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A b s t r a c t .  An entropy is conceived as a functional on the space of probability 
distributions. It is used as a measure of diversity (variability) of a population. 
Cross entropy leads to a measure of dissimilarity between populations. In this 
paper, we provide a new approach to the construction of a measure of dissim- 
ilarity between two populations, not depending on the choice of an entropy 
function, measuring diversity. The approach is based on the principle of ma- 
jorization which provides an intrinsic method of comparing the diversities of 
two populations. We obtain a general class of measures of dissimilarity and 
show some interesting properties of the proposed index. In particular, it is 
shown that  the measure provides a metric on a probability space. The pro- 
posed measure of dissimilarity is essentially a measure of relative difference in 
diversity between two populations. It  satisfies an invariance property which 
is not shared by other measures of dissimilarity which are used in ecological 
studies. A statistical application of the new method is given. 

Key words and phrases: Diversity, dissimilarity, cross entropy, majorization, 
Schur-convexity, ranking and selection. 

1. Introduction 

Divers i ty  is a generic t e r m  used for var ia t ion in the da ta  set (populat ion) .  
There  is an extensive l i tera ture  on the measu remen t  and analysis of diversity. A 
comprehensive  bibl iography of papers  on this subject  has been compiled by Dennis 
et al. (1979). Pat i l  and Taillie (1982) have given an interest ing exposi t ion of the  
concept  of diversity. Rao (1982a, 1982b) has developed a unified approach  to 
the  measu remen t  and analysis of diversi ty based on en t ropy  functions. He has 
in t roduced a new measure  of diversity, called the quadra t ic  entropy, which is well- 
sui ted for s tudying diversity. Some na tu ra l  condit ions which a diversi ty measure  
should satisfy imply  t ha t  it mus t  have cer tain convexity proper t ies  (Rao (1984)). 
The  convexi ty  p rope r ty  leads to  a meaningful  measure  of dissimilari ty between 
populat ions .  

The  Gini-Simpson index (GS), due to Gini (1912) and  Simpson (1949), and 
Shannon ' s  en t ropy  (SE) due to Shannon (1948) are two well-known measures  of 
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diversity of a multinomial population :r, given by 

k k 

GS = 1 - E P~ and SE = - E Pi log pi 
i=1 i=1 

k 
where P l , . . . , P k  denote the cell probabilities associated with ~r and Y~i=l pi = 1. 
More generally, we conceive of diversity as a functional on the space of probabili ty 
distributions. Let 7' be a convex set of probabili ty measures defined on a measure 
space (X, B), and let P E P.  The quadratic entropy due to Rao, is defined as 

Q(P) = / K(x, y)dP(x)dP(y) (1.1) 

where K(x, y) is a measurable kernel defined on 2( x X, satisfying the condition 
(conditionally negative definite) tha t  

(1.2) Z K(x ,xj)aia  < 0 
i j 

n 
for all x l , . . . ,  xn C X and all real numbers a l , . . . ,  an such tha t  ~ i = 1  ai = 0. If, 
for example, X = T4 1, K(xl, x2) = (xl - x2) 2 and P = N(#, a 2) then Q(P) = 2or 2 
is the variance functional of P.  For another  example, let X be a space of k points, 
P be the probability measure associated with a multinomial populat ion :r and 
K(xx, x2) = 0(1) if xl  = (¢)x2. Then (1.1) leads to the Gini-Simpson index GS. 
Lett ing K(Xl,X2) be a measure of difference between Xl and x2, a motivation 
for the expression (1.1) is tha t  it represents the average difference between two 
individuals drawn at random from the population specified by the probabili ty 
measure P. 

Let H be a diversity measure defined on 7 9. It is a natural  requirement tha t  
H be concave on 79, since the diversity of a mixed population should not be 
smaller than  the average of the diversities within the individual populations. Let 

k 
P 1 , . . . ,  Pk E 79 with prior probabilities A1, . . . ,  Ak, where Y~i=l Ai = 1. Consider 
the difference between the diversity of the mixed population and the average di- 
versity within populations, given by 

k 

(1.3) DH(P1,..., Pk) = H ( P )  - E AiH(Pi) 
i=1 

where /5 k = }-~i=l AiPi. The difference is non-negative if H is concave on 79. It is 
a measure of overall differences among the probability measures Pi. Rao (1982a) 
has called it the Jensen difference. For k = 2 and ,~1 = '~2 = 1/2, we have 

(1.4) DH(P~,P2):H(PI+2tv2) - I H ( p 1 ) - I H ( p 2  ). 

We shall refer to DH(P1, P2) as the dissimilarity between P1 and P2, induced by 
the diversity measure H.  The dissimilarity measure is non-negative and symmetr ic  
in its arguments and vanishes when P1 = P2- 
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For example, consider the Gini-Simpson index GS. The dissimilarity between 
k / 2 two multinomial populations 7c and 7r' is given by Des  (Tr, 7/) = (1/4) ~ i = l  (Pi-Pi) 

where Pi (P~) denotes the cell probabilities associated with 7r (~r'). For another 
example, consider the quadratic entropy given by (1.1) with K(zl ,  x2) = (zl-cc2) 2, 
and let P1 = N(#I ,  ~r 2) and P2 = N(#2, ~r2). The dissimilarity between P1 and P2 
is given by DQ(P1, P2) = (#1 - #2)2/2. 

The concavity property of the diversity measure H enables us to apportion 
the total diversity in a population as due to differences between and within pop- 
ulations. More generally, we are given a number of populations grouped in hi- 
erarchical classifications. Given the distributions within populations and their 
a priori probabilities, we are required to compute the average diversity within 
groups at different levels of classification. In this case, we require that DH (P1, P2) 
be convex on 7 )2. A higher order convexity property is required for higher order 
classifications. Rao (1984) has shown that the dissimilarity measure DH (P1, P2) is 
(completely) convex if H is a quadratic entropy, given by (1.1) and (1.2). A brief 
review of different measures of similarity and dissimilarity between populations is 
given by Gower (1985). 

In this paper, we introduce a new measure of dissimilarity between two distri- 
butions. We shall deal with the analysis of categorical data. Therefore, we shall 
consider only multinomial populations. Our approach is based on the principle of 
majorization which provides an intrinsic criterion for comparing the diversities of 
two multinomial populations, 7c and 7c/, say, with the associated probability vectors 
p and pq We shall denote the dissimilarity between 7r and 7c ~ by ~(p, p~). It will be 
seen that/5(p, pr) is invariant under separate rearrangements of the components of 
p and pt. This is generally not true for the dissimilarity measure given by (1.4). 
The definition of ~(p,p~) is given in Section 2, along with a preliminary discus- 
sion of the theory of majorization. Certain properties of the dissimilarity measure 
are given in Section 3. The definition of iS(p, p~) is based on a choice of a vector 
norm or a matrix norm induced by a vector norm. Specifically, we consider the L 1 

and L2 norms. We denote the corresponding dissimilarity measures by ~(L1) and 
~(L2) for the vector norm and by ~(IL~) and ~(IL2) for the induced vector norm. 
In Section 4, we consider an application of the new methodology to a problem of 
ranking and selection. 

In order to motivate the reader at this stage, we present below the following 
data on the Danish educational aspirations of adolescent boys and girls classified 
in five categories. The data in Table 1 are reproduced from Table 1 of Light and 
Margolin (1971). We have computed from the data the dissimilarity between boys 
and girls (with respect to their educational aspirations), using several measures 
of dissimilarity. The summary statistics are shown in Table 2. We have included 
in the summary statistics the figures for the maximum dissimilarity between the 
uniform distribution (equi-probable categories) and the degenerate distribution 
(single category). 

The standard chi-square analysis for studying the association between sex 
and educational aspiration yields a value of X~ = 47.0 which is highly significant. 
However, we are studying here the dissimilarity between boys and girls with respect 
to the diversity in their educational aspirations. The summary statistics show 
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Table 1. Danish educational aspirations. 

Boys Girls 

Educational Aspirations Number Proportion Number Proportion 

Secondary school 62 0.1902 61 0.2096 
Vocational training 121 0.3712 149 0.5120 
Teacher college 26 0.0798 41 0.1410 
Gymnasium 33 0.1012 20 0.0687 
University 84 0.2576 20 0.0687 
Total 326 291 

Table 2. Summary statistics. 

Gini-Simpson (GS) Shannon's entropy (SE) 

Boys Girls Uniform Boys Girls Uniform 

Diversity 0.7431 0.6646 0.8000 1.4665 1.3144 1.6094 

p(L1) ~(IL1) ~(L2) ~(IL2) DOS DSE 
Dissimilarity between 

A: Boys-girls 0.2817 0.2882 0.1578 0.1746 0.0152 0.0409 
B: Uniform-degenerate 1.6000 2.0000 0.8944 1.0955 0.2000 0.4228 

Ratio A/B 0.1761 0.1441 0.1764 0.1594 0.0759 0.0967 

tha t  the diversi ty in educat ional  aspira t ions  is quite large bo th  for boys and  girls. 
But  the diversi ty is slightly larger for boys, compared  to girls. The  dissimilar i ty 
in diversi ty between boys and girls is also substant ia l ,  equal to abou t  18% of the 
maximal dissimilarity between the uniform and the degenerate  dis tr ibut ions,  based 
on the  measures  #(L1) and #(L2). The  rat io  is between 14% and 16%, based on 
#(ILl) and #(IL2). However, the ra t io  is less t han  10%, based on the  measures  

DGs and DSE. 

2. Dissimi lar i ty  measure # 

A scalar index of diversity, such as an en t ropy  function, imposes a linear 
ordering of popula t ions  wi th  respect  to their  diversities. Two different indices 
may  give different orderings. Therefore,  we look for an intrinsic me thod  of ordering 
diversity. One such m e t h o d  is based on the  principle of major iza t ion .  An excellent 
presenta t ion  of the  theory  of major iza t ion  is given in the t e x t b o o k  by Marshal l  
and Olkin (1979). In the following we shall use the short  no ta t ion  MAO for a 
reference to the book.  Consider  two mul t inomial  popula t ions  7c and  7r ~ wi th  the  
associated probabi l i ty  vectors  p = ( P l , . . .  ,Pk) and pr = ( p [ , . . .  ,p~) respectively, 

k k r ~ < -  < ~ denote  the  where ~i=lPi = Y~i=lPi" Let P(1) < " '"  _< P(k) and PO) - "" - P(k), 
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ordered values of the components of p and pt. We say tha t  p is majorized by p~ 
(p p') if 

m m 

E Z '  2.1) P(i) 2 P(i), m = 1 , . . . , k  - 1. 
i----1 i : 1  

The term domination is sometimes used for majorization. The criterion of ma- 
jorization is used for comparing the diversities of two populations. We say tha t  
7r is more diverse than  7r' if p -< p'. Since ( 1 / k , . . . ,  1/k) -4 p < ( 1 , 0 , . . . , 0 )  the 
uniform populat ion is most diverse and a degenerate population is least diverse. 
An interesting application of majorizat ion principle is given by Lorenz (1905). 
Consider a population of n individuals. Let x = @1, . . . ,  xn) represent the wealth 
of individuals for the distr ibution of a total  wealth W, and let y = (Yl , . . - ,  Yn) 
represent another distribution of the same total  wealth. Let x({) and y(i) denote 
the i-th smallest values among the components of x and y, respectively. According 
to Lorenz, x represents a more even distr ibution of wealth than  y if and only if 

j j n n Ei=l Xi ~ E i = I  Yi, j = 1 , . . . , n  - 1. Of c o u r s e ,  E i = I  Xi = E i = I  Yi" Tha t  is, 
the populat ion associated with the distribution x is more even (diverse) than  the 
population associated with the distribution y (equivalently, the distr ibution y is 
more concentrated than  the distribution x) if and only if x -4 y. 

A function ¢ which is order-preserving wi th  respect to the majorizat ion rela- 
t ion is called Schur-convex in honor of Schur (1923) who was the first to s tudy 
such functions. Tha t  is, ¢ is Schur-convex if ¢(x) < ¢(y) whenever x -< y. If 
the reverse inequality holds, ¢ is called Schur-concave. Schur-concave functions 
have been used as indices of diversity. The Gini-Simpson index GS and Shan- 
non's entropy SE, which have been mentioned in the preceding section are both  
Schur-concave functions. A Schur-concave function is a suitable choice for an in- 
dex of diversity because of its isotonic property with respect to the majorizat ion 
relation. However, the majorizat ion relation is a partial ordering. We may have 
p and p/ such tha t  neither p -< p~ nor p~ ~4 p is true. In this case, ~T and 7r ~ are 
not comparable with respect to their diversities via majorization. We can find 
two Schur-concave functions ¢ and ¢ for which ¢(p) > ¢(p') and ¢(p) < ¢(p ') .  
Tha t  is, 7r would be considered more diverse than  7r ~ if ¢ were used for an index 
of diversity. On the other hand, 7r ~ would be considered more diverse than  7r if ¢ 
were used for the index of diversity. How should we compare the diversities of 7r 
and 7r ~ in this si tuation? We do not know a satisfactory answer to this question. 

Now, we introduce the proposed measure of dissimilarity/5 between the two 
populations 7c and 7r ~. It is known tha t  p -< p~ if and only if there exists a k x k 
doubly stochastic matr ix  Q such tha t  p = Qp' (MAO, Theorem 2 B. 2.). Let D 
denote the set of all k x k doubly stochastic matrices. It is known tha t  :D is the 
convex hull of permuta t ion  matrices (MAO, Theorem 2 A. 2.). Conceptually, the 
diversity associated with p is invariant under a rearrangement of the components 
of p. We shall write p ~ p' if p = Pp', where P is a permuta t ion  matrix.  Let I]'l] 
be a vector norm on T~ k. We shall assume tha t  the vector norm is symmetr ic  in 
the components of the vector. Let 

(2.2) p(p,p')---- inf ]]p-Qp'[[  
QcD 
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and 

(2.3) ~(p,p') = p(p,p') + p(p',p) 

Note that  fi(.,-) is symmetr ic  in its arguments.  Clearly, p(p,p') = 0 if p -< p'. 
Moreover, p(p, pl) = 0 ~ p -~ pt, since the norm is a continuous function and 
the set 7), denoting the convex hull of permutat ions  matrices in the definition 
(2.2) is compact.  Hence #(p,p') = 0 if and only if p -< p' and p' -< p. Now, 
p -~ p~ and pl -< p if and only if p = Pp~, where P is a permuta t ion  matrix. 
That  is p ~ p~. Therefore, #(p,p~) = 0 if and only if p ~ p~. We consider t5 as a 
measure of dissimilarity in diversity between the populat ions 7~ and 7F. Observe 
that  fi(p,p') = liP - P'[I if either p or p' represents the uniform distribution. Let 

= ( 1 , 0 , . . . , 0 )  and let U = ( I / k , . . . ,  1/k), then t5(~,7) = II~ - ~]ll represents the 
maximal dissimilarity between two multinomial populations.  

We have observed that  p(p,p') = 0 if and only if p ~ p'. Therefore, p(p,p') is 
a measure of deficiency in the majorization relation p ~ pt. Let 7r, 7r ~ and 7~", be 
three multinomial populat ions with the associated probabil i ty  vectors p, p~ and p ' ,  
respectively. It can be shown that  p(p,p") < p(p',p~') i fp  -< p'. That  is, p is closer 
to being majorized by p" than p~ is to being majorized by p ' .  Similarly, we can 
show that  p(p,p") < p(p,p') i fp '  -~ p". That  is p is closer to being majorized by 
p" than p is to being majorized by p~. Since p(p, p~) is a symmetr ic  function of the 
components  of p and p~, it follows that  p(p,p~) is a Schur-convex (Schur-concave) 
function of p(p~). But  p(p, pt) is not symmetr ic  in its arguments.  The proposed 
measure of dissimilarity fi(p, p') is obtained by symmetrizing p(p, p'). 

In ecological studies, species composit ion is typically analyzed using various 
measures of similarity, which have been proposed in the literature. We have men- 
t ioned above a class of diversity measures, known as the generalized quadrat ic  
entropy, due to Rao (1982a, 1982b, 1984). The quadrat ic  entropy provides a de- 
composit ion of diversity in the same way as variance is decomposed in the analysis 
of variance (ANOVA). The quadrat ic  entropy is essentially based on the concept 
of a distance or dissimilarity. Smith (1989) has shown that  a class of ecological 
similarity measures, called the expected species shared (ESS), leads to a parti-  
tion of similarity, as the quadrat ic  entropy leads to a decomposit ion of diversity. 
See also Smith et al. (1979) and Grassle and Smith (1976). A salient feature of 
the dissimilarity measure tS(p,p/), we have proposed, is tha t  it is invariant under 
separate (not necessarily the same) rearrangement of the components  of p and p~. 
This proper ty  is not shared by any of the similarity measures which are used in 
ecological studies, such as the ESS. We elaborate  this point below. 

In the example, given above, relating to the Danish educational  aspirations 
of adolescent boys and girls, there are dissimilarities between the educational  as- 
pirations of boys and girls as well as between the diversity of their aspirations. 
However, the index t5 is a measure of relative difference in diversities of two pop- 
ulations. We may construct  an example where the multinomial probabili t ies are 
p = (0.4, 0.3, 0.2, 0.1) for boys and p' = (0.1, 0.2, 0.3, 0.4) for girls. In this exam- 
ple, boys and girls have the same diversity. But ,  whereas tS(p,p ~) = 0 shows no 
dissimilarity between them, the Jensen difference, given by (1.4), assigns a posi- 
tive measure of dissimilarity. Naturally, boys and girls have different preferences. 
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The Jensen difference takes into account the difference in preference for individual 
categories (aspirations), whereas /5 takes into account only the difference in the 
apportionment of the preferences, disregarding the nature of the categories. 

Let p*(p'*) be obtained from p(p~) by adjoining a number of null multinomial 
classes. Clearly, p -< pr ¢=~ p* -< p~*. Therefore, the definition of ~(p,p~) may 
be generalized trivially to include the cases where p and p~ are associated with 
unequal number of multinomial categories. 

3. Properties of/5 

Let Q be a doubly stochastic matrix, and let P1,. • . ,  PN denote the N permu- 
tation matrices, where N = k!. Since Q lies inside the convex hull of P1 , . . . ,  PN, 

N 
we have that Q = AlP1 + " -  + ANPN where Ai >_ 0, i = 1 , . . . ,  N and E i = I  /~i = 1. 
Hence 

(3.1) IIQpll ~ ~IIPlpll + . . .  + ~N[IPNPll 

----- (-~1 J r - ' " -~-  AN)IlPll = Ilplk. 

Consider three multinomial probability vectors p, pr and pU. Let 

P ( P , P ' )  : lip - Qxp' l l  

p(p ' , p" )  = tip' - O2p"LI 

where Q1 and Q2 are doubly stochastic matrices. Since Q1Q2 is a doubly stochastic 
matrix, we have 

(3.2) p(p,p")  = inf I[p-Qp"II 
O~7~ 

<- lip - Q1Q2p"II 

-< lip - 0xp ' l l  + IIQx(p' - Q2p")t l  by  the triangle inequality 

<- LIp - @ p ' l l  + lip' - Q2p"I] by (3.1) 
= p(p, p') + p(p', p"). 

Similarly, p(p",p)  <_ p(p' ,p) + p(p",p') .  Hence,/5(p,p") <_/5(p,p') + /5(p',p"). That 
is,/5 satisfies the triangle inequality. The results given above show that 

THEOREM 3.1. fi(',.) is a metric on the simplex {p : Pi >_ 0, i = 1 , . . . , k ,  
k 1} ~i=1  Pi = • 

3.1 Isotonic property 
The dissimilarity measure t5 is consistent with the majorization criterion in 

the following way. 

THEOREM 3.2. I f  p -< p' -< p" then ~(p' ,p") <_ ~(p,p") and ~(p,p') <_ 
h ( p , p " ) .  
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PROOF. Suppose tha t  p -< p' -< p/,. Let p = Rp' and p' = Sp", where R and 
S are doubly stochastic matrices. We have 

~(p', p") = p(p", p'), since 

= inf l i p " -Qp ' I I  QE79 

< inf lip" - QRp'II, 
- Q 6 Z )  

= inf l ip"-QpII  
QE~ 

= p(p", p) 

= iS(p, p"),  since 

p' -< p" 

since Q R  is doubly stochastic 

,1 p ~ p .  

Next, we have 
~(p, p") = p(p", p) 

= inf l ip"-Opl[  
QED 

> inf l isp" - SQplI, by (3.1) 
- QE~ 

-- inf l i p ' -  SQpll QEz~ 

> inf liP' -- QP][ 
- Oc:D 

= p(p', p) 

=/5(p,p ' ) ,  since p -< p'. 

3.2 Mixture of populations 
Let re' be a mixture of n multinomial populations with the associated proba- 

bility vectors ql, • • •, qn, say. Tha t  is, 

n 

(3.3) p'-- Z hiqi 
i 

n 
where hi _> 0, i = 1 , . . . , n  and ~ i  hi = 1. Assume tha t  the components of p' 
and each qi have been arranged in the same order of magnitude.  It is natural  to 
require tha t  the dissimilarity between rc and re' should not be greater than  the 
average of the dissimilarities between re and the mixing components of rr'. Tha t  
this condition is satisfied by the measure/5, is shown by the following theorem. 

THEOREM 3.3. Let p' be given by (3.3). Then/5(p,p') < ~ hifi(p, qi). 

PROOF. Let Q1, . . . ,  Qn be doubly stochastic matrices, given by 

P(qi ,P)= inf I iqi-QiplI ,  i = 1 , . . ,  n. 
QiE~ 
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n Since ~ i  £iQi is a doubly stochastic matrix, we have 

(3.4) p(p',p) = inf l ip '-Qp]] 
QET? 

n n 

n 

<- Z Aillqi - Qipl] 
i 

=L£iP(q i ,P) .  
i 

Let R I , . . . ,  Rn be doubly stochastic matrices, given by 

p(p, qi)= inf IIp- R~qill, i =  l , . . . , n .  Ri ET~ 

Since Riqi -'4 qi, it follows from (2.1) that ~-]~ AiRiqi -4 ~]~ ~iqi. Hence 

(3.5) p(p,p') = inf - Q Aiqi 
QET) 

P-- ~i )~iRiqi 

n 

i 

= ~ hip(p, qi). 
i 

From (3.4) and (3.5) we have that 

~(p,p') = p(p,p') + p(p',p) 
n n 

i i 

= L Ai~(p, qi). 
i 

3.3 Convexity property 
Consider two pairs of multinomial populations (7rl, 7v~) and (7v2, 7c~) with the 

associated probability vectors (p,p') and (q,q'), respectively. It is a natural re- 
quirement that the dissimilarity between the two mixed populations Ap + (1 - A)q 
and ApP + (1 - /k)q  ~ should not be greater than the average of the dissimilarities 
between 7cl and 7r~ and between 7v2 and 7r~, where 0 < A < 1. That  is, 

(3.6) J I= A~ ( P ,P ' ) +( 1 - A) ~ ( q ,q ' ) - ~ (AP+(1 -A)q ,  AP'+(1-A)q ' )  >0. 



392 K H U R S H E E D  A L A M  A N D  C A L V I N  L. W I L L I A M S  

The above condition implies tha t  the dissimilarity measure fi is a convex function 
on ~r × 7r, the product  space of two multinomial populations. Wi th  A denoting 
the prior probability of the pair (p, p~), J may be interpreted as the difference in 
dissimilarity between the two pairs. The norm I1" II used in the definition of t? 
needs to be chosen properly so tha t  fi is convex on 7r × ~r. 

3.4 Measure of diversity derived from fi 
Rao and Nayak (1985) have considered a derivation of the entropy function 

from cross entropy, a measure of dissimilarity. We can similarly derive a diversity 
measure H from the dissimilarity measure fi, as follows. Pu t  

(3.7) ~(p,p') = lim 1 ),--o ~[H(Ap + (1 - A)p') - AH(p) - (1 - A)H(p')] 

where 0 < A _< 1. Following Rao and Nayak (1985) we assume tha t  H has the 
smooth differentiability property 

H ( A p +  (1 - A)p') = H(p') + Af(p' ,p - p ' )  + o(A) 

where f (p ' ,p  - p') is linear in p - p' and f(p', 0) = 0. Then 

(3.8) ~(p,p') = f (p ' ,p  - p') + H(p') - H(p) 

= f(p,p'  - p )  + H(p) - H(p'). 

k 
Let ei denote the i-th co-ordinate vector so tha t  p = 2 i = 1  piei. Since ei represents 
a degenerate distribution we subst i tute ei for p~ in (3.8), mult iply both  sides by Pi 
and add for i = 1 , . . . ,  k. As f(p, .) is linear in the second argument,  we have 

(3.9) = f + H ( ; )  
i = l  i=1  

= f(p, O) + g(p)  
= H ( ; ) .  

The solution (3.9) for the diversity measure H resembles the representation given 
by Haberman (1982). 

Now ¢5(p, ei) = p(ei,p). Moreover, p(., .) is invariant under separate permuta-  
tions of the components of its arguments.  Therefore, the sum on the left side of 
(3.9) is equal to p(ei,p). Thus, 

(3.10) H(p) =p(ei,p).  

We note tha t  H(p), given here, is a Schur-concave function of p, as it should be. 
Using the Euclidean norm, we get 

H(p) = 1 + p~ + p2 _ 2 max(pl,P2) 
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for k = 2. For k > 2 the computation is rather involved. It would be interesting 
to find a norm for which (3.10) gives a specific solution, such as the Gini-Simpson 
measure of diversity, for example. At this point, we have not been able to find 
such a norm. This is the subject of an ongoing investigation. 

It is interesting also to derive the diversity measure H from the Jensen differ- 
ence DH(p,p'). We solve for H(p) from equation (1.4), as follows. Let p' be fixed 
and let D be a functional operator, giving 

where f is a function defined on the space of probability vectors. Let I denote the 
identity transform. The equation (1.4) is written as 2DH(p,p') = (D - I)H(p). 
Hence (formally) 

2 
H(p) D - fDg~p,p')~ ~ 

o o  

= -2  E D~DH(P'P') + C(p') 
r : O  

provided that the sum exists. Here C(p t) denotes a function of p~. Since 
Dg(p,p t) ---- 0, we have for r = 0, 1 ,2 , . . .  

D°DH(p,p ') = DH(p,p'), 
['p + p' ,'~ 

DIDH(p,p ') -- 2DH ~ - - - ~ , p  ) ,  

( p  ( ~  1 1 )  ) 
D~Dg(p,p ') = 2~DH ~ + + -~ + "  + p',p' 

= 2 r D H ( ~ r ÷ ( 1 - - 1 ) p ' , P ' ) .  

Hence 

(3.11) ( ( 1 ) )  
H(p) = C(p') - E 2~+IDH P "~y+ 1 -  p,,pl . 

Putting p = ei (i = 1 , . . . ,  k) in (3.11) and averaging we get 

oo k 

(3.12) c ( ; ' )  = 

since H(ei) = 0. Thus 

(3.13) H(p) = 2 ~+1 ei ~:o ~ : DH ~-~ + (1 
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Consider, for example the Jensen difference, corresponding to the Gini- 
Simpson index 

(3.14) H(p) = 1 - I p t  2 

as given by 

1 p,12 DH(p,p') = ~lP- 
where I" I denotes the Euclidean norm. From the formula (3.13) we get H(p) = 
c ( ; ' )  - I p -  Yl 2 where 

~ k e i  - -  p t  2 

C(p') : E 2 r + 1 E  T 
r=0 i=1 

k - 2  12 - T + I Y  . 

Put  p' = ( I / k , . . . ,  l /k).  Then H(p) = 1 - I p l  2 as given by (3.14). 
We can derive similarly a diversity measure H(p) from the dissimilarity mea- 

sure fi(p,p') by subst i tut ing fi(p,p') for DH(p,p') in (3.13). Thus we have 

(3.15) H(p) = E 2r+1 1 ei 1 ~ , ,'~ 

r=0 i : 1  

-,5 (P + (1 - ~)  PZ,P') } • 

3.5 Vector norm associated with fi 
The measure of dissimilarity fi has been defined above with respect to any 

vector norm I1' II. If ]1' II is the LI(L2) norm then the value of p(p,p') is computed 
by the linear (quadratic) programming technique. A number of efficient algorithms 
are known for this programming method (Kostreva (1989)). It is interesting to 
consider a special class of norms, given as follows. Let A = (aij) be a lower 
tr iangular  matrix,  given by 

1, l ~ j ~ _ i ~ _ k  
a i j= O, j ~ i .  

Let I I be any vector norm on 7~ k and let I1 II denote the induced vector norm, 
given by 

( 3 . 1 6 )  [Ixll = ]Axl. 

k 
Let T denote the subset of the simplex {p : 0 < Pl _< P2 _< • "" _< Pk, Y]i=l Pi = 1}. 
From the definition of majorization it follows tha t  for p, p' E T 

p ~ p' ~ Ap >_ Ap'. 
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Here >_ means componentwise inequality. 
We shall assume that ]x I is nondecreasing in the absolute values of the com- 

ponents of x in 74 k. This is true for the Lp norm, for example. Let p, p' E T, qi 
and q~ denote the i-th component of A p  and Ap' ,  respectively, mi = max(q~, q~) 
and m = ( m l , . . . ,  mk)'. It is easily seen that with the vector norm ]1" [1 defined 
as above 

(3.17) p ( p , p ' )  = Im - A p l ,  

p ( p ' , p )  = Irn - A p ' l ,  

h ( P , P ' )  = I~n - A p l  + I m  - A p ' I  

- -  l ip  - p ' l l  + + l i p '  - p i l  + 

where Ilxll + - I (Ax)  + I Here (x) + denotes the positive part of x, component-wise. 
Note that 15(p,p') = l ip-p ' l l  i fp  -~ p' or p' -< p. Let l" I denote the L1 norm. In 
this case we have 

(3.18) 
k k 

i=1 i=1 

k 

= ~ Iqi - q:l 
i=1 

= lAp - Ap'I 

- -  l ip  - p ' l l .  

Prom the triangle inequality property of a norm it follows that t5 given by (3.18), 
satisfies the relation (3.6). Therefore, the dissimilarity measure, derived from the 
L1 norm, is first order convex. Let 15(p,p') = m i n { p ( p , p ' ) , p ( p ' , p ) } .  We may 
consider 15(p, p~) as a measure of deficiency in the majorization relation between p 
and p'. With respect to the induced L1 norm, it is given by 

~(p,p ' )  = ~ rni - max qi, q'i . 
i=1 \ i = 1  i=1 

4. Application 

We consider a problem of selecting the most diverse population from a given 
set of m > 2 multinomiM populations. Alam et aI. (1986) and Rizvi et al. (1987) 
have proposed selection procedures based on the Gini-Simpson index, Shannon's 
entropy and some other indices of diversity. Selection procedures for binomial 
populations have been considered by Gupta and Huang (1976) and Dudewicz and 
Van der Meulen (1981). Gupta and Wong (1975) have considered a procedure for 
selecting a subset of the given multinomial populations which includes the most 
diverse population in the sense of majorization, assuming that there is at least one 
population among the m populations, whose probability vector is majorized by 



396 KHURSHEED ALAM AND CALVIN L. WILLIAMS 

each of the other corresponding vectors. Clearly, this assumption is very restrictive 
for applications in practice. We propose a new approach to the problem of selecting 
the most diverse population, under less restrictive conditions. We shall denote the 
i-th population and the associated probability vector by 7ci and qi, respectively, 
for i = 1 , . . . , m .  Let 

(4.1) ~i = m~xp(qi,qj) ,  

(4.2) rli = micn p(qj, qi), 

(4.3) ~0 = min(~l , . . . ,  ~m) and 

We shall call 7ri the most diverse population among the m populations if ~i = ~0. 
With regard to the given criterion for the most diverse population, we note the 
following result. Suppose that qi ~ qj. Then Aij < Aji, since p(p, pl) is a Schur- 
convex function of p. Hence 

~ = max(p(qi, qj), Aij) 
= Aij  

<_ Aj i  

Given a sample of n observations from each of the m populations, a procedure 
(R) for selecting the most diverse population is given as follows. Let Oi denote 
the maximum likelihood estimate of qi from the given sample from 7ci, and let ~i 
and ~{ be given by (4.1) and (4.2) with the substitution O{ for q{ and Oj for qj. 
Let ~0 = min(~l, . . . ,~,~).  Select 7ri for the most diverse population if ~ = ~0, 
breaking ties if any by randomization. For simplicity we shall ignore the event 
of a tie. Then the probability of a correct selection (PCS) for the procedure R 
(assuming without loss of generality that 7c{ is the best population) is given by 

(4.4) PCS = P{~i < ~j, j  = 1 , . . . , i -  1,i + 1 , . . . , m }  

>_ P{~i < p(qj ,qi) , j  = 1 , . . . , i  - 1,i + 1 , . . . , m }  

= < 

Let P* be a given number such that 1/m < P* < 1. Consider the configuration 
(Ci) of the parameter space, given by 

(4.5) 6'/ : rli - ~i _> 6 

where 5 is a fixed positive number. Since Oi is a consistent estimator of qi, it 
follows from (4.4) that a minimum value of the sample size n can be determined 
for which 

PCS > P* 
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inside the configuration Ci. The configuration Ci is called a preference zone in the 
usual terminology of ranking and selection procedures. 

Schmidt and Strauss (1975) modeled occupational attainment in the United 
States, using several explanatory variables. The predicted probabilities for occu- 
pation in five occupation categories, given average schooling and experience, for 
four populations (i) Black females (ii) Black males (iii) White females and (iv) 
White males are reproduced from Table 9.6 of Agresti (1990) in Table 3. The five 
occupation categories are listed as Menial, Blue-collar, Craft, White collar and 
Professionals. Measuring the diversities of the four populations from the data, we 
find that the white male population is the most diverse population among the four 
populations, with respect to the Gini-Simpson index and Shannon's entropy, as 
well as the new criterion given above. 

We have carried out a Monte Carlo study of the performance of the proposed 
procedure R for selecting the most diverse population from the sample data. The 
values of PCS, using the norms L1, L2, ILl, and IL2 for the sample size n = 30, 
60, 100, 200, and 400 are shown in Table 4. Ten thousand simulations were carried 
out for each of the five sample sizes. It is seen from the table that the four choices 
of norm give comparable values of the PCS. The table gives also the values of the 
PCS for a selection procedure based on the Gini-Simpson index and Shannon's 
entropy, due to Alam et al. (1986). These values are also comparable. 

Table 3. Occupat ional  probabili t ies,  given average schooling and  experience. 

Occupat ion  

Race Gender  Menial  Blue collar Craft  Whi t e  collar Professional  

Black female 0.396 0.188 0.011 0.219 0.187 

male 0.222 0.368 0.136 0.073 0.202 

Whi t e  female 0.153 0.146 0.018 0.492 0.192 

male 0.089 0.296 0.232 0.169 0.214 

Table 4. Values of PCS for the  most  diverse populat ion.  

Procedure  

R 

Norm 

Sample size L1 L2 ILl IL2 Gini-Simpson Shannon ' s  ent ropy 

30 0.6412 0.6385 0.6350 0.6369 0.6244 0.6507 

60 0.7658 0.7682 0.7566 0.7628 0.7675 0.7645 

100 0.8473 0.8496 0.8446 0.8476 0.8493 0.8317 

200 0.9377 0.9383 0.9362 0.9380 0.9399 0.9212 

400 0.9874 0.9888 0.9864 0.9868 0.9869 0.9793 
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5. Concluding remarks 

We are familiar with the analysis of variance and its applications. This tech- 
nique is used to analyze differences between populations, using the variance as a 
measure of variability. However, the method is not applicable to discrete data. 
We have proposed a new measure of the difference between two multinomial pop- 
ulations which is based on the dissimilarity between the intrinsic diversities of the 
two populations. It may be noted that the proposed measure is invariant under 
permutations of the probability vector, whereas some other known measures of 
dissimilarity which have been cited in this paper, depending on species identifi- 
cation, do not share this property. Certain mathematical properties of the new 
measure are given with applications. In a subsequent paper, we shall examine 
the problem of decomposing the total dissimilarity between a collection of popula- 
tions into dissimilarities between and within subgroups of populations, using the 
proposed measure of dissimilarity. This paper is mainly concerned with the expo- 
sition of certain mathematical properties of the proposed measure of dissimilarity. 
A comparative study of other approaches using dissimilarity measures and cross 
entropy ideas would be appropriate. This is the topic of a subsequent paper. 
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