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Abstract  

The work of a previous article [ 1 ] is extended to show that space-times which are the exact 
solutions of the field equations for a perfect fluid also may be exact solutions of the field 
equations for a viscous magnetohydrodynamic fluid. Conditions are found for this equiva- 
lence to exist and viscous magnetohydrodynamic solutions are found for a number of 
known perfect fluid space-times. 

w Introduction 

It has been shown [1 ] that, under certain circumstances, it is possible for the 

stress-energy tensor of a perfect fluid to have identical components to those of 

the stress-energy tensor of a magnetohydrodynamic fluid with heat conduction. 
This equality implies that the field equations of a perfect fluid, viz., 

Guy = Huu =- (P + P) v u Vv + Pguv (1) 

and the field equations for a magnetohydrodynamic fluid with heat conduction, 

viz., 

Guy = Kuv - E u v  + ( P + f i )  uuuv + figuv + qu Uv + qvuu (2) 

may give rise to space-time solutions which are identical, i.e., the same space- 
time metric, in the same coordinate system, may satisfy both sets of field equa- 
tions, so that an exact perfect fluid solution may be also an exact solution of the 
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magnetohydrodynamic field equations, implying that the space-time may be 
interpreted physically as corresponding to either type of matter content. Such 
a duality of interpretation also exists between Einstein-Maxwell solutions and 
viscous fluid solutions [2]. 

In [1 ],  it was shown that the equality of the stress-energy tensors Huv and 
K~v necessarily implies that the electromagnetic field contained in Kuv is null 
and that the densities and pressures in the two distributions are identical, i.e., 
0 = P and p = p. As a result the 4-velocity, u~, and the heat conduction vec- 
tor, q~, can be determined to within a sign, so that the problem of finding the 
exact magnetohydrodynamic solution corresponding to a known perfect fluid 
solution is well-defined and can be solved with comparative ease. 

In this paper we generalize the problem considered in [1 ] by including vis- 
cous terms in the field equations (1), i.e., we seek the conditions under which 
a space-time solution of the perfect fluid field equations (1) is also an exact solu- 
tion of the field equations for a viscous magnetohydrodynamic fluid, viz., 

G u v = M u v - E u v + ( ~ + ~ * ) u u u v + ~ * g u u  - 2 r lauv+quuu+quu  u (3) 

where ~ is the density, fi* = i~ - ~| is the kinetic pressure, i~ is the thermody- 
namic pressure, (9 is the expansion of the velocity congruence uu, Our is the 
shear tensor, qu is the heat conduction vector, ~('~ 0) is the bulk viscosity coef- 
ficient, r/(~> 0) is the shear viscosity coefficient, and Euv is the electromagnetic 
stress-energy tensor given by 

Eu~, = Fu~Fva _ 1 c~ ~ guuFat3F (4) 

where Fuu is the Maxwell tensor. 
In Section 2 we find the general conditions that must laold if the stress- 

energy tensors Hu~, and Ku~, are identical. In Section 3 we discuss the canonical 
tetrad form of the field equations and in Sections 4 and 5 we apply these results 
to the casesof nonnull and null, respectively, electromagnetic fields. In Section 
6 we discuss viscous fluids without electromagnetic fields. A number of ex- 
amples illustrating the results are given. 

w The General Equations 

Equating Huv defined by equation (1) with Mu~, defined by equation (3) we 
obtain 

(p + p) v~ v v + Pgtzv = Euv + (-P + P*) uuuv + P*g~v - 2flour + qu u~, + qvu u (5) 

and contracting this equation leads to 

p - p = 3(p - /~*) (6) 
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Introducing the notation 

p + p = M ,  p+io* = N  

vuuU = - ol, vuq u = I~Q 
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(7) 

(8) 

where a t> 1, Q2 = quqU, and M >  0, N >  0 from energy considerations, equa- 
tion (5) can be written in the form 

Euv = M v u v  v - N u u u  v + I ( M -  N ) g u v  + 2flour - quUv - qvU u (9) 

Now Euv can be written in the form 

Euv = (�89 + u u u v ) ( E ~  Ec' + B ~ B ~ )  - (EuEu + B u B v ) -  (uuSv  + u v S u )  (10) 

where E u, B u, and S u are, respectively, the electric field, the magnetic field, and 
the Poynting vector as measured by a comoving observer and defined by 

E u = Fur uv, Bu = ~ ~tuva~" "' , S~ = rlvua~uVE~B fl 

These quantities satisfy E u u  u = BuuU = S u u  u = E u S  u = BuSU = O. (Note that 
the definition of S u given here differs in sign from that used in [1 ] ; the present 
definition corresponds to the usual three-dimensional definition S = E A B). We 
shall assume that the 4-velocity u u appearing in equation (10) is identical with 
that appearing in equations (5) and (9). Contracting each of equations (9) and 
(10) with u v and comparing the results we obtain 

qu - Su = MoL(vu - ~ (11) 

and 

E 2 +B 2 =2Mc~ 2 -  I ( M + 3 N )  (12) 

where E ~ = Ec, E c~ and B 2 = Bc~B c'. 

Applying the Rainich condition E u ~ E  vc~ = �88 6uVEc~E c~o to the expression 
(9) leads to 

- � 8 9  vuv v + [Q2 _ � 8 9  uuu  v +M(NoL- ISQ) (vuu v + vVuu) 

1 
- - ~ ( M + N )  (uuq  v + uVqu) +Mc~(vuq v + vVqu) - quq  v 

+ 2M~?(aWvc~vu + ctu,~vVv c') - 2rl(ou~qC~u v + oVaqc~uu) + ( M -  N )  rlau v 

+4r12ouc~o w = S u V [ � 8 9 1 8 9  2 +2Mo43Q- Q2] (13) 

together with 

1 (M + N) (3 / -  3N) + 2M(2N - M )  o~ 2 - 4Moq3Q 

+ 2Q 2 + 8r/202 + 4Mrloc~Vc~VO =0 (14) 
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where a 2 1 ~ ~a~ = g ~'~t3 ~' . Contracting equation (13) with u v leads to 

- M [ � 8 9  N ) a  + [3Q] (v u -  a u u ) +  [Ma 2 - � 8 9  qu = 2~1%v Sv  (15) 

Equations (10), (11), and (15) play a large part in the-subsequent discussion, but 
no further useful information can be obtained from these equations without 
making some simplifying assumptions, such as the assumption %v = 0, which 
was the basis of  [1 ]. Before proceeding we need to consider in some detail the 
electromagnetic field and the canonical form of its stress-energy tensor. 

w The Canonical Form o f  Euv 

Introducing the notation that Latin suffixes refer to tetrad components,  we 
choose a tetrad frame e*u and its inverse ei ~ such that the tetrad components of  
the Maxwell tensor are 

Fij = ei"eiUF, u 

Assuming first that the electromagnetic field is nonnull, it is possible to choose a 
local tetrad frame such that the only nonzero tetrad components of  the Maxwell 
tensor are Fo, 1, and F2, 3, [3], where the primes denote tetrad suffixes. We have 
the freedom to make a rotation in the (2', 3') plane and a hyperbolic rotation in 
the (0', 1 ') plane without introducing other nonzero components of  Fii. This 
freedom can be used to eliminate u 1, and u 3, from the tetrad components,  ui, of 
the 4-velocity, but, in general, we cannot eliminate u2', so that we have u i = (Uo', 
0, u2', 0). The tetrad components o f E , ,  Bu, and Su are then 

E i = (0, FoTUo', 0 , -F2 'a 'u2 ' )  (16) 

Bi = (0, F2'3'Uo', O, FoTU2' ) (17) 

Si = (A2uo'u2 '2 , O,A2uo'2U2 ', O) (18) 

and Euv has tetrad components 

E i / = d i a g ( � 8 9  - � 8 9  2 �89 2 , 2 , ) ( 1 9 )  

where 

A 2 = FoT 2 + F2,3 '2 (20) 

The expression (19) is the familiar canonical form for the stress-energy tensor 
of  a nonnull electromagnetic field; the point of  the above discussion is that the 
tetrad components of  u i have, in general, one nonzero spacelike component  
which is zero if and only i f S  u = 0, i.e., if and only i f E  u and Bu are parallel, in 
which case u i has the comoving form u i = (- 1, O, O, 0). 

Consider now the consequences of  transforming away u2'. If  we put uo' = 
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- cosh~ and u2' = sinhqS, then a Lorentz transformation of  the local tretrad frame 
of the form 

x o' = y0' cosh q~ + 3 2' sinh q5 
(21) 

x f = yo' sinh q~ + 3 2' cosh ~b 

transforms u i into ui = (- 1 ,0,  0, 0). The nonzero tetrad components of  the 
Maxwell tensor are now 

ffo'l' = F o ' f  cosh ~b, /02'1' = Foy  sinh ~b 
(22) 

F2'a' = F2'3' cosh ~, ffo'a' = F2'a' sinh ~b 

and the tetrad components of  the other electromagnetic quantities are 

ffi = (0, -Po'l', 0,-Fo'a') 

J~i = (0,-/~2'3', 0,-/~1'2')  (23) 

Si = (0, 0, A 2 sinh q~ cosh q~, 0) 
and 

- �89  2 cosh 2~ 0 �89 2 sinh 2q~ 0 -  

1 2 0 - ~ A  0 0 

�89 s sinh 2q5 0 �89 2 cosh 24~ 0 

0 0 0 �89 2 
m 

(24) 

and 

E q  = 

�89 (C z + D 2 ) 0 CD 

_ 1 ( C  2 _ D 2)  0 0 -ff 

I (C 2 + D  2) CD 0 -ff 

0 0 0 

0 

0 
(27) 

0 

�89 (C 2 - D 2 ) 

Now, from equation (20), we can write F o y  = A cos 3', F2'3' = A sin 3', Where 
7 is a parametric function, and we put A cosh 4~ = C and A sinh ~ = D. Dropping 
the bars, equations (22), (23), and (24) become 

Fo' a' = C cos 7, F2'1' = D cos 7 
(25) 

F2'3' = C sin 7, Fo'3' = D sin 7 

E i = (0, - C cos 7, 0, - D  sin 7) 

B i = (0,  - C sin 7, 0, D cos 7) (26) 

Si  = (0, O, CD, O) 
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When u2' = 0, i.e., sinh r = 0, then D = 0, S ,  and the form (27) reverts to the 
form (19). Hence, when S u r  0, we can use either the standard canonical form 
(19) for the stress-energy tensor of  a nonnull electromagnetic field, which corre- 
sponds to u ,  having the local tetrad form u i -- (- cosh qS, 0, sinh q~, 0), or we can 
use the form (27) for which ui = (- 1 ,0 ,  0, 0), When Su = 0 both forms are iden- 
tical and correspond to ui = (- 1,0,  0, 0). 

For null electromagnetic fields, E~, Bu, Su, and uu are mutually orthogonal 
with E 2 = B 2 and Sc~S ~ --- S 2 = E 4 . We can choose a local tetrad frame such that 

Ei =  E(O, O, O, 1)=-Eel 

B i = +-E(O, 1, O, O) - Eb i 
(28) 

S i = +E2(O,O, 1 , O ) = E 2 s i  

ui = ( - 1 , 0 , 0 , 0 )  

where ei, bi, and s i are the unit vectors so defined. Then Eli has the standard 
canonical form for null electromagnetic fields, viz., 

Io-~ o 
"~ "o 

and the nonzero local components of  the Maxwell tensor are 

Fo'3' -- -+G'3'  = - / r  (30)  

The ambiguous sign in expressions (28) to (30) can be eliminated by a rotation 
through n radians about the x 3 axis, but we shall find it convenient to maintain 
the dual sign. Note that the form (28) to (30) can be obtained from the forms 
(25) to (27) by putting +C = D = E and 3' = - rr/2. Thus the expressions (25) to 
(27) constitute a set of  basic canonical forms for electromagnetic fields, from 
which the appropriate standard forms for nonnull or null fields may be obtained 
as explained above. 

In the subsequent sections we shall apply the results of  this section to find 
examples of  known fluid space-times that also satisfy the field equations (3). 
Such solutions not only must satisfy the algebraic conditions of  Section 2, and 
others to be given later, but also the Maxwell tensor must satisfy the Maxwell 
equations 

F[~v;ol = O, FUV;v = j u  (31) 

and the 4-current j u  must be consistent with the expression [4] 

( j u  _ eu u)  (1 + ~'2B2) = XE u + X~2E~BC~B u + X~S u (32) 
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in which JU is expressed as the sum of a convection current and a conduction 
current, where e is the charge density, X is the conductivity, and M" is the trans- 
verse conductivity. We also shall require the heat conduction vector to satisfy 
the equation of state 

qu = -KhuV(T ,v  + Tar) (33) 

where n (~> 0) is the thermal conductivity, T is the temperature, av = uv;a u c, is 
the acceleration vector, and htz v = 6 f f  + uuu  v is the projection tensor. 

w Nonnul l  Electromagnetic Field 

We consider the two cases S u 4:0 and S u = O, and give examples of perfect 
fluid space-times which admit the viscous magnetohydrodynamic fluid inter- 
pretation. 

Case 1. S u ~ O. We shall use the canonical form given by equations (16)- 
(20) with vi = (Vo', va', v2', va'). From the tetrad versions of equations (5)-(8), 
(11) and equation (12) we obtain 

qi = [A2uo'u2 '2 + Ma(vo'  - aUo') ,MaVl ' ,A2uo'2U2 ' + Ma(v2'  - au2 ' ) ,Mava ']  

2 ~10.o'o' 

2r/0.oT 

2 r/0.o' 2 ' 

2r/0.o'a' 

2~'/0. f f 

2'00"1,  2 ' 

2~?aa'3' 

2 r~0.2'2' 

2r/a~,a' 

2 r~0.3' a ' 

~Q = M a ( ~  2 - 1) + A2uo,(Vo , -  aUo') 

O0'U 0, - O2'U 2' = O~ 

A2(Uo '2 +u2 '2)=  2Ma 2 - �89 3N) 

= -Mvo '2 + Mot(Uo'Vo' + u2'v2') - �89 (M + N)  u2 '2 

=-Mvc(vo'- ~Uo') 

= - M v o ' W  +Ma(uo'v2'  + u2'vo') - �89 (31 + N )  Uo'U2' 

= -Mv3'  (Vo' - C~Uo') 

= -  �89 2 - Mva '2 - � 8 8  N )  

= - M v a ' ( v 2 ' -  au2' ) 

= - m v l , v 3 ,  

= - g v 2  '2 + Ma(uo'vo'  +u2'v2 ' ) -  I (M + N )  uo '2 

= - M v a ' ( v 2 ' -  au2')  

= �89 2 - Mv3 , 2 -  � 8 8  

(34) 

(3s) 

(36) 

(37) 

(38) 
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The components of  Our calculated from uu and its derivatives must satisfy 
these expressions. Unfortunately, at this stage the expressions are too complex 
to enable us to find an example. Part of  the difficulty is due to the fact that v i 

has four nonzero components, whereas, in their standard coordinate systems, 
most known perfect fluid solutions correspond to a comoving coordinate sys- 
tem. Accordingly, we shall look for a solution with vi = (- 1,0,  0, 0). From 
equation (36) this implies that u i = ( - a ,  O, +-(a 2 - 1)1/2,0), and equations (34) 
and (35) become 

q i=  [ ( M -  A 2 ) a ( a  2 - 1 ) , O , - ( M -  A 2 ) a 2 u 2 , , O  ] 

/3Q = ( M -  A 2 ) a ( a  2 - 1) 

From these two expressions we find that 

so that 

(39) 

(40) 

/3 = = (c~ = - 1) (41 ) 

ui = (- a, o,/3, o)  (42) 

qi = Q(/3, 0, - a, 0) (43) 

Q = ( M -  A 2 ) a/3 (44) 

and the expressions (38) simplify to 

2r70o'o' = 1 (M - N)/32 

2n%'~' = - �89 (M-  N)  a/3 

1 2r/a2'2' = g ( M -  N)  a s (45) 

2r/alT = -  �89 = - � 8 8  

2r/oa'a' : �89 2 - 41-(M - N)  

Our problem may be stated as follows: given the space-time metric of  a 
known perfect fluid solution, we want to find a velocity vector ui, i.e., the func- 
tions c~ and/3, such that the space-time is a viable exact solution of  the field 
equation (3). However, as noted in [2],  for viscous fluids the same stress-energy 
tensor components can result from different choices o f  the 4-velocity, so that 
there is no unique solution and we are left with the task of  making a suitable 
choice for u i which will lead to a viable solution. This is unlike the situation 
described in [1] in which, in the absence of  viscosity, u i was completely 
determined. 

Example  1. Consider the Kasner solution with metric 

ds 2 = - d t  2 + dx  2 + t2bdy 2 + tR(1-b) dz (46) 
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whichis a perfect fluid solution with p =p  = b(1 - b ) t  -2 , i .e . ,M= 2b(1 - b ) t  -2 , 

and v i = (- 1,0,  0, 0). For the viscous, magnetohydrodynamic fluid solution we 
shall assume that the electromagnetic field consists only of  the single nonzero 
component F2'3' = A. The corresponding coordinate component is F23 = A t  and, 
applying Maxwell's equations, we find that 

A = A o t -1 (47) 

where Ao is a constant, and JV -- 0. The electric field, magnetic field, and 
Poynting vector are 

E .  = (0, O, O , - A o f l t  - ~  

B u = (0, - A o a t  -I , O, O) (48) 

S u = ( -Ao2a132 t  -2 , O , A o 2 a 2 [ 3 t  b-2 , O) 

We shall look for a solution in which a and 13 are constants. Calculating the 
shear tensor components from uu = (- a, O,/3t o, O) we find that the only non- 
zero components are 

= 1(3 b -  1)a[32t  -1 O0' 0, -~ 

0o'2' = -  l ( 3 b -  1)a2/3t -1 

= 1(3 b -  1 ) a 3 t  -1 0"2'2' 

0-i, 1 , = -  l ~ t - I  

o3'3' = - �89 (3b - 2) a t  -1 

which are entirely consistent with the expressions (45) with 

M -  N = 4r/(3b - 1 ) a t  -1 

A 2 = 2r?(1 - b)  a t  -1 

The field equations (3) yield 

b ( t  - b ) t  -2 = 1 A o 2 t - 2  + -fia 2 -k p*/~ 2 - ] • (3b - 1 )  a f i 2 t  -1  - 2Qa13 

0 = _ ( ~ + f i , ) a / 3 +  2r / (3b_  1)a2flt-1 +Q(a2  +~2) 

b(1 - b) t -2 = - :Aol 2t-2 + ,o* + 2 f l a t - 1  (49) 

b ( 1  - b )  t - 2  = 1 2t-2 :-Ao +~f12 +/~,c~2 _ ~ r / (3b-  1 )a3 t  -1 - 2Qa/3 

b ( 1 - b )  t -2 =:~otA 2.-2. + p * + - ~ 7 ( 3 b - 2 ) a t - '  

and the solution is 
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p = b ( 1  - b)(1 - 2b)(1 +2t32 ) [(1 - 2b) +(1 - b)/32] -1 t -2 (50) 

p * = � 8 9  - b) [3(1 - 2b) + 2 ( 2 -  3b)/32 ] [(1 - 2b) + (1 - b ) / 3 2 ]  - 1  t -2 (51) 

n = b ( 1  - b) [(1 - 2b) + (1 - b)/321-1 a-l/32t-1 (52) 

Q = 2a/3(1 + 2/32) -1 p (53) 

Ao 2 = 2b(1 - b) 2 [(1 - 2b) + (1 - b) t32]-a /32 (54) 

The conditions p - p* t> 0, p > 0, io*/> 0, r~ > 0, and Ao 2 > 0 are satisfied if 
b ~< 1 .  Note that the viscous fluid alone satisfies the strong energy condition but 
not the dominant energy condition [5]. However, the latter condition is ob- 
viously satisfied by the total stress-energy tensor, since the perfect fluid stress- 
energy tensor does so, and by the electromagnetic field alone. 

Equation (33) takes the form 

O = K/3(J ~ + bt  -1 T )  

assuming that T = T(t) .  If we further assume that 

T = Tot  -m (55) 

where To is a constant and m ~> 0, then we find that 

= 2b (1 - b) ( 1 -  2b) (b - m )  -1  [ ( 1  - 2b) + (1 - b)/32] -1 o~tm-1 (56) 

which will be positive if b > m. 
Hence, we have shown that the space-time with metric (46), which is an 

exact solution of  the field equations for a perfect fluid, is also an exact solution 
of  the field equations (3) for a viscous magnetohydrodynamic fluid with u u = 

(- a, O,/3t b, 0), qu = Q(/3, O, - a t  b , 0), where a,/3 are arbitrary real constants 
satisfying a 2 -/32 = 1, and the other physical quantities given by equations (48) 
and (50)-(56).  All energy conditions and all positivity conditions are satisfied if 
�89 ~> b > m/>  0, and all the physical quantities are infinite at t = 0 and approach 
zero as t -+ ~ .  The expansion and shear of the fluid velocity vector are given by 

O = a t  -x ,  02 = ( b 2 - b + � 8 9  (57) 

and the vorticity and acceleration are zero. 

Case 2. S u = 0. We again use the canonical form given by equations (16)-  
(20), but in this case ui = (- 1,0,  0, 0) so that Vo' = - a and qo' = 0. Equation (11) 
becomes 

Contracting with v u gives 

qu = M a ( v u  - a u u )  (58) 

/3Q = M a ( a  2 -  1) (59) 
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and contracting with qU gives 

i .e. ,  

Q2 = Mal3Q 

Q = M o ~  (60) 

Comparing equations (58) and (60), we again obtain the relation (41). 
We shall present two examples of  this case, each resulting from slightly dif- 

ferent simplifying assumption. We first make the assumption v2' = v3' = 0 and 
then transform v i into vi = (- 1,0,  0, 0) by a Lorentz transformation in the (x ~ 
x f )  plane under which ui becomes ui = (-a,/3, 0, 0). Dropping the bars, the 
tetrad form of equation (58) is 

qi = Q(/3, - a, 0, 0) (61) 

and the nonzero shear tensor components are given by 

2r/Oo'o' = (M + N -  2Ma 2) [j2 

27Oo'1' = - (M + N -  2Ma 2 ) a{J 
(62) 

2WhT = (M + N -  2Ma 2) a 2 

2r/or2,2, = 2 ~ 6 r 3 , 3 ,  = M a 2  _ 1 (M + N )  

Example 2. Consider the Einstein universe with metric 

ds 2 = - d t  2 +Ro2(1 - r2) -1 dr 2 + Ro2r2(dO 2 +sin 20d~ 2) (63) 

This is a perfect fluid solution with p = 2Ro -2 , p = 0, (i.e., M = 2Ro -2), and cos- 
mological constant A -- Ro-2.  [In this context the cosmological term A g , v  
should be added to the left-hand sides of  equations (1) and (3).] For the viscous 
magnetohydrodynamic solution we assume that the electromagnetic field con- 
sists only of  a magnetic field, so that F2'a' = A and F2a = ARo 2r2 sin 0 is the 
only nonzero Maxwell tensor component. Assuming that A = A (r), the Maxwell 
equations yield A = A or -2 , where A o is a constant, so that/723 = A oRo 2 sin 0 
a n d J  ~ = 0. The 4-velocity is uu = [-- a, /3Ro(1 - r2) -1/2 , 0, 0] ,  so that the mag- 
netic field components are 

B u = Ao r-2 cosec 0 [/3, - aRo(1 - r 2)-1/2 , 0, 0] (64) 

The tetrad form of  the field equation (3) yields 

2Ro -2 = �89 Ao~r  -4 + -fia 2 + p*{32 - ~ rl[j2 X - 2Qa[3 

0 = - �89 -4 + -fi[32 + io*oe 2 - 4 r l a 2 X -  2Qa13 

0 = �89 -4 + ~* +-}r lX (65) 

0 = - ( p  + p*) a18 + 4r/a/3X + Q(o~2 +/32) 
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where, assuming that a and 13 are functions of  r only, 

X =  (/3 '- /3r  -1 ) (1 - r2 )  1/2 No -1 (66) 

the prime denoting differentiation with respect to r. Equations (65) yield 

= 2 R o  - 2 a 2 -  ~01~ 2..-4r 

~ ,  = 2 -2 2 1 A 2 r - 4  ~Ro /3 - ~-~o 

Q = 2Ro-2a~ (67) 

~X = -Ro-2{32- �89 Ao2r -4 

Let us choose/~ so that fi* = 0, i.e., ,o* = p ,  so that, from equation (6), we 
have ~ = O and M = N. Then 

13 = 1 -2 (68) ~ A o R o r  

and equations (67) become 

= 2Ro -2 , fi* = 0, A = Ro -2 (69) 

Q =AoRo- l r -2 (1  + �88  1/2 (70) 

rl = �89 Aor  -1 (1 - r2) -1/2 (71) 

Assuming that T = T(r), the equation of state (33) takes the form 

Q = •R0-1(1 - r2) 1/2 (aT) '  

and choosing T to be of  the form 

T = To 0[.-1 r m (72) 

where To is a constant, we find that 

tc = Ao r -m-1 (1 - r 2)-1/z To-i m- i  a (73) 

so that we must have m > 0 for ~ > 0. 
Here, we have shown that the static, spherically symmetric Einstein universe 

is an exact solution of the field equations for a viscous magnetohydrodynamic 
fluid. There are many possible choices of  velocity vector which will allow this 
space-time to satisfy the equations (3). In our particular choice the density, pres- 
sure, and cosmological constant are identical to that of  the perfect fluid solu- 
tion, but there is a tilting 4-velocity given by 

u u [-(1 + 1Ao2Ro2R-4)l/2 1 2 2 -2 r2)-1]2 = , ~ A o  Ro r ( 1 -  , 0 , 0 ]  (74) 

The heat conduction vector is 

qu = Q [ � 8 9  1 + 1Ao2Ro2r-4)l/2 Ro(1 - r 2 ) - 1 / 2 , 0 ,  0]  (75) 

and Q and other physical quantities given by equations (64) and (70)-(73) .  The 
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fluid velocity vector has neither vorticity nor expansion, but has shear given by 

a s = 3A02r-6(1  - r 2) (76) 

and the acceleration vector is 

au = � 8 8  -s [Aor-S(1 - rS) 1Is ~ - 1 , - 2 ,  0, 0] (77) 

Note that, although the dominant energy condition is everywhere satisfied for 
the total field, the requirement that the condition should hold for each of  the 
electromagnetic and viscous fluid fields is satisfied only in the region of  space- 
time given by r 4 > 1 A 2D 2 which can be very large if the electromagnetic ~ - ~ 0  *',0 , 
field, i.e., Ao, is very small. This is similar to the situation found in [1],  in which 
some of  the examples of  magnetohydrodynamic solutions were not valid in the 
entire domain of  validity of  the associated perfect fluid solution. 

For another example of  this case we look for a solution in which both the 
perfect fluid and the viscous magnetohydrodynamic fluid have the same 4- 
velocity, i.e., 

U i = I) i = ( -  l ,  0 ,  0 ,  0 )  (78) 

so that c~ = 1,/3 = 0, and, from equation (58), qu = 0. Equation (37) becomes 

A s = E  s +B  s = 23-(M-N) (79) 

so that M > N, and the only nonzero components of  equation (38) are 

2r~o1'1' = - (M-  N)  
(80) 

1 2~as's' = 2r?o3'3' = ~ ( M -  N)  

To illustrate this situation we need a space-time for which the comoving ve- 
locity vector has a nonzero shear, since otherwise M = N and the solution degen- 
erates into the original perfect fluid solution. 

Example  3. Consider the type-II cosmology with metric [4] 

ds 2 = - d t  2 + k-2 t2a dx  2 + t4a-2 (dy + x dz ) 2 + t2a dz 2 (81) 

where k 2 = 2(1 - a) (2a - 1) and �89 < a  <~ 43- . This is a perfect fluid solution with 
density and pressure given by 

P = � 8 9  l ) ( 4 a -  1 ) t  -s ,  p = � 8 9  1 ) ( 3 - 4 a ) t  -s (82) 

1 so that M = (3a - 1) t -2 . Note that p = 0 when a = 3 ,  and p -+ p as a -+ ~-. 
The nonzero components of  the tetrad and its inverse that diagonalize the 

Einstein tensor are 

e~ o = 1 e 1 e s = t 2 a - I  , e 2 = x t 2 a - 1  = t a , 1 = k - l t a ,  2 3 , e 3 3  

eo ,~ = 1, ea ,1 = k t  -a ,  e 2  ,2 = t 1 - 2 a ,  e3 ,s  = - x t  - a ,  e3 ,3 = t - a  

(83) 
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and the nonzero local components of  the shear tensor computed from u u are 

= _ 2  , o1'I' =aa'a' =�89 a) t -1 o2'2' )- (1 - a )  t -1 - ( 8 4 )  

These values are in accordance with the expressions (80), and, since a < 1, also 
satisfy the requirement M > N, but the labeling of  the variables has been per- 
muted 1' -~ 2' ~ 3' -~ 1'. Accordingly, the nonzero local Maxwell tensor com- 
ponents are 

Fo'2' = A cos 7, FaT = A sin 7 (85) 

and, using the tetrad (87), the coordinate components are 

Fo2 = A t  2a-a cos 3' 

Foa = A x t  2a-1 cos 3' (86) 

F31 = A k - l  t 2a sin 3, 

The electric and magnetic field vectors are thus 

E u = - A t  2a-1 cos 3' (0, O, 1, x) 
(87) 

B u = - A t  2a-1 sin 3' (0, O, 1, x) 

We find that Maxwell's equations are satisfied by 

A = Ao  t -rn (88) 

where Ao is an arbitrary constant and m > 0, and by 3' = const given by 

tan 3' = k ( m  - 2a)-* (89) 

The only nonzero component o f J  u is 

j2  = _ [k sin 7 + (m - 2a) cos 3'] A o  t - m - 2 a  (90) 

and this is consistent with equation (32) if ~" = 0 and 

X= [k 2 + ( m -  2a) 21 ( m -  2a) -1 t -a (91) 

which shows that m i> 2a for X > 0. Note that the value m = 2a, which 
corresponds to cos 3' = 0, i.e., zero electric field, yields the case of  infinite 
conductivity. 

The tetrad form of the field equations (3) gives 

�89  1 ) ( 4 a -  1 ) t  -2 = 1 A o 2 t - 2 m + - f i  

�89 (3a - 1) (3 - 4a) t -2 = 

�89 (3a - l)  (3 - 4a) t -2 = 

from which we obtain 

= �89 (3a - 1) 

- � 8 9  - z m  + ~ *  + 4r/(1 - a) t -= 

� 89  -2rn + ~ * -  } r ~ ( 1  - a )  t -2 

( 4 a -  1) t -2 - gAoa 2 t-2m 

io *=  � 89  1 ) ( 3 - 4 a ) t  - 2 -  1 A o 2 t - 2 m  

1 t l - 2 m  rt = $Ao2(1 - a) -1 

(92) 

(93) 

(94) 

(95) 
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Hence ~ > 0 always and ~ will be positive after a certain time t which will be 
small if A0 is sufficiently small. The same will be true of  ~* except in the Case 
o f a  = 3 ,  i .e . ,p = 0, when p* is always negative. However, since if* = fi - ~| and 

and | are both positive, it is not unexpected that fi* can be negative. If, for 
example, we take a = ~ ,  which is the case of  radiating matter, p = 3p, and con- 
sequently p = 3v*,  we find that ~ and p*.are positive and the electromagnetic 
and viscous fluid fields each satisfy the dominant energy condition after a time 
to given by 

to  2 m - 2  = 17-~ZA02 (96) 

Since m ~> 2a > 1, the power of  to is positive and so to wilt be very small when 
Ao is very small. 

Thus the Bianchi type-II perfect fluid model with metric (81) is also an exact 
solution of  the field equations (3) with the identical comoving 4-velocity of  the 
perfect fluid solution, with no heat conduction, and with values of  the various 
associated physical quantities given by equations (87)- (91)  and (93)-(95) .  Un- 
like the perfect fluid solution, this viscous magnetohydrodynamic solution is not 
valid for all values of  t, but is valid after a certain finite time which depends on 
the magnitude of the electromagnetic field. All physical quantities are finite at 
that time and tend to zero as t -> oo. The kinematical quantities are, of  course, 
identical to those of  the perfect fluid solution, viz., 

O = ( 4 a -  1) t -x, o 2 = 1(1 - a) 2 t -2 (97) 

and a u = O. 

w (5): Null  Electromagnetic Field 

Using the canonical form given by equations (28)-(30) ,  we have u i = (- 1,0,  
0, 0) and 

v i = (- a, vx', v2', v3') (98) 

The tetrad versions of  equations (5), (8), (11) and equation (12) yield 

qi = (O ,Mav l ' ,  +E2 +May2 ' ,  Maya ' )  (99) 

3Q = M a ( a  2 - 1) +E202 ' (100) 

Q2 =M2a2(a2  _ 1) - 2 E 2 M a v 2  , + E  4 (101) 

2r/ox'a' = - M v l  '2 - �88 ( M -  N )  

217ox'2' = - M o l '  V2' 

2z~o 1'3' = - M y  x' v3, 

2rlo2'2' = M ( a  2 - v2 '2 ) - 1 ( M  + N )  

2r/02'3' = -My2' va' 

2r/o3'3' = -Mv3 '2 - �88 ( M -  N )  

(102) 
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As in the case of  nonnull fields, we shall first look for a solution in which 
or' = v3' = 0, v2' = +_,(a2 _ 1)1/2. In this case qi = (0, O, +E 2 +Mt~v2,, 0), i.e., qi 

is paralM to Si. Contracting equation (11) with q" gives 

Q2 _ Ma13Q = E2(E 2 -+ Mc~v2,) (103) 

and equations (100), (101), and (103) yield 02 '2 = 132 , so that equation (41) 
again holds. Choosing v2' = -13, we have v i = (- a 0, - 13 0). We now transform vi 

into vi = (- 1 ,0,  0, 0) by a Lorentz transformation in the (x ~ x 2') plane under 
which ui becomes ffi = (- a,  0, 13, 0) and Eij retains the form (29) with E 2 re- 
placed by E 2 (a -T-/3) 2 , S i becomes Si = +E2 (- 13, 0, a,  0), and qi becomes qi = 
(Ma/3 -T-E 2) (/3, 0, - a ,  0). Dropping the bars, equations (102) are replaced by 

1 2r/%'o' = �89 ( M -  N)/32, 2r/oo'2' = - g ( M -  N)  ~13 
(lO4.) 

2r/o2'2' = �89 ( M -  N)  a 2 , 2~01'1' = 2r~oa'a' = - �88 (M - N)  

Example  4. Consider the Einstein-de Sitter universe with metric 

ds 2 = - d t  2 + t4/a(dx 2 + dy 2 + dz 2) (105) 

which is a dust model with p = -} t -2 . For the viscous magnetohydrodynamic 
solution we have, from equation (30) and the Lorentz transformation of the last 
paragraph, 

Fo'a' = +-F2'3' = - (a T 13) E = - A  (106) 

where A is introduced for convenience. The n Fo3 = - A t  2/3 , F23 = T A t  4/3 and, 
assuming that A = A (t), Maxwell's equations give 

A = Ao  t-4/a (107) 

where Ao is a constant, and j u  = 0, so that 

Fo3 = - A o t  213 , F23 = T-Ao (108) 

The 4-velocity is u u = (- a,  0,/3t 2/3 , 0) and, if a, 13 are functions of  t only, 
the tetrad components of  the shear tensor calculated from uu are 

(109) 
o l , c  = o 3 , 3 ,  = - 

which are in accord with the expressions (104) if 

r / s =  3 ( M -  N)  (110) 

Note that this shows that a cannot be a constant, since this would imply that 
M = N, the shear is zero, and the matter distribution degenerates to the perfect 
fluid case. 

Using the expressions (104), the tetrad components of  the field equations 
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(3) are 

4t-2 =Ao2t  -8/3 + por 2 + p*/32 - I ( M -  N)/32 - 2Qa/3 

0 = +Ao2t -s/3 - (p  + p*) al3 + 1 0 4 -  N)  a/3 + Q(a 2 +/32 ) 

0 =Ao2t  -s/3 + -pf +p*a ~ - �89  N ) a  2 - 2Qa/3 

o = ~* + � 8 8  x )  

the solution of which is 

~= ~ : t  -2 _ Ao: (~+/3)  2 t-sis  

~* = ~/3~r-: - ~Ao2(~ +- ~): t -s/3 
(111) 

Q= ~r ~ Ao: (a+  /3) z t -s/s 

[3~t -~ �89177  2 t -s t  3 ~ & = - ~  + 

The velocity components r and/3 must be chosen such that the usual energy 
conditions hold. A suitable choice is 

c~=(1 +ht-1/3)(1 +2ht-1/3) -1/2 , /3=~ht-1/3(1 + 2ht-1/s) -1/2 (112) 

where h is an arbitrary positive constant and the dual sign in the expression for 
/3 corresponds to the dual sign in the Eo':' term. Equations (111) then become 

-- [4(1 + ht-1/s) 2 t -z - Ao2t  -8/3] (1 + 2ht-X/s) -1 (113) 

fi* = k~4-t,2 - Ao 2) t-s/3 0 + 2ht-~/3) -~ (114) 3x. 3 ,o 

Q =-7-[4h(1 +ht-1/3)+AoZt  -1/3 ] t-v/3 0 +2ht-a/s) -~ (115) 

7 = � 8 9  3Ao2h-2)t-~(1 + 2ht-X/3) ~/2 (116) 

from which we see that/3Q is always positive, and p, fi*, and ~ are also always 
positive provided that we choose 

4h 2 > 3Ao 2 (117) 

From equation (106), the magnitude of  the electric and magnetic fields is 

[E[ = IAI (~ +/3) = IAo [ t-4/3 (1 + 2ht-1/3) -~/2 (118) 

In order to find the thermal conductivity we shall assume that T is of  the 
form 

T = Toa- l t  -m (119) 

where To is a constant and m > 0. Equation (33) then leads to 

tc = [4(1 +ht -1 /S )+h- lAo2 t  -1/3] (1 +ht-a/s) 2 (1 +2ht- l / s )  -1 

X [ ( � 8 9  t~-I  (120) 

which is always positive if m ~< 3- T will be finite at t = 0 if m ~< ~ and infinite 
at t = 0 i f m  > ~. 
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By diagonalizing the stress~energy tensor of  the viscous fluid alone we find 
that, although the total stress-energy tensor always satisfies the dominant energy 
condition, the viscous fluid stress-energy tensor satisfies this condition only after 
a time to given by 

to = (_3 ~3/~ Ao 3 
2 :  

which is very small i fAo is small. 
Hence, the Einstein-de Sitter universe is an exact solution of the viscous 

magnetohydrodynamic field equations, with a null electromagnetic field given 
by equations (108) and (118). The 4-velocity is given by 

u u = (1 + 2ht-1/3) -1/2 [- (1 +ht-1/3), 0, ~ht 1/3 , 0] (121) 

and the heat conduction vector by 

q u = Q ( 1  +2ht-1/3) -1/2 [-T-ht-1/3,0,-(1 +ht-1/3) t2/3 ,0]  (122) 

where h is a positive constant satisfying equation (117). The other physical 
quantities are given by equations (113)- (116)  and (118)-(120).  The fluid ve- 
locity vector has expansion, shear, and acceleration given by 

O = (2 + 6ht -1/a + ~ -h2 t  -21a) t -I (1 + 2ht-113) -3/2 

a s = ~qh4t-lO/3(1 + 2ht-1/3) -3 

au = ~ lht -1/3(1 + 3ht -1/3) (1 + 2ht-1/3) -3/2 (~, 0, - a, 0) 

If �89 ~< m < 1,  all physical quantities are infinite at t = 0 and tend to zero as 

For our next example we attempt to find a solution corresponding to Ex- 
ample 3 in which the perfect fluid and the viscous fluid have the same comoving 
4-velocity, i.e., u i = v i -- (- 1,0,  0, 0), so that ~ = 1 and, from equation (100), 

= 0. Equations (101) become 

2r/o=,2, = �89 ( M -  N) ,  2r~ofl, = 2r/oa'a' = - �88 ( M -  N )  (123) 

and equation (12)is  

E 2 = 3 ( M -  N )  (124) 

so that M > N, i.e., e2'2' > 0. Equations (11) and (28) show that 

q i=S i  = +-} (M-  N ) ( 0 ,  0, 1 ,0)  (125) 

The tetrad components of  the field equation (3) give no further information. 
Hence, we require a perfect fluid solution with a shearing locally comoving 

4-velocity such that the o2'=' tetrad component  of  the shear is positive, while 
o,'1' = oa'3' are negative. Unfortunately, we have been unable to find such a solu- 
tion; all of  our attempts have resulted in models for which oz'2' is negative if the 
energy conditions are to hold for the viscous fluid. However, we have no reason 
to assume that such a solution does not exist. 
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Our final example of  the null electromagnetic case is obtained by considering 
�9 the possibility q u  = 0. In this case 13 is not defined by equation (8), so we define 

/3 by equation (41). The (0', 1 ') and (0', 3') components of  the field equations 
show that Vl' = va' = 0, so that v2 ,2 =/32. We chose v2, = -/3 and make the same 
Lorentz transformation used previously to obtain v i = (- 1,0,  0, 0), u i = ( -  ce, O, 

/3, 0), and 

E 2 = +Ma/3 (126) 

From equations (12) arid (106) we find that 

a 2 _  ( M + 3 N )  2 /32= 3 ( M - N )  2 (127) 
8 M ( 3 N -  M ) '  8 M ( 3 N -  M) 

so that M < 3N. The tetrad components of  the shear tensor are again given by 
equation (104). 

E x a m p l e  5. Consider the zero-curvature FRW model with metric 

ds  2 = - d r  2 + t ( d r  2 + r2dO 2 + r 2 sin 20d432) (128) 

This model, which describes radiating matter,  i.e., p = 3p = 43- t -2, was the subject 
of  one of  the examples of  [1 ],  in which it was shown to be an exact solution of 
the field equation (3) with our = 0 and q~ 4: 0. Here we shall show that it is also 
an exact solution of  the field equations (3) with our 4 :0  and qu = 0. Note that 
we could use cartesian coordinates here, as in Example 4, but we shall work in 
spherical polar coordinates so that we can compare the results with those found 
in [1]. 

In order to obtain a shear tensor corresponding to equation (104) we must 
dmose  the spacelike component  to be.in the direction of the coordinate r, so we 
must permute the spacelike coordinate labels so that (X 1 , X 2 , X 3 )  correspond to 
(~, r, 0). The tetrad components of  the Maxwell tensor are given by equation 
(106) and the coordinate components are Foa = - A r t  1/2 , F2a = ~-Art. Maxwell's 
equations lead to 

A = A o r - l t  -1 cosec 0 (129) 

where Ao is a constant, and j r  = 0, so that 

Foa = - A o  t - I / 2  cosec 0, F23 = 7-Ao cosec 0 (130) 

The 4-velocity is ut~ = (- a,  O, /3 t  1/2 , 0) and the tetrad components of  the 
resulting shear tensor are 

oo,o,= o 0 , , : = -  
(131) 

G1,1, ---- 0-3, 3, _---- 1 x 

where 

X = ~ + (/3' - / 3 r  -1 ) t -11~ (132) 
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The expressions (104) and (131) are in accord if 

r /X= � 8 8  N )  ( t33)  

Since p = 3p, it follows that ~ = 3fi* and the field equation (3) become 

�88 -s : A o 2 t - S r  -s cosec s 0 + ~(a  s + 1~s)3 - ~ -~132X 

�88 -s =Ao2t -Sr  -s cosec 2 0 + p(132 + �89 s ) -  4r laSX 
(134) 

0 = +Ao2t-2r -2 cosec 2 0 - 4 ~a/3 + 4~/a~X 

�88 
which yield 

+al~(a T- 1~) 2 = A o 2 r  -2 cosec 2 0 (135) 

showing that the upper sign applies when/3 > 0 and the lower sign when/5 < 0. 
The solution of equation (135) is 

a =  �89 [1 + (1 - 4Ao2r  -s cosec 2 0) 1/2 ] (1 - 4AoSr  -s cosec s 0) -1/4 
(136) 

/3 = + �89 [1 - (1 - 4AoSr -s cosec s 0) x/s ] (1 - 4AoSr  -s cosec 2 0) -1/4 

where we must have 

r s sin 2 0 > 4 A o  s (137) 

i.e., the region of validity is that region of space-time outside the infinite cylin- 
der with axis along the Cartesian z axis and radius 2 [Ao I. This is precisely the 
same region in which the solution of [1 ] is valid. 

From equations (134) and (136) we obtain 

p =  3ig* = �88 [1 + 2(1 - 4AoSr -s cosec s 0] 1/2] t -2 (138) 

77X= �88 [1 - (1 - 4A0Sr -s cosec 2 0) l/s ] (139) 

Both expressions are always positive and the second shows that we must have 
X > 0 for ~7 > 0. Now, from equations (132) and (136), we find that 

X = + �88 -a t - l /s(1 - 4A0Sr -s cosec 2 0) -s/4 [ (2 -  3Ao r-2 cosec s 0) 

�9 (1 - 4A0Sr -2 c o s e J  0) 1/s - ( 2 -  AoSr -s cosec s 0)] (140) 

Taking into account the restriction (137), it is easily shown that the quantity 
within the square brackets in equation (140) is always negative so that we must 
take the lower sign to ensure that r / >  0. Hence, this example is unlike Example 
4 in that both signs are not possible. The us' tetrad component  must be negative, 
i.e., in the inward direction, as is the case with the example discussed in [1 ]. 

The electromagnetic stress-energy tensor clearly satisfies the dominant 
energy condition. Diagonalizing the stress-energy tensor of  the viscous fluid 
alone shows that this tensor satisfies this condition in the region of validity given 
by equation (137). 
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Thus we have shown that the radiation-filled zero curvature FRW cosmology 
with metric (128) is an exact solution of the field equations for a viscous mag-  
netohydrodynamic fluid with no heat conduction. Putting x = 4Ao 2r-2 cosec 2 0 
for brevity, the 4-velocity is 

u u = { -  �89 [1 + (1 - x) 112 ] (1 - x) -'14, O,- �89 [1 - (1 - x) 'i2 ] (1 - x) -'14 t '12 , O} 

(141) 

and the shear conductivity is 

r /= [ (2 -  x ) -  ( 2 -  3x) (1  - x)'12] -' [I - (1 - x) '1~] (1 - x)Sl4rt 'fz (142) 

The density and pressure are given by equation (138) and the electric and mag- 
netic fields are 

Eu =E(0 ,  0, 0, 1), flu = - E ( 0 ,  1,0,  0) (143) 

where 

E = 1 (3)1/2 Aot - l r - i  Cosec 0(1 - x) -U4 (144) 

The fluid velocity vector has expansion, shear, and acceleration given by 

|  x/2] ( l - x )  -U4 t -i - �89 ~ x )  

- ( 2 -  -}x)(1 - x) ll2] (1 - x) -sl4 t -Uz 

O2 ~--- 1 1--~ [(2 - �88 + (2 - 3 x )  (i - x)1/212 (1 - x) -s12 r -2 t -1 

a u =- -~ [xr -i +4(1  - x ) t  -l/~ ] (1 - x) -a/~- {[1 - (1 - x) 1/2 ] t-l /2,  0, X, 0} 

w Viscous Fluid Only 

Suppose that the electromagnetic field in the field equation (3) is zero, so 
that we seek perfect fluid space-times which also satisfy the field equations for 
a viscous fluid. Putting Euu = 0 in equation (9) we have 

2~Touv =-Mvu% + Nuuu v - �88 N)guv + quuv + qvu u (145) 

and equation (11) becomes 

qu =Ma(ou- auu) (146) 

so that 

Q --Ma/3 (147) 

which shows that N > M. 

a2 = __M+3N fla = 3 ( N - M )  (148) 
4M ' 4M 

and equation (41) holds. Equation (12) Nves 
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We choose the local tetrad frame in which the perfect fluid 4-velocity has the 
comoving form v i = (- 1,0,  0, 0). Then ui = (- ce, u f , u2', ua'), qi = (/3Q, -Ma2  u ( , 

-Ma2u2  ,, -Ma2u3, ) ,  and the tetrad components of  the shear tensor are 

2r/ao'o' = - } (AT- M) t32 

2rlao'a' = �89 (IV - M )  aUa, 
(149) 

2rlaa'a' = I ( N -  M ) -  �89  + N )  ua '~ 

2rlaa, b, = -  I (M + N ) u a ,  U b, 

where a, b take the values 1,2,  3, and there is no summation over the repeated 
suffix. 

In seeking a solution, we first note that if we put Ao = 0 in Example 4, we 
have a viscous fluid solution which satisfies the necessary conditions, and so pro- 
vides an example of  the present case. However, if we put Ao = 0 in the o the r  
examples we do not obtain viscous fluid models since the solutions degenerate 
into the original perfect fluid models. We shall give another example of  a solu- 
tion containing viscous fluid only by considering the special case in which u2' = 
ua' = 0, so that u i = (-a,/3, 0, 0) and qi = Q(r  0, 0). The expressions (149) 
reduce to 

2~?ao'o' = - �89 (N - M)/32, 2~7ao'1' = �89 ( N -  M) a/3 
(150) 

2r~afl' = - �89 (N - M) a 2 , 2r~a2'2' = 2r~oa'a' = �88 ( N -  M) 

Example  6. Consider the rotating dust solution with metric [6, Section 
19.21 

ds 2 = - (dt - add)) 2 + dr 2 + r(d~b 2 + dz 2) (151) 

for which v u = (1, O, 0, 0) and p = r -2 . The nonzero components of  the tetrad 
and its inverse that diagonalize the Einstein tensor are 

= = = r l / 2  = r l / 2  e~ 1, e~ = - g ,  e l ' l  1, e2 '2  , ea ' a  
(152) 

eo ,~ = 1, e2 ,~ = a t  -112 , el ,1 = 1, e2 '2 =r  -112, ea 'a =r -a/= 

where the coordinates are labeled (t, r, r z) = (x ~ , x 1 , x 2 , x a ). 
For the viscous fluid solution we choose as the local 4-velocity ui = (- a,/3, 

09 0), where a and t3 are constants. The coordinate components are 

u u = (a,/3, O, 0), u u = ( - a ,  13, otz, O ) (153) 

and the tetrad components of the shear tensor calculated from u u are 

, = 1 -1 ao,o,=-�89 -1, Oo, x ,=}a /32r  -1 o f ~ , = - l a 2 / 3 r  -1, cr2'2'=aa'3 ' ~ - 1 3 r  

(154) 
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which are .in accord with the expressions (150) if 

3 ( N -  M) = 4r~/3r -1 

Since N > M it follows that we must have/3 > 0. 
The tetrad components of the field equations are 

r -2 = p a  2 + fi*/3~ + ~/33r-1 - 2Qa/3 

0 = - ( ~  + p*)  a/3-  ]r~a/32r -I + Q(a 2 +/32) 

0 = -fi/32 + ~ . a ~  + ~rla2/3r-1 _ 2Qa/3 

o = f i*  - � 8 9  -1 

which yield 

871 

(155) 

(156) 

= a2r -2 , p* = 1/32r-2 (157) 

rl =/3r -1 , Q = a/3 r-2 (158) 

which are all positive. The coordinate components q ,  are 

q~ = a /3r -2( /3 , -a , - /3z ,  0) (159) 

and, if T = T(r), equation (33) leads to 

K T' =/3r -2 (160) 

where the prime denotes differentiation. Thus T must be an increasing function 
of r in order that • > 0. The dominant energy condition is satisfied by the origi- 
nal perfect fluid stress-energy tensor and so is satisfied by the viscous fluid stress- 
energy tensor. 

Hence, we have shown that the rotating dust model (151) also satisfies the 
viscous fluid field equations with 4-velocity given by equation (153), and the 
various physical quantities by equations (157)-(160). The fluid velocity vector 
has no acceleration, but has nonzero expansion, shear, and vorticity given by 

= /3F -1  , O" = 1 ( 3 ) 1 / 2  /3F-1 , r = 1 O/ 

w Conclusion 

In general relativity theory an exact solution of the field equations consists 
of two parts, namely, the geometrical part, which is the space-time metric, and 
the physical part, which consists of the values of the density, pressure, 4-velocity, 
electromagnetic field, etc. What we have shown is that the geometrical part of an 
exact solution of the field equations for a perfect fluid can be identical to the 
geometrical part of an exact solution of the field equations for a viscous mag- 
netohydrodynamic fluid. The physical parts of the two solutions are different 
but are related by the fact that the total contribution to the stress-energy tensor 
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in each case will be the same. Thus, given the geometrical part of the solution, 
we do not necessarily have a unique result for the physical part of the solu- 
tion. In fact, there may be many possibilities for the physical part of the 
solution, since, for the viscous magnetohydrodynamic case, there is often some 
freedom of choice in the velocity vector components resulting in a number of 
possible solutions associated with the same space-time metric, as shown by Ex- 
ample 5 of this article and Example 1 of [1 ]. Hence, there may exist many al- 
ternative physical interpretations of the space-time solutions which we normally 
regard as describing perfect fluid distributions. 

These alternative physical solutions may be described mathematically in the 
following manner: Consider the Raychaudhuri equation [6, Section 6.2] 

RuvuUu v =aU;u + couvwuv- ouvouv- O;uu u -  �89 2 

which relates the Ricci tensor to a timelike unit vector field and its associated ki- 
nematical quantities. IfRuv is the Ricci tensor of a perfect fluid space-time, then 
our work shows that, in general, there are many timelike unit vectors satisfying 
this equation. One of these is the 4-velocity of the perfect fluid solution, and the 
others are the 4-velocities of the various viscous and/or magnetohydrodynamic 
exact solutions which share the same space-time geometry. 

Most of the examples that we have given are based on spatially homogeneous 
cosmological models. In such models there is a preferred observer moving along 
the unique timelike eigenvector, v ~ = (1,0, 0, 0), of the Ricci tensor. In the 
usual perfect fluid interpretation of the model, the preferred observer views the 
universe to be filled with a perfect fluid which is comoving with him. In the 
alternative interpretations, the preferred observer views the universe to be filled 
with a viscous magnetohydrodynamic fluid which, in general, is not comoving 
with him but whose total stress-energy is the same as that of the perfect fluid. 
In the particular case of Example 3, the preferred observer actually sees either a 
perfect fluid, or a viscous magnetohydrodynamic fluid, comoving with himself. 

Note that, as in [1 ], although the constituent physical parts of the perfect 
fluid solution inherit the symmetries of the spacetime, i.e., their Lie derivatives 
with respect to the Killing vectors vanish, the constituent physical parts of the 
viscous magnetohydrodynamic solution do not necessarily inherit these sym- 
metries, although,of course, the total stress-energy tensor does. For example, 
the Einstein-de Sitter universe of Example 4 is homogeneous and isotropic, but 
the 4-velocity, and the electric and magnetic fields of the viscous magnetohy- 
drodynamic solution are not isotropic. 

Attempts have been made to consider the effects of viscosity and heat con- 
duction in cosmological models by perturbations of standard perfect fluid 
models [7]. However, we have shown that perturbations are not necessary to 
introduce these effects; we can obtain exact solutions of the imperfect fluid 
field equations without any change in the metric of the perfect fluid solution. 
In a sense our methods can be thought of as a generating technique for ob- 
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taining new solutions from old in which only the physical part of  the solution 
changes. Using this technique, solutions of  a set of  apparently unpleasant field 
equations can be found with remarkable ease. 

The possible effect of  these alternative exact viscous magnetohydrodynamic 
solutions in theoretical cosmology is currently under investigation. 
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