) and counter (us) forced percolation with given flow rate Go 

a~ > t I d  - ~ ) ,  l i d  + 5o) > a~ > k , / ( i  + k~), 

Under conditions of fixed pressure differential, 

I - -  C l~(r ;  _~_ r2  ) r 2 

~0 = g ~  r l  _~. r~ ~ O~ = C~ --~ t -}- cgG~ 1 " 

Expressing G, ~ in terms of the pressures p,o and pao on the outer boundaries of the porous 
medium taking into account the discontinuity of the fluxes on the combustion front 

- -  P2o - -  r 2 % m ~  -{- r , ) ,  

we obtain finally 

1- ~g~ 
r 1 - ~  r 2 

2 2 " 

i - -  5 + r -t- ~ l + r------~ "-" J 

As for a given flow rate, the counter flow (p,o > p2o) corresponds to values a < i and the 
accompanying flow (P,o < P,o) corresponds to values ~ > I. 

Substituting S = i~ into (22), we have an equation that determines the region of 
stability (k < k*) of combustion 

( k : )  ~ - k~ [ ( 4 ~ - -  ~) - -  ~8~1 - -  [~ (~ - -  ~ )  + ~ 8 ~  = O. 

For large values of k*, it is possible to set approximately 

With forced percolation, the accompanying flux (a = a2 > i) stabilizes, while the 
counter flux (a = = a  < I) destabilizes the combustion front. For natural percolation, the 
direction of the flux has no effect on the stability of combustion (as = a4 = 1). The 
region of stationary regimes is enlarged for reactions with gas absorption (~g < 0) and 
narrows with gas liberation in the front (~E > 0). The transition through the critical value 
k = k* into the unstable region (k > k*) is accompanied by oscillations in temperature and 
combustion velocity with frequency 

$ = Y(k - i)~(~ - i)+ (k - i)~t 

The exponential development of the instability (Im ~ = 0) begins at values of k exceed- 

ing k** determined by the equation 

A = ( r  - 4b,  ( r  = o.  

The pulsating character of the front propasatlon in this case remains, as numerical calcula- 
tions of the nonstationary combustion of gas-free systems in similar situations show [11-13]. 
For u = 1/(k -- i), one of the roots of the characteristic equation (22) vanishes. The 
stationary solutions of system (1)-(5) are lost at the same time, i.e., there is a dis- 
ruption of combustion [8]. 

The stability of the combustion front to distortions with wavelength much greater than 
the thickness of the heated layer (s § 0) is determined by the same equation (22) as the 
stability of a planar front. The difference between these two cases is in the value of the 
quantity u. In the case of long wavelength distortions (s § O) 

g=g,o=--f~l(f~+f=),~ a,o=~ i 6+& g)" 
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F i g .  i. The  critical value k* as a func- 
tion of the wave number for the kinetic 
combustion regime ~g = 0. For s > s,(k) I 
the distortions are damped, and the 
planar front (s = 0) is unstable. 

The nature of the loss in stability of stationary combustion is determined by the ratio Uso/ 
u D which depends on the parameter ~g and the percolation regime. 

For accompanying natural and counter forced percolation of gas 

~ o / ~  = t - l ,gg( / ,  + h ) - ' .  

Since an increase in u leads to an increase in stability, in the cases being examined, 
destabilization of the wave begins with oscillations of the planar front with ~ > 0 (libera- 
tion of gas) and with distortion of the surface by traveling waves with ~g < 0.- For accom- 
panying forced and counter natural percolation 

=~o/= = [t - / , ~ / ,  + / 0 - ' ]  d - ~ ) - ' ,  

the situation is opposite to the preceding case: gas liberation in the front leads to two- 
dimensional instability and absorption of gas leads to one-dimensional instability. For a 
fixed pressure differential, the nature of the losses in stability is determined not only by 
the quantity ~g, but also by the ratio of the sizes of the combusted and uncombusted regions 

~,o/= = [ t  - -  l ,~g(~ + ~ ) - ' ]  [1 - 6gf,~(ld2 + ~ l~ ) - ' ] .  

The starting stage of combustion in an accompanying flux (Z, < Zx) corresponds to two-dimen- 
sional instability with ~g > 0 and one-dimenslonal instability with ~g < 0. In the counter 
flux, the opposite inequalities hold. 

Spectrum of Increments. For identical permeabilities f, = fa and negligibly small 
liberation of gas on the reaction front (Bg = 0), it is possible to construct the spectrum 
of increments of perturbations of differenE wavelengths. The dispersion relation (21) in 
this case is given by 

~'+B~+BI~+Bo=O, 
B~ = - -  k~ + k~ [(4~ - -  t)1 + ~ (1 - -  a )  + s~/4,. 

B 1 = k~ (~ - -  i )  ~ -[- k l ~  (s 2 -]- ~)  - -  T ( z~  - -  f ) ,  ( 2 3 )  

= ~ (ks + 

Equation (23) was analyzed numerically, As in the case of gas-free systems [i0~ ii, 14]~ 
in the presence of distortions, the loss of stability of the filtration combustion front 
occurs for lower values of k than in a planar front: the function k*(s) has a weak minimum 
(Fig. 1). 

The spectrum of increments fl(s z, k) for different values of ~ is shown in Fig. 2. The 
nature of the spectrum is the same for all three cases. The loss of stability begins with 
the excitation of long (an order to magnitude greater than the heated layer) traveling waves 
on the combustion surface. The increment of planar perturbations of the front increases 
rapidly with distance from the limit of stability. Near the Boundary of exponential In- 
stability, the rate of development of autooscillations of the planar front is only insignifi- 
cantly lower than the rate of growth of the distortions. 
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Fig. 2. The increment as a function of the wavelength of the 
perturbation; the kinetic regime6g = O. a) Natural percola- 
tion u = i; b) forced accompanying percolation, u = 1.5 (k = 
5.85 (i), 7 (2)-(3), 8.5 (4), and 9 (5)); c) forced counter 
percolation u ffi 0.8 (k ffi 3.3 (i), 3.8 (2), 5 (3), and 6 (4)). 

Under conditions when the increments of two harmonics are practically equal, the quasi- 
steady-state combustion regime may turn out to be very sensitive to the initial perturbation 
of the front. It is possible that perturbations in the main mode in the form of planar 
deformations of the combustion wave (which usually occurs with ignition) will lead to one- 
dimensional pulsations of the front [12], while the predominance of the amplitude of rapidly 
growing distortion in the spectrum of the initial perturbation will give rise to the traveling 
waves on the combustion surface [15]. 

For a front of extent If less than the critical value l,(k) = 4~Zs,~(k), where s, corre- 
sponds to the boundary of unstable distortions for a given value of k (see Fig. 2a), Z is the 
thickness of the heated layer, the nonstationary nature is realized in the form of auto- 
oscillations that are coherent over the cross section of the front, since the distortions 
damp out. With an increase in size If > l, for corresponding initial distortion of the 
front, waves traveling along the combustion surface can appear. The presence of a distortion 
with maximum growth rate in the perturbation spectrum must lead to a successive increase in 
the traveling wave numbers with an increase in the extent of the front. 

STABILITY OF THE PERCOLATION REGIME FOR PROPAGATION OF A COMBUSTION 
WAVE IN A POROUS MEDIUM 

In filtration combustion regimes, the gaseous oxidizer is completely consumed in the 
reaction zone and the rate of burnup of the condensed substance is limited by the input of 
the gaseous reagent. 

We obtain the equation necessary for closing the system (12), (15), (16), and (19) by 
balancing the oxidizer fluxes in the reaction zone. For percolation velocities higher than 
the diffusion velocities (v/vo ~ IGo/Dp >> i, ~ is the scale of the percolation zone), dif- 
fusion processes, localized in a narrow boundary layer near the reaction zone can be neglected 
and the reaction zone can be viewed as a surface of discontinuity in the concentration. 
Dropping the diffusion terms in Eq. (2) and integrating it together with (3) and (4) in the 
vicinity of the reaction zone, we obtain the balance relations on the nonstationary front 

x = ~ :  m=~-~(Glax--G2a2), m - - p o ~ F  (24) 
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The oxidizer concentrations in front of the reaction front (a,) and behind it (a~) are 
related by the condition of total consumption of the gaseous reagent axu2 = 0. A nonzero 
value of the concentration corresponds to an oxidizer content ao in the starting mixture. 
Eliminating the quantity G~ from Eqs. (24) and linearizing the relation obtained between the 
burnup rate m and the flux G~, we obtain the missing equation for closing the system (12) 
(15), (16), and (19): 

G r al -- ~2 
m'= l~g~g~ ~ ~. (25) 

S u b s t i t u t i n g  ( 2 5 )  i n t o  ( 1 2 ) ,  we h a v e  

G ~ (&ll~)] q , / lO - ~,g% + ~]. 

Eq. (26) permits a transition from two-dimensional to one-dimensional (s = 0) perturbations. 
The same result (G'I (s = 0) = 0) is obtained by directly analyzing the one-dimensional 
stability. 

The dispersion relation that ensures a nontrivial solution to the system of homogeneous 
equations (15), (16), (19), (25), and (26) has the form 

2 k  [ i  - -  p s  - -  z l  ( l  - -  ~a)]  ---- zlo (~2 s - -  ~ s )  q -  z2o ( i  - -  p2s)  - -  0 , 5 z x o z ~ o . ( t  - -  ~ ) ,  

g tJr-s/2h a g t q - s / 2  

t t - t -  ~ , G, (t _ L_lf,) (~m o) -~  c q t~gaz_ t_ t t  ( 2 7 )  
I s o = ~  ~ % + ~  , ~ = ~ a , _ ~ .  

t -]- (1 + / 2 / f l )  ~tg(a 1 - -  a2) 

For s = 0, there is a single root ~ = O, indicating that the planar combustion front is 
always stable to within the displacement. 

The stability of the front relative to distortions is determined by the parameter 8, 
which characterizes the conditions for input of oxidizer to the reaction zone and the 
quantity ~, which determines the thermophysical action of the gas flux on the front dis- 
tortion. We will present values of the parameters 8o and 8~ for different combustion 
schemes in the case when there are no gaseous reaction products (pg = -~): 

i) natural counter percolation (G~ = 0, a a  = 0, a l  = i): 

0! 
~o = --  t /2 ,  ~, = ~ ( t  + 8~,  6g = ~Cgqp, Cc, 

2) natural accompanying percolation (G~ = 0, a a  = i, a, = 0): 

~o = t/2, ~l = O, 

3) forced counter percolation (ca = 0, al = co, f~ = fa): 

~o = -ao/2(2 - ao), ~, = ~g/(ao + 8g), 

4) forced accompanying percolation (a, = 0, aa = co, f, = fa): 

,~0 = a0/2(2 --  a0), ~ = 6 ~ t  --  a o ) / [ 6 ~ l  --  a0) --  a0]. 

E q u a t i o n  ( 2 1 )  h a s  r e a l  r o o t s .  S u b s t i t u t i n g  t h e  v a l u e  ~ = 0 i n t o  t h e  e x p r e s s i o n  f o r  z , o  
a n d  zao  g i v e s  a r e l a t i o n  b e t w e e n  t h e  w a v e  p a r a m e t e r s  o n  t h e  s t a b i l i t y  b o u n d a r y .  F o r  s m a l l  
6g (heat capacity of the gas is insignificant), the main parameter that determines stability 
is 13o. 

Figure 3 shows the critical values of the temperature coefficient k* on the boundary 
of stability of the combustion front to distortions with scale s for different values of 
the parameter 8o. The instability regions (~ > 0, k > k*) exist only in the case of negative 
values of 8~; for 8, >I 0, the combustion front is stable not only to planar deformations but 
also to distortions. 

For 8, = 0 (6g = 0), the frequency of the perturbations ~ is determined by the expres- 
sion 

Q,.~ = 0 ,25(- -b  + 2 / f ( k  - -  ~ s )  ~ - -  4 f ) s ( k  - -  t ) ) ,  

w h e r e  b = i + s a + ( 2 k - -  1 ) ( 2 a s  - -  1) - -  2 f  a ,  f = 1 + 8s  - -  k .  
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Fig. 3. Boundary of stability k*(s) for different values of 
Bo. Percolation regime; 6[ = 0. The regions of unstable 
combustion (k �9 k*) are sha=ed. 

Fig. 4. The frequency ~ as a function of the wavelength of 
the perturbation ~. Percolation regime: ~g = 0; Bo " --1 (1), 
-0.5 (2, 4), 0 (3); k = 5 (1-3), 10 (4). 

The dependence of the increment on the wavelength of the perturbation in the region of 
instability has a sharp maximum (Fig. 4) for particular scale of distortion~M(k) , expressed 
in units of the heated layer of the stationary combustion wave (~). In analogy to the thermal 
diffusion flame with L > I, which has a similar spectrum of increments, for unstable percola- 
tion regimes (Bo < 0), the formation of cellular structure in the combustion wave with 
characteristic scale ~M = AMZ should be expected [16]. 

The results of the analysis presented above are confirmed by available numerical solu- 
tions of the system of nonstationary equations of filtration combustion (1)-(5) in a one- 
dimensional formulation [17, 18]. Two-dimensional problems of filtrational combustion have 
not been investigated numerically. 

It is interesting to compare the results of the analysis presented here with the results 
in [19], published after the present paper was written. The calculation presented in [19] 
generalizes the short-wavelength [4] and long-wavelength [20] asymptotic analysis of the 
stability of filtrational combustion for one of the variants of the process examined above: 
for counter, natural percolation of the oxidizer. In several respects, the results in [19], 
obtained assuming a quasistationary velocity of the combustion wave, disagree considerably 
with the results of the present analysis. 

For the kinetic propagation regime, in both cases, the oscillatory instability of the 
reaction front is obtained, but the conclusion in [19] as to the destabilizing role of the 
gas flux (for one-dimensional and two-dimensional perturbations) contradicts both the results 
of the stability calculation presented above and the results of the numerical experiment in 
[5, 17]. 

Opposite conclusions are also obtained for the problem of stability to distortions of 
the reaction front with incomplete burnup of the solid reagent. In contrast to the conclu- 
sions in [19] concerning the stability of such a regime, in the present work, we concluded 
that the planar combustion wave with incomplete transformation of the porous reagent is 
absolutely unstable. We note in this connection the experimental data presented in [21]. 
For counter percolation of the oxidizer, in regimes with incomplete transformation, the burn- 
up of the solid reagent was observed to be nonuniform over the cross section of the specimen. 
For accompanying percolation of the oxidizer, no nonuniformities were observed on the front. 
This picture agrees completely with the results of the stability analysis presented above. 

The authors thank A. G. Marzhanov for his interest in the work. 
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COMBUSTION OF GASEOUS SUSPENSIONS OF METAL POWDERS (THREE-ZONE MODEL) 

V. M, Kudryavtsev, A. V. Sukhov, 
A. V. Voronetskll, and A. P. Shpara 

In recent years the ignition and combustion of gaseous suspensions of metal powders has 
been studied intensely. A knowledge of the principles governing these processes is important 
in a number of fields of the national economy. Despite the practical importance of this 
field, many problems are still unsolved. 

As a rule, in real processes in gaseous suspensions of metal powders, ignition and com- 
bustion occur at high pressures, and the effect of pressure on combustion characterlstlcs s as 
experiments reveal, produces a number of peculiarities, some of which are still unexplained 
in available models. Moreover, existing calculation methods do not permit a description of 
the ignition and combustion of gaseous suspensions within the framework of a single model, 
which leads to significant errors, especially in the calculation of transitional regimes, the 
stage of flame front formation, etc. 

The present study is dedicated to an analytical description of the processes of ignition 
and combustion of gaseous suspensions of metal particles. We will consider the basic assump- 
tions of the model to be used. It is assumed that the particles are of identical initial 
size, that the distance between particles remains constant during ignition and combustion, 
that the processes of heat and mass exchange are spherically symmetric, quasistatlonary, and 
occur within the limits of the reduced film. 
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