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w Introduction 

The scheme we wish to propose has been discussed in detail in "Singular 
Space Times," by G. F. R. Ellis and B. G. Schmidt [Gen. Rel. Gray., 8, 915 
(1977)]. It is also discussed in [9]. Ellis and Schmidt's paper gives the basic 
ideas of the classification; it shows briefly the difference between the singularity 
types differentiated by the proposed classification, namely quasi-regular singu- 
larities (as in a cone, for example), nonscalar singularities (as can occur in a plane 
wave), and scalar singularities (as in the Schwarzschild and Robertson-Walker 
solutions). 

This classification enables certain theorems to be proved regarding generic 
behavior, existence, and stability; these theorems are discussed in the paper by 
C. J. S. Clarke (and see also [9] ). 

w (2): Definitions 

Given a C k space-time (M, g) in general relativity, 1 the existence of incom- 
plete inextendible geodesics or other curves indicates that the space-time has an 
edge [1,2]. One can then attach a set aM to M representing the set of boundary 

1C/C is the differentiabil i ty of  the  curvature  tensor  (differentiabil i ty requi rements  are dis- 
cussed briefly at the end o f  this section). In  general we assume tha t  A = 0 (this makes  no  
essential difference to our discussion). 
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points 2 of  the space-time, by the b-boundary [3] or similar constructions. 
Each curve 7(0) in M that is incomplete when v is generalized affine parameter 
ends at a point q E aM; and at least one such curve ends at each point q E aM. 
We let Fq denote the family of  incomplete curves in M ending at q. More pre- 
cisely, Fq is the maximal set of  rectifiable curves in M such that for each curve 
7(0) E Fq,  v is a generalized affine parameter and 30+: 7(v) C M for v E [0, o+), 
and 7(o+) = q).3 Then for each q E aM, Fq is a nonempty  set. 

The existence of such boundary points poses a problem for any space-time 
theory; for if a timelike curve ends at a point q E aM, then a particle moving on 
this world line finds that its possible future suddenly comes to an end. I f  it 
starts at such a point, it begins with no previous history. Clearly we need to 
understand how such beginnings and ends occur. 

The different wayg the space-time can go wrong on aM can be partially 
understood by using the classification scheme shown in Figure 1 (developed, as 
a result of  useful discussions with J. Ehlers, f rom related schemes in [2],  [5],  
and [61). 

In the first place, the space-time may simply not have been extended far 
enough. We will call the point q E aM a C r regular boundary point (r /> 0 - )  if 
there is an extension [2, 7] of  the space-time (M, g) into a larger space-time 
(M',  g')  such that the Riemann tensor of (M,  g) is defined and is C r, and q is an 
interior point o f M ' .  Thus in this case there is no barrier to extending the space- 
time further; the singularity is "removable." We will call q E aM a C r singular 
boundary point (r >1 0- )  if it is not a C r regular boundary point; so in this case 
it is not possible to extend (M, g) through q in a C r way. 

I f  q is a singular boundary point of  (M, g), it may sometimes be that this is 
because the space-time curvature prevents one from making an extension. We 
will call q E aM a C k (or C k-) curvature singularity (k ~> 0) if there is a curve 
7(0) E Fq such that when an orthonormal tetrad {Ea(v)) parallel along 7(v) is 
used as a basis, at least one curvature tensor component  Rabccl; e 1 . . .  ek(v) does 
not  behave in a C O (or C o - )  way on [0, v+]. Clearly this is a singular boundary 
point, for the curvature tensor could not be badly behaved in a parallel frame 
on [0, v+] if an extension 7 through 7(v+) were possible, for then 7(v+) would 
just be a regular point on the extended curve "y. Thus this condition (called a 
"p.p. curvature singularity" in [2] ) is sufficient to show that the local properties 
of  the space-time are badly behaved as one approaches q. 

On the other hand, there may be boundary points q C aM at which no ex- 
tension is possible even though the total geometry is perfectly well-behaved as 
one approaches q; this occurs, for example, at the vertex of  a cone. We will call 

2 aM is the set of boundary points at a finite distance from points r E M. It will not repre- 
sent points "at infinity" such as are contained in the conformal boundary of Geroch, 
Kronheimer, and Pertrose [4] .__ 

3 Strictly, we refer to curves in M =- M u aM contained in M except for an endpoint on aM 
and such that their restriction to M is rectifiable. 
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a singular boundary point q E M a C k (or C k-) quasi-regular singularity (k >1 O) 
(called a "locally extendible singularity" in [5],  [6] ) if it is not  a C k (or C k-) 
curvature singularity. Therefore in this case the curvature tensor components 
Rabcd;e~ . . .  ek(V) measured in a parallel frame {Ea(v)} behave in a C O (or 
C ~ way on all curves 3'(v) @ Fq, and the space is locally weU-behaved near q, 
even though q is an irremovable singularity. 

A curvature singularity necessarily occurs if some physical quantity (e.g., 
the density or pressure o f  a fluid) or some curvature tensor invariant (e.g., 
RabcaR abed) is badly behaved as one approaches q. We will call a point q E aM a 
C k (or C e-) scalar singularity (k ~> 0) if there is a curve 7(v) E Fq on which some 
C Ic curvature scalar field (i.e., polynomial scalar field constructed from the 
tensors gab, rlabed,Raoca;el . . .  ek o n M )  does not  behave in a C O (or C ~ way 
on [0, v+]. In this case (called a "s.p. curvature singularity" in [2] ), irrespective 
of  the choice of  C k orthonormal tetrad used as a basis along 7(v), at least one 
curvature tensor component Rabcd;e 1 . .. ek(V ) does not behave in a C O (or C ~ 
way on [0, Vo ] ;therefore such points are necessarily Ck-curvature singularities. 

On the other hand, there may be singular points for which no scalar invariant 
field causes any obstacle to extension, but it is still the curvature that causes 
problems. We shall call a curvature singularity q E OM a C k (or C k-) nonscalar 
singularity (k ~> 0) if it is not  a C k (or C k-) scalar singularity. This situation can 
arise in the following way: suppose that along every curve approaching q, there 
is some Ck-orthonormal tetrad (yi(v)} such that all curvature tensor components 
R a b c d ; e  1 . . .  ek(V ) are well-behaved on 7(v) as v ~ v .  when this tetrad is used as 
a basis; then clearly no scalar singularity occurs at q. A nonscalar singularity can 
occur if on some curve 7(v) E Fq this basis is related to a parallel propagated 
basis {Ea(v)} on 7(v) by a Lorentz transformation Aia(v) which is badly behaved 
as v ~ v+, i.e., if yi(v) = Aia(v) Ea(v ) where at least one of  the functions Aia(v) 
fails to be C k (or C k-) on [0, v+]. In this case, the curvature tensor is "welt- 
behaved" as one approaches q in that its components are perfectly regular when 
(Yi} is used as a basis; but the curvature measured in a parallel propagated frame 
can be badly behaved. (When a nonscalar singularity arises in this way, it is the 
same as the "intermediate singularities" of  [5],  [6] .) 

Each of  these boundary behaviors is rather different in character. While 
examples of  each of  them are known, little is known about their general proper- 
ties; and unfortunately the singularity theorems of  Hawking and Penrose [8, 2],  
which prove the existence o f  boundary points under a wide variety of  circum- 
stances, do not specify which kind of  behavior is likely to occur. 

We do not claim that quasi-regular or nonscalar singularities discussed are 
likely to occur in physically realistic situations; rather we claim that only when 
we understand which singularities can occur in general space-times or in space- 
times with the field equations satisfied for particular matter content can we 
hope to discuss fruitfully their occurrence, equations of  motion, and so on. 

Two t-real remarks: First, it may (in the case of  scalar and nonscalar curvature 
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singularities) be useful to refine the classification to discuss whether the singu- 
larity is a matter singularity (if it is the Ricci tensor that causes the problem) 
and whether the relevant components are unbounded (a divergent singularity) or 
bounded (an oscillatory singularity). We shall sometimes use such further sub- 
divisions in this paper when we consider curvature singularities. Second, our 
classification depends on the differentiability assumed. We assume that the 
Hausdorff manifold M is C a, that (cf. [10] ) the metric components guy are 
continuous with locally bounded weak derivatives, and that the curvature tensor 
components R X~vo are C k (or C k-) functions. Then we call (M, g) a C k (or C k-) 
space-time (k ~> 0). Here, C k- (k ~> 1) means that the (k - 1)st derivatives obey 
Lipschitz conditions, while C ~  means locally bounded. 

We will fisually be interested in C O space-times (when there exist coordi- 
nates in which guy are C 2 functions [10] ) or C O- space-times (when there are 
coordinates in which guy are C 2- functions [ 10] ), corresponding to continuous 
or locally bounded Riemann tensors. The second case admits shock waves, but 
the first does not. 

w Singular Plane Waves 

The quasi-regular singularities are represented by cone singularities and the 
Taub-NUT singularity [ 11 ]. Scalar singularities are represented by the R = 0 
singularity in Friedmann universes and the r = 0 singularity in the Schwarzschild 
solution. These are quite familiar; we concentrate here on an example of  a non- 
scalar singularity, as these are less familiar. 

The plane wave exact solutions of  Einstein's empty  space field equations can 
be given in the form [12] 

ds 2 = dx 2 + dy 2 + 2dudo + 2H(x, y ,  u) du 2 

H(x,  y ,  u) = �89 {(x 2 - y2)  cos 0 (u) - 2xy sin 0 (u)} (3.1) 

where -oo < x , y ,  v < oo and A(u), 0 (u) are arbitrary C 1 functions on some open 
interval ICR. Using the orthonormal frame (Ea} as a basis, where 

E1----~x' E2-=~yy ' E 3 = x ~  ~uu ( I - H )  E 4 -  ~ u - ( I + H )  

we see that the curvature tensor components take the form (characteristic of  a 
type N Weyl tensor) 

El l  = -E22 = -H12 = -H21 - a(U), 

El2 =E21 = n i l  = -H22  - 3(u), 

Rab = 0 

E,j = o 

otherwise 

(3.2) 
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where Ea~, and Hab are the "electric" and "magnetic" parts of  the Weyl tensor 
defined by Eac - Ca4 c4, Ha~ =- 1 ~7a4 efCef4t,, and 

a(u) = A (u) cos 0 (u), /3(u) = A(u) sin 0 (u) (3.3) 

The tetrad (Ea} is parallel propagated along the timelike geodesic {x = y  = 0, 
u = v = s/x/~} which has E 4 a s  the tangent vector (note that H = 0 on this 
curve). This geodesic is equivalent to every other timelike geodesic because of  
the invariance of  the space under a five-parameter group of  isometries [ 12] ; the 
components (3.2), (3.3) of  the tensor Eab are therefore just the physical compo- 
nents of  the tidal force felt by any observer freely falling in this space-time. 

We may further introduce the orthonormal tetrad field (y/}, where 

Yl = COS 21-" 0 (/./) E 1 + sin �89  E2 

Y2 : cos �89  E2 - sin 1 0 ( u )  E, 

Y3 = cosh ~(u) E3 + sinh ~(u) E 4 

Y4 = cosh ~(u) E4 + sinh ~(u) E3 

Here 0 (u) is given by (3.1), and ~(u) is an arbitrary C 1 function of  u. With this 
tetrad as a basis, the curvature tensor again has the form (3.2), but now 

a(u) =A(u)  exp 2~(u), /~(u) = 0 (3.4) 

These space-times are geodesically complete i fA(u)  and 0 (u) are C 1 func- 
tions defined for - oo < u < 0% i.e., if I-= R (see [ 12] ); but they are geodesically 
incomplete with C O or C O- nonscalar singularities if either A(u) or 0 (u) are 
badly behaved at some finite value, say at u = u+. Then the curvature tensor 
components in a parallel frame [given by (3.2), (3.3)] are badly behaved, so a 
curvature singularity occurs as u ~ u + ;  however, (3.4) shows the existence of  
tetrads (Yi} for which the curvature is perfectly regular. For example, we could 
take ~(u) = - 1 log ( IA(u)])  whenA ~ 0 and ~(u) = 0 whenA = 0; then a = +1 
i fA > 0, a = - 1 i rA < 0, and a = 0 i rA  = 0. However, this tetrad field is dis- 
continuous when A ~ O, so it is preferable to take, for example, ~ = - 1 log 
(1 +A2) ;  then in the frame {Yi} one has 

a(u) =A(u)"  {1 +A2(u)} -1 , /~(u) = 0 (3.5) 

so the curvature tensor components are continuous and bounded by + { at all 
values of  u for which A(u) is defmed. Calculating any C O curvature scalar with 
this tetrad as a basis shows that they are bounded for u E [0, u+] ; and they can 
at worst be C ~ on this interval. 

A particularly interesting case is the C o nonscalar singularity when A = cu-2, 
0 = 2K log u(c, K constants, c > 0), for these are homogeneous space-times 
invariant under a transitive six-dimensional group ofisometries [12].  An obser- 
ver falling into the singularity on a geodesic (e.g., that generated by E4) will 
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feel unbounded tidal forces in a finite time; however, an observer moving arbi- 
trarily near the singularity a on an integral curve of  Ya will feel perfectly finite 
tidal forces. (However, he may feel very large inertial forces). This example is 
in contrast to the situation in positive definite spaces, when a homogeneous 
space is necessarily complete and therefore singularity-free. 

w The Effect o f  Curvature Singularities 

Of primary importance is the fact (Section 2) that a singularity can lead to 
an observer's future suddenly coming to an end. In the case of  a curvature 
singularity this may be accompanied by the observer and his apparatus being 
torn to pieces before reaching the singularity; a graphic description of  this 
process for an observer falling into the (conformal scalar) singularity at r = 0 
in the Schwarzschild solution is given in Section 32.6 of  [13].  In the principle 
this is the additional danger that threatens on any curve running into a curva- 
ture singularity. (Clearly it does not happen at a quasi-regular singularity.) 
Accordingly we can attempt to divide curvature singularities into weak curva- 
ture singularities-ones such that some object falling into the singularity can 
arrive intact at the singularity-and strong curvature singularities, where this is 
not possible. 

To decide what happens to an object falling on a geodesic 7(r) into a curva- 
ture singularity at r = r+, one approach is to use the same classical methods 
(based on the geodesic deviation equation) as in the calculations for gravitational 
wave detectors (see, e.g., Section 37 of  [13]). Suppose the object is a metal 
bar with amplitude bn(r ) for the nth normal mode, where r is proper time 
measured along its world line. Then this amplitude satisfies the question 

d2Bn 2 dBn 
- -  + - -  + Con2Bn = Rn(r  ) (4.1) 
dr 2 r n dr 

where rn is a damping constant for the mode, con is an angular frequency, and 
Rn(r  ) is the curvature-induced driving term. (It is Rio ko (r)13' in an appropriate 
parallel propagated orthonormal frame, s multiplied by a suitable moment-of- 
inertia factor describing the properties and orientation of  the bar: see Box 37.4 
and Example 37.10 of  [13] .) Define ~n - con( 1 - rn-2con-2) 1/2" Then the 
general solution to (4.1) is 

I 

Bn(r)=xn(r)Bn [ + Yn(r) 
dBn 

o d r  o + z . ( r )  (4.2) 
I 

4 Moving at a point p E M in any open neighborhood v c .~ of the singularity q ~ 0M. 
SWe assume for the moment that the bar falls so that the principal axes are parallel propa- 
gated along the geodesic 3'. 
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where the complementary functions Xn,Yn are given by 

Xn(r) = exp {-r/rn} cos (cSn) +-  
(.tinT" n 

yn( 'C)=exp(-r /%}{  l=--sin(~n'r)}COn (4.3b) 

and the particular integral Zn(r ) is 

yo zn(r) = a, , (r -  u)Rn(u ) du, Gn(~) = 1 sin (~n~)  exp {-~/rn} (4.4) 
COn 

The crucial question is whether these amplitudes remain finite as the bar falls 
into the singularity; more realistically, do they remain below the elastic limit 
for the bar in question? Since xn andyn  are well-behaved, as a first step we can 
simply consider whether the integral (4.4) is finite for all n. If  it is finite, one 
may think that a strong enough bar will not be destroyed before v -+v+. Conse- 
quently we may proceed as follows: we can mentally let a bar fall down the 
geodesic 7. If  z n is finite as r -+z+  for all n, the bar does not disintegrate (unless 
we have bad luck with the convergence of  the Fourier series for the total dis- 
placement), and the curvature singularity is weak. I f  not, we need to try a 
stronger bar; and if we are convinced that no "real" bar could survive, it is a 
strong curvature singularity. Thus a Mark I detector is just a selection of metal  
bars; the advanced Mark II detector would have strain gauges added (just like 
the gravitational wave detectors, but with different sensitivity!) to give some 
advanced warning of  the imminent disintegration of  the bar. 

To make the discussion specific, let the bar fall on a geodesic in a plane wave 
space-time; then F n (r) is an arbitrarily disposable function of r (by appropriate 
choice of  the functions A(u), 0 (u) in (3.1)). Suppose Fn(u ) = sin u -1 , a C O (but 
not C O- ) curvature singularity. Now the bar will respond to this with finite 
oscillations in each mode as sin u-1 sweeps through the resonant frequency of  
that mode; but the oscillations in each mode will die away as the frequency 
increases (c.f. Box 37.4 of  [13] ) beyond the resonant frequency. Clearly any 
reasonably strong bar will survive this treatment.  Similarly any C O (but not 
C ~ curvature singularity will be a weak curvature singularity. Now consider 
infinite oscillations, for example Fn(u ) = u -1 sin u -1 . Again the forcing term 
sweeps through the frequency band; and even though the amplitude is divergent, 
once it has passed the resonant frequency the forcing term will have a negligible 
effect on a given mode. Hence it is conceivable that some classical bars could 
survive such treatment if their microscopic structure was suitable (the question 
would be how rn depended on n). Now one should note that oscillations are not 
necessary for the argument to apply: even for a monotonically divergent forcing 
term Fn(u), the finite response time of the bar could allow it to survive a C o- 

sin (c~nr)} (4.3a) 
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singularity if the force increases so fast that the bar does not have time to re- 
spond to it. An interesting example is the Schwarzschild solution. The discus- 
sion in Section 32.6 of [13] does not consider the response time, but is based 
on the fact that the forcing term F n a r  -3 , where r is the Schwarzschild co- 
ordinate. For an object freely falling into the singularity at r = 0, proper time r 
along the geodesic world line goes as r 3/2 , so the forcing term F n a r  -2 . This is 
just sufficient to make z n diverge (roughly, we integrate F n twice, obtaining a 
logarithmic divergence). Thus the picture presented in [ 13] is correct, but only 
just so: if the object could fall in rather faster, it could escape destruction be- 
fore hitting the singularity! 

One can ask whether there are other ways the bar could escape destruction. 
One possibility is that a very thin bar would not be destroyed if it could main- 
tain its direction relative to the principal axes of the tidal force, so that there 
were no tidal tension or compression forces along the bar. The trouble here is 
that divergent forces would have to be exerted to keep the bar from rotating 
out of such a preferred direction. A second possibility would be to utilize 
rotation, so that before the bar had had time to respond to extending tidal 
forces (when aligned along one set of principal axes of tidal forces) it would 
have rotated and already been subjected to compressing tidal forces. That is, 
rotation of the bar relative to a parallel frame could effectively introduce oscil- 
lations in the term F n .  However, it seems one could not prevent destruction this 
way because the resulting centrifugal forces would then have to diverge as v 
o+! While these methods do not avoid destruction, they are interesting because 
they indicate that one cannot ultimately discuss the effects of tidal forces near 
a singularity without considering inertial forces as well (c.f. the discussion in 
[14] and [15] ). Again, in certain situations (see, e.g., the plane wave discus- 
sion), the inertial effects caused by nongeodesic motion near a singularity may 
become important. 

w C o n c l u s i o n  

We have presented a classification of singularities in general relativity that we 
believe usefully separates classes of singularities with very different behaviors. 
Many points need clarifying, for example, the question of the existence and 
stability of the various kinds of singularity in astronomically relevant situations 
and the relation of this classification to the questions raised by Taub (see 
his comment later in this section). 

R e f e r e n c e s  

1. Geroch, R. P. (1968). "What is a Singularity in General Relativity?" Ann. Phys. (N. I1. ), 
48,526. 



SINGULAR SPACE-TIMES 997 

2. Hawking, S. W., and Ellis, G. F. R. (1973). The Large-Scale Structure o f  Space-Time, 
Cambridge University Press, Cambridge. 

3. Schmidt, B. G. (1971). "A New Definition of Singular Points in General Relativity," 
Gen. Rel. Gray., 1,269; 1973. "The Local Completeness of Space-Time," Commun. 
Math. Phys., 29, 49. 

4. Geroch, R., Kronheimer, E., and Penrose, R. (1972). "Ideal Points of Space-Time," 
Proc. R. Soe. London Ser. A, 327, 545. 

5. Clarke, C. J. S. (1975). "Singularities in Globally Hyperbolic Space-Times," Commun. 
Math. Phys., 41, 65. 

6. Ellis, G. F. R., and King, A. R. (1974). "Was the Big-Bang a Whimper?" Commun. 
Math. Phys., 38, 119. 

7. Clarke, C. J. S. (1975). "The Classification of Singularities," Gen. Rel. Gray., 6, 35. 
8. Hawking, S. W., and Penrose, R. (1970). "The Singularities of Gravitational Collapse 

and Cosmology," Proe. R. Soe. London Set. A, 314,529. 
9. Clarke, C. J. S., and Schmidt, B. G. (1977). "Singularities, the State of the Art," 

Gen. Rel. Gray., 8, 129-137. 
10. Clarke, C. J. S. (1976). "On the Differentiability of Space-Time," preprint MPI-PAE/ 

Astro 80, Max Planck Institute for Physics and Astrophysics, Munich. 
11. Misner, C. W. (1967). "Taub-NUT Space as a Counterexample to Almost Anyting," 

in Relativity Theory and Astrophysics. I: Relativity and Cosmology, J. Ehlers, Lectures 
in Appfied Mathematics, vol. 8, American Mathematical Society, Providence, Rhode 
Island. 

12. Ehlers, J., and Kundt, W. (1962). "Exact Solutions of the Gravitational Field Equa- 
tions," in Gravitation, edited by L. Witten, Wiley, New York, p. 49. 

13. Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973). Gravitation, Freeman, San 
Francisco. 

14. Fishbone, L. G. (1973). "Relativistic Roche Problem," Ap. J., 185, 43. 
15. Faulkner, J., and F1annery, B. P. (1978). "Tidal Fields in General Relativity: D'Alem- 

bert's Principle and the Test Rigid Rod,"Astrophys. J., 220, 1125. 


