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A b s t r a c t .  This paper is primarily concerned with the problem of character- 
izing those functions of the form 

G(z) = exp { 0<k'l<m ~ ak( zk - -1 ) }  ' 

where z = [z l , . . . ,  z~]', which are probability generating functions. The cor- 
responding distributions are called generalized multivariate Hermite distribu- 
tions. Use is made of results of Cuppens (197.5), with particular interest at- 
taching to the possibility of some of the coefficients ak being negative. 

The paper goes on to discuss related results for point processes. The point 
process analogue of the above characterization problem was raised by Milne 
and Westcott (1972). This problem is not solved but relevant examples are 
presented. Ammann and Thall (1977) and Waymire and Gupta (1983) have 
established a related characterization result for certain infinitely divisible point 
processes. Their results are considered from a probabilistic viewpoint. 

Key words and phrases: Hermite distribution, generalized multivariate Her- 
mite distribution, point process, probability generating function. 

1. Introduction 

Consider a probabil i ty  generat ing function (p.g.fn) of the form 

(1.1) G(z )  = e x p { P ( z )  - P ( 1 ) }  

where P(z)  is a polynomial  in z E R ~, and 1 = [1 , . . . ,  1]'. When  all the coeffi- 
cients of P(z)  are non-negative,  G(z) is a p.g.fn; in fact it is the p.g.fn of a com- 
pound  Poisson distribution.  (We employ here the terminology of Feller ((1968), 
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p. 288 iT.); other authors, e.g. Kemp and Kemp (1965), call such distributions gen- 
eralized Poisson. Both terminologies are widespread in the literature.) As such, it 
is infinitely divisible i.e. [G(z)] 1/r is a p.g.fn for each positive integer r. 

It is however possible for G(z) to be a p.g.fn, though not an infinitely divisible 
p.g.fn, even when some of the coefficients in P(z) are negative. L6vy ((1937), 
p. 236), quoted by Lukacs ((1970), p. 251) amongst others, has given an example 
in which n = 1 and P is a quartic polynomial with negative coefficient for the 
quadratic term. Cuppens ((1975), Appendix B), generalizing work of L@y (1937) 
for the case n = 1, gave necessary and sufficient conditions under which G(z) will 
be a p.g.fn when 

P ( z ) =  ~ akz k, 
O < k < p  

where z E R ~, k, p E N n with N = {0, 1, 2, . . .},  n is a positive integer, and 
z k kl k~ k~ (Usually our notation will follow, or be close to, that of Z 1 Z 2 " ' ' Z  n . 

Cuppens.) 
A primary concern of this paper is with p.g.fns of the form (1.1) when 

(1.2) p ( z ) =  akz 
0<kt l<rn  

with m E N i.e. with p.g.fns of the form 

(1.3) G(z)=exP{0_<kt l_  <-~E a ~ ( z k - - l ) }  " 

Specifically, we are concerned with conditions under which some of the coefficients 
ak may be negative yet G(z), given by (1.3), remains a p.g.fn. In this situation 
we aim to reduce Cuppens' conditions to a more concrete form. 

A related problem, outside the scope of the present work, is to find conditions 
on the coefficients ak which ensure that G(z) given by (1.3) is a p.g.fn in the case 
m = oo. This problem is analogous to the problem ostensibly tackled by Waymire 
and Gupta (1983) for functionals of the form (2.2); see Section 2 and Section 
6 of the present paper. In fact, Waymire and Gupta in effect assumed infinite 
divisibility. Correspondingly, for functions of the form (1.3) with m = co to be 
infinitely divisible p.g.fns it is necessary and sufficient that the coefficients ak be 
non-negative. For some univariate results when negative a's are permitted, see the 
remarks following Theorem 3.1. We shall not attempt to study the multivariate 
case further in this paper. 

Notice that instead of considering G(z) given by (1.3) we can without loss of 
generality focus on 

(1.4) F(z) = exp{P(z)},  

with P(z) given by (1.2), and seek conditions for non-negativity of all coefficients 
in the power series expansion of F(z) about z = 0. Observe that in either setting 
we can take 

(1.5) P ( z ) =  E akzk" 
l < M l < m  
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We call the distribution corresponding to a p.g.fn G(z )  of the form (1.3) a 
generalized multivariate Hermite distribution or, more particularly, an m-th order 
n-variate Hermite distribution. Any m-th order univariate Hermite distribution 
will be referred to as a generalized Hermite distribution. 

Example 1. First order univariate: (univariate) Poisson distributions. 

Example 2. First order n-variate: infinitely divisible n-variate Poisson dis- 
tributions cf. Teicher (1954). 

Example 3. Second order univariate: (univariate) Hermite distributions cf. 
Kemp and Kemp (1965). 

Example 4. Second order bivariate: these are the distributions H5 of Kemp 
and Papageorgiou (1982). Here we write 

G(z)  : exp{al0(Zl - 1) + a2o(z~ - 1) 

+ aol(Z2 - 1) + ao2(Z~ - 1) + all(Z1Z 2 - -  1)}. 

Example 5. Second order n-variate: finite-dimensional distributions of 
Gauss-Poisson processes cf. Milne and Westcott (1972) and Section 2 below. 

Example 6. Fourth order bivariate: the distributions Hs of Kemp and 
Papageorgiou (1982) are special cases of this form. 

Example 7. m-th order univariate: Gupta and Jain (1974) have considered a 
special type of m-th order univariate Hermite distribution (only al and a,~, in the 
form (1.5), are non-zero). They used the term 'generalized Hermite distribution' 
for this type. 

Several authors have discussed the formal derivation of the Hermite distribu- 
tion as a mixture, that is as the distribution of X where the conditional distri- 
bution of X given A is Poisson with parameter A, and )~ is Normally distributed 
with mean p and variance a 2 where # >> ~2. Multivariate analogues of this result 
have been given for second order n-variate Hermite distributions; see for example 
Steyn (1976), and Kemp and Papageorgiou (1982). However, no higher order n- 
variate Hermite distribution can be derived by mixture starting from independent 
Poisson distributions. This is an easy consequence of a theorem of Marcinkiewicz 
(cf. Lukacs (1970), p. 213). 

Our interest in generalized (multivariate) Hermite distributions began in a 
point process context, with Milne and Westcott (1972). Some background, re- 
lated especially to this context, is presented in the following section. In Section 
3 we address the characterization problem for p.g.fns of the form (1.3). Section 
4 presents two examples of generalized multivariate Hermite distributions which 
exhibit certain extremes of possible behaviour and which were considered origi- 
nally for the light they throw on the corresponding point process characterization 
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problem. This problem, as originally posed by Milne and Westcott (1972), is not 
solved but relevant examples are given in Section 5. Finally, in Section 6, we dis- 
cuss, from a probabilistic viewpoint, related characterization results obtained by 
Ammann and Thall (1977) and Waymire and Gupta (1983) for certain infinitely 
divisible point processes. The probabilistic significance of the conditions obtained 
by these authors appeared to be obscured by their largely analytic treatment. 

2. Background 

Milne and Westcott ((1972), p. 169) posed the problem of characterizing the 
possibly signed measures Hk(.) on R k, k = 1, 2 , . . . ,  such that the functional 

(2.1) G[~] = exp l-I[~(ti) - 1]Hk(dtl... dtk) 
I , k = l  JRk i=1 

is the probability generating functional (p.g.fl) of a point process on R. (For 
unfamiliar concepts and notation refer to the cited paper. We continue to deal, 
as there, with point processes on R although it is clear that the results hold for 
point processes on more general phase spaces.) 

Milne and Westcott had already solved this problem in the case m = 2. The 
more general problem was ostensibly tackled by Ammann and Thall (1977, 1978) 
and by Waymire and Gupta (1983); they considered the characterization problem 
for functionals of the forms 

(2.2) G[{] = exp 1-I[{(ti) - 1]Hk(dtl... dtk) 
k = l  k i=1 

and 

(2 .3 ,  a[~] :exp{k=~l~k [i~l~(~i,-- 1] Mk(dtl'"d~k,}. 
However, as we shall indicate in Section 6, they considered in effect only the 
problem of when G[~], given by (2.2) or (2.3), is an infinitely divisible p.g.fl. (A 
p.g.fl G[~] is infinitely divisible if (G[~]) 1/r is a p.g.fl for each positive integer r.) 
The main point made in Waymire and Gupta was that Corollary 3.2 of Ammann 
and Thall (1977) was incorrect and that a p.g.fl in the form (2.2) cannot necessarily 
be re-expressed in the form (2.3) because this involves a not necessarily permissible 
inversion of an infinite series. 

The case m = 2 yields the so-called Gauss-Poisson processes (cf. Newman 
(1970)). For such a process, the joint p.g.fn Gl(z), of the counts in pairwise 
disjoint bounded Borel sets A1, . . . ,  An, has the form 

(2.4) Gl(Z) = exp Hl(Ai)(& - 1) 

} + E H 2 ( A i  × Aj)(zi - 1)(zj - 1) . 
i=1 j=l 
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In this case the necessary and sufficient conditions for (2.1) to be a p.g.fl (cf. 
Theorem i of Milne and Westcott (1972)) imply that the resultant p.g.fi is infinitely 
divisible, or equivalently that each p.g.fn Gl(z) as at (2.4) is infinitely divisible. 

Although (2.4) exhibits G1 (z) as the exponential of a polynomial in z - 1, we 
can clearly (cf. Kemp and Papageorgiou (1982), in the case rn = n -- 2) express 
Gl(z) as the exponential of a polynomial of the form (1.2) in z. One advantage 
of the expression in terms of z - 1 is that l nGl (z )  is then precisely the factorial 
cumulant generating function. For establishing conditions under which Gl(z) is 
a p.g.fn in other than second order cases it appears to be more straightforward 
to work with the 'z form'. Similar comments can be made about corresponding 
p.g.fl forms (2.1), (2.2) and (2.3); see Section 6. 

A priori it does not seem obvious just what structure, if any, should be consid- 
ered as 'natural' for the p.g.fn of a multivariate distribution all of whose univariate 
marginals are generalized Hermite distributions. For instance, in the bivariate case 
Kemp and Papageorgiou (1982) considered two models they called/-/5 and/-/8. We 
choose to regard (1.3) as the basic or 'natural' form for such a p.g.fn. This seems 
to us appropriate since the p.g.fns (2.4) for the counts of a Gauss-Poisson process 
in pairwise disjoint bounded Borel sets A I , . . .  ,As,  as well as the p.g.fns that 
would arise correspondingly from (2.1) when this is a p.g.fi, have the structure 
of (1.3). Our view is further supported in the second order case (m = 2) by the 
observation that the corresponding distribution can be specified (uniquely) by its 
means, variances and covariances. 

In the second order bivariate case, our chosen form reduces to the model H5 of 
Kemp and Papageorgiou (1982). These authors had already noted that model/-/5 is 
'easier to handle and simpler to interpret' than model / I s ,  and also that model/-/5 
is special because of the property that if Z = X + Y, where the joint distribution 
of X and Y is that of model H5, Z has a univariate Hermite distribution. An 
analogous property differentiates between corresponding multivariate versions of 
models H~ and/ /8 .  The essence of this difference can be described, in the context 
of point processes with p.g.fls of the form (2.1)~ as the difference between finite- 
dimensional distributions for counts in pairwise disjoint bounded Borel sets and 
those for counts in arbitrary bounded Borel sets. While these two sets of finite- 
dimensional distributions are mathematically equivalent, the former are arguably 
more basic since the latter are easily constructed from them. 

3. Characterizing generalized multivariate Hermite distributions 

For the present we restrict attention to the case where all coefficients in P(z) 
given by (1.5) are non-zero. When k = [k l , . . . ,kn] '  we will often write ak as 
aklk2...k~ cf. Example 4. By direct methods we can establish the following result. 

LEMMA 3.1. In order for G(z) given by (1.3) to be a p.g.fn~ it is necessary 
that 

(3.1) 
(3.2) 

alo... 0 > 0~... ,ao...Ol > O, 

am_lO... 0 > O,..., ao...om_ 1 > O, 
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(3.3) 

a n d  

(3.4) 
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arno...O > O, • . . , aO...Om > 0 

am_ll0... 0 > 0 , . .  • , a0...01m_ 1 > 0. 

PROOF. To establish (3.1), (3.3), and (3.4) we can use an approach similar 
tha t  of Kemp and Kemp (1965) and Milne and Westcott  (1972). Here C(z )  is a 
positive, entire function with Taylor series about  z = 0 convergent for all z. Since 
the coefficients in the expansion of G ( z )  are all non-negative, then both G ( z )  and 
in G ( z )  are non-decreasing functions of each zi when these are non-negative. Thus 
for i = 1, 2 , . . . ,  n we must have 

0 
(3.5i) Ozi in C(z)  > 0 (z > 0). 

To establish al0...0 > 0 set all components of z except the first to zero in (3.51). 
Now, again using (3.5i), let the first component of z tend to infinity while keeping 
the others fixed and deduce amo...o > 0. To obtain am_ii0... 0 > 0 use (3.52) with 
the first component of z tending to infinity and the remaining components zero. 
The other inequalities of (3.1), (3.3), and (3.4) follow similarly. 

Notice tha t  the inequalities of (3.1) and (3.3) could have been derived after 
passing first to appropriate univariate marginal p.g.fns. To establish the inequal- 
ities (3.2) it is simplest to pass directly to such marginals and then to employ 
a device due to L6vy (1937); see also Cuppens ((1975), p. 224). Consider the 
marginal distribution of the first component and set Gi  (z) = G(z) ,  Pl(z)  = P ( z ) ,  
where z = [z, 0 , . . . ,  0]' E R n. Abbreviate the coefficients a i0. . .0 , . . . ,  a,m...0 to 
a i , . . . ,  am and suppose tha t  a ~ - i  is negative. Set p = e 2~i/'~. Then pm = 1 and 
pro-1 # 1. Thus Pi(z)  - P i ( p z )  varies like am- l (1  - - p m - 1 ) z m - - 1  aS Z --~ -t-0(3 and 
so Re{Pl(z)  - P l  (p z )  } ---e - oc as z ----+ -+- oo. It follows tha t  

as z --+ + c~. This establishes a contradiction since IG<Pz>l IG(z>l for z non- 
negative. Thus a m - 1  i.e. a~-cY-i0...0 must be positive. The remaining inequalities 
of (3.2) can be established similarly. [] 

The inequalities (3.1)-(3.4) are by no means the only necessary conditions 
tha t  can be derived cf. Remark 4 following the main theorem. Nevertheless, as 
we shall show, these conditions are also sufficient subject only to the additional 
restriction tha t  any negative coefficient be suitably small. To establish this result 
we refine a result due to Cuppens (1975). 

For fixed p = [P i , . . . ,Pn] '  E N n set Q ( z )  = P ( z P i , . . . , z P ~ ) ,  z E R and write 
Q ( z )  = ~ z  bt zz, where 1 runs through the possible values of k ' p  for the given 
p. Since so far as the definition of Q is concerned the order of the arguments  
of P is immaterial ,  we can assume tha t  p satisfies Pl ~ P2 ~ " ' "  --> Pn.  Define 
~4} = {1 : bz > 0, l > j}  and B} = {1 : bz > 0, l < j}.  Cuppens'  key conditions are: 
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CONDITION A. for any bj < O, j C (Z),A} i.e. is a linear combination of 
elements of A} with integer coefficients; 

CONDITION B. for any bj < O, j E (N)13~ i.e. is a linear combination of the 
elements of/3} with non-negative integer coefficients. 

Cuppens gives in addition some conditions equivalent to these. The following 
result is a restatement of a special case of Theorem B.3.2 of Cuppens (1975). 

PROPOSITION 3.1. In order for G(z )  given by (1.3) to be a p.g.fn it is nec- 
essary and sufficient that the coefficients, bz, of Q(z) satisfy Conditions A and B 
for all p E N n and that the moduli of any negative ak are sufficiently small. 

We now seek information on the effect of Conditions A and B in our situation. 
Consider those ak with k ' l  > 1 i.e. ak other than al0...0,...,a0...m. For given 
p E N ~, form k 'p .  Now let K = {i E { 1 , 2 , . . . , n }  : k~ > 0} and define Sk as the 
subset of those 

[1,0, . . .  ,0]p, . . . ,  [0 , . . . ,0 ,  l ip  

having, for i E K, a 1 as the i-th element of their first (row) vector. Then k 'p  is 
a linear combination of elements of Sk with positive integer coefficients, and each 
member of Sk is less than k'p.  Further, any bl with 1 E Sk will be positive if (3.1) 
holds, provided only that any negative ak are sufficiently small in modulus. Thus 
we have k 'p  E (N)B~,p, and this happens for any p E N n. So we have proved 
the following result. 

LEMMA 3.2. If  (3.1) holds, Condition B places no constraints on the signs of 
any other coefficients ak, provided that the moduli of any negative ak are suitably 
small. 

We can draw a very similar conclusion regarding Condition A; this is shown 
in the next lemma. 

LEMMA 3.3. If  (3.2)-(3.4) hold, Condition A places no constraints on the 
signs of any other coefficients ak, provided that the moduli of any negative ak are 
suitably small. 

PROOF. Consider any ak with maxl<i<n ki < m - 2. For any p E N ~, set 
j = k'p; recall we assume Pl > P2 > "'" > Pn. 

Case k ' l  = m. D e f i n e M = m a x { i e  { 1 , 2 , . . . , n } : k i > 0 } , a n d a s s u m e f o r  
the moment that Pl > PM. Then 

[ ,~ ,0 , . . . ,0 ]p ,  [ , ~ -  1, 1 , . . . , 0 ] p , . . . ,  [ , ~ -  1 , 0 , . . . , 0 , 1 , 0 , . . . , 0 ] p ,  

where the 1 in the last row vector is in the M-th  position, all belong to A}, since 
Pl > PM and (3.3)-(3.4) hold. So A} contains rap1, ( m -  1)pl + P 2 , . . . ,  ( m -  1)pl + 
PM, at least. Now form 

(3.6) k2[(m - 1)pl + P2] + " "  + kM[(m -- 1)pl + PM] -- (m - -  ~ 1  - 1)[rap1], 
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a linear combination of elements of A~ with integer coefficients. Using M1 = m, 
it is easy to show tha t  this combination equals kiP1 + " -  + kMPM, and hence j .  
So j E (Z)A~j for any such j ,  and hence for any such j with bj < 0, provided 
Pl > PM. If Pl = PM, ..4} is empty since there is no bl with l > j .  But  this does 
not matter ,  since bj is positive if any negative ak are sufficiently small. Thus the 
conclusion holds for all p E N n. 

Case M1 < m. We now have I r a -  1 , 0 , . . . , 0 ] p  = ( m -  1)pl E A} also. 
Suppose M1 = m - d, d > 0. Add the term d[(m - 1)pl] to the linear combination 
(3.6). Again, elementary algebra shows tha t  the combination equals j ,  and hence 
the same conclusion as above holds for all p E N '~. 

Collecting together the results of the proposition and the three lemmas, we 
obtain our main result. 

THEOREM 3.1. In  order for G(z) ,  given by (1.3) with ak ~ 0 for  those k 
satisfying M1 = 1 or maxl<i<n k~ _> m - 1, to be a p.g.fn it is necessary and 
sufficient that these ak be positive, and that the moduli of any negative coefficients 
among the remaining ak be suitably small. 

Remark  1. In the general univariate case with 

G ( z ) = e x p { a l ( z  - 1) + a 2 ( z  2 - 1) + . . .  + a m _ l ( z  m-1 - 1) + a , ~ ( z  "~ - 1)} 

where at least a l ,  a ,~- l ,  and a,~ are non-zero, it follows from Lemma 3.1 tha t  
al  > 0, am-1 > 0, and am > 0 are necessary conditions for G to be a p.g.fn. 
Potentially, in view of Theorem 3.1, any of the remaining coefficients could be 
negative provided only tha t  they are suitably small (cf. L6vy (1937), p. 263). 

Remark  2. To treat  other cases where some of the a's are zero is much more 
complicated. For example, suppose at ~ 0 and tha t  at+l . . . . .  am-1 = 0, where 
t < m -  1. The approach used by Cuppens ((1975), p. 224) to prove necessity in 
Theorem B.1.1, cf. our proof of (3.2) in Lemma 3.1, can be used to deduce tha t  
at > 0 provided t and m are relatively prime; this makes use of Euclid's algorithm. 
Notice tha t  Cuppens treats  the (multivariate) case without  the restriction tha t  the 
a's be non-zero. 

Remark 3. L6vy ((1937), p. 263) pointed out tha t  the fourth order (univari- 
ate) case is the simplest admit t ing a negative coefficient: for the function 

(3.7) G(z) : exp{a(z - 1) - b(z 2 - 1) + c ( z  3 - 1) + d ( z  4 - 1)} 

with a, b, c, d non-zero, to be a p.g.fn it is necessary tha t  a > 0, c > 0, and d > 0 
and sufficient tha t  these inequalities hold and b be suitably small. In this case 
one can obtain four inequalities tha t  constrain b in terms of the other coefficients 
(cf. van Harn (1978), p. 84). In particular G(z)  given by (3.7) is a p.g.fn when 



GENERALIZED MULTIVARIATE HERMITE DISTRIBUTIONS 375 

a =  c =  d =  1 a n d 0  < b < 1/4 (cf. Lukacs (1970), p. 251). If c =  0 t h e n b i s  
necessarily positive. 

Remark 4. It is of course possible to write down many other necessary con- 
ditions. To see this in the univariate case consider G(z)  given in the form 

G(z)  = exp{a l (z  - 1) + c~2(z - 1) 2 + . . .  + a ,~_l (z  - 1) m-1 + O~rn(Z - -  1)m}, 

where am ~ 0. The necessary conditions al  > 0, a ,~- i  > 0, and a,~ > 0 mentioned 
in Remark 1 above are equivalent to 

(3.8) O~ 1 - -  2 0 ~  2 ~- ' ' "  ~- (--1)m--Imam > O, am-1  -- mO~m > O, 

and am > 0. However, (~1 must be positive, because it is the mean of a non- 
degenerate distr ibution on N ;  this particular condition does not follow directly 
from (3.8). 

Remark  5. Kemp and Papageorgiou ((1982), p. 273) ask whether their model 
Hs can have a5 < 0 (in their notation) or a n  < 0 (in our notation) and still be a 
p.g.fn. We assert tha t  this is possible; it can be established by methods  similar to 
those il lustrated in Example 9 of the following section. 

Remark 6. For the univariate case with m -- cc but  possibly negative a's, 
we note the following results. 

(i) It is possible tha t  l iminf~__~ a~ < 0, so tha t  infinitely many negative a's 
are allowed. For example, if 

P( z )  = 1 + z + . . .  + Z N - 1  - -  bz N + z N+I + . . .  + Z 2 N - 1  - -  bz 2N + Z 2 N + l  -~ " ' ' ,  

it can be shown, as in Lukacs ((1970) p. 251), that ,  if N > 3, there is a range of 
positive b such t h a t  G(z)  is a p.g.fn. 

(ii) Clearly, all a's negative from some point on is not permissible. 
(iii) Condit ion B is still necessary. 
(iv) Some of the equivalences for Condition A referred to just  before the propo- 

sition break down if m is infinite. 
(v) If all the a 's from some point on are nonnegative, then for G(z)  to be a 

p.g.fn it is sufficient that ,  for some finite m0, Conditions A and B are satisfied for 
the finite polynomial Pmo (z) mo = Y]k=] ak zk" The necessity of Condition B follows 
from (iii). 

4. Further examples 

Theorem 3.1 shows tha t  a generalized multivariate Hermite distr ibution could 
have a substantial  proportion of its defining coefficients a k negative, provided of 
course tha t  these are small enough in modulus. Of particular interest for the 
point process problem which motivated our enquiry is whether this constraint 
becomes more constraining as n, the number  of variates, increases; tha t  is, does 
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the possibility of negative ak disappear as n --+ oc? The next example shows that  
this behaviour is possible. A further example shows that  this behaviour need not 
always occur. 

Example 8. Consider an m-th order (2n)-variate Hermite distribution with 
m , n  E N ,  m > 3 and ak = 1, except that  

a110,. .0 = a1010.. .0 . . . . .  a0...011 = - b  (b > 0), 
a k = 0  for all k with max k i = l ,  and 

l < i < 2 n  
k ' l  > 3. 

Theorem 3.1 guarantees that  this specifies a p.g.fn provided b is sufficiently small. 
Now consider the coefficient, ~b - ~bn(b) say, of ZlZ2""z2,~ in F(z) given by 

(1.4). Clearly, the powers of P(z) which contribute to ~b are those between n and 
2n, and a straightforward combinatorial argument shows that  the coefficient of 
ZlZ2"''Z2n in [P(z)] 2n-j (j = O, 1,..., n) is 

SO 

and 

(4.1) 

• / ~b~(b) = ~ ( - ~ b ) '  (2n), ( 2 n ?  j )  ( 2 n - 2 j ) , ,  
j = 0  

) (2b)2n~b ~ ~ 1  = E(-1)J(2b)2n-2Jj[(2n - 2j)! = H2n(b), 
j = 0  

where H2n(b) denotes the (2n)-th Hermite polynomial (Szeg5 (1939), p. 101). 
Since gan(0) = 1 and ~b~(b) is continuous, we confirm the result, known from 

Theorem 3.1, that  ~b~(b) is positive for sufficiently small b. Now the zeros of H2n(b) 
are all real (Szeg5 (1939), p. 43); hence so are those of gan(b), by (4.1), and they 
are clearly positive. Thus, for fixed n, ~n(b) _> 0 if b E [0, ~n] where /3,~ is the 
smallest zero of g&(b). Because the product of the zeros of gan(b) is 

coefficient of b ° 
(-1) coefficient of  b n = [ 1 . 3 . . .  (2n - 1)] -1 

we find 

(4.2) /3~ < [ 1 . 3 . . .  ( 2 n -  1)] -1/n. 

By Stirling's formula the right-hand side of (4.2) varies like e/2n as n --~ c~. 
Thus the range of b for which ~b~ (b) > 0 becomes degenerate as n --+ oc and 

so, ultimately all the negative coefficients in P(z) become arbitrarily small. 
Note that,  provided the relevant ak with maxl</<n k/ > 2 are positive, the 

actual magnitudes of these coefficients do not affect the example. 
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Ezarnple 9. Consider a 3rd order n-variate Hermite distribution with n _> 3 
and ak - 1 except that al~0...0 = - b  where b > 0. Again, Theorem 3.1 says that 
for b sufficiently small this specifies a p.g.fn. However, as opposed to the previous 
example, the permissible range of b does not vary with n. 

To show this we use the approach of Lukacs ((1970), p. 251). It is routine to 
check that all coefficients in [P(z)] 2 are positive provided b < 1. With thought it is 
clear that in [P(z)] a there are really only a fixed number of constraints on b which 
are completely determined by the case n = 3; higher values of n just reproduce 

. 0  / the n = 3 constraints because we have chosen the ak's equal if k ~ [1, 1, 0, . .  , ] . 
Thus there is a range of positive values of b such that [P(z)] 3 has all coefficients 
positive for any n > 3. Some tedious algebra shows that the permissible range 
for b is again the interval (0, 1). Hence, for b in this range, [P(z)]J has positive 
coefficients for all j >_ 2 and all n >_ 3. It only remains to check the coefficient of 
z~z2 in G(z). This is easily seen to be 2 - b and is positive when b < 1. 

Thus provided 0 < b < 1, we have obtained a P(z) with one negative coeffi- 
cient and such that G(z) given by (1.3) is a p.g.fn for all n >_ 3. 

Though they exhibit two interesting extremes of possible behaviour, these 
examples do not of themselves allow us to draw any simple conclusions regarding 
the point process problem. This is considered, again through examples, in the 
following section. 

5. Point process examples 

Suppose first that we allow point processes on an arbitrary (complete separable 
metric) phase space. Take the phase space to be any single point set. The p.g.fl 
of such a point process is simply an ordinary (univariate) p.g.fn. Thus the L~vy 
example, of Remark 3 in Section 3 above, provides an example of a point process, 
though admittedly a rather trivial one, for which not all the measures Hk(-) of 
(2.1) need be nonnegative. The L~vy example viewed as a special point process 
was referred to by Matthes et al. ((1978), p. 79) in connection with a problem 
about factorization of distributions. 

A more satisfying point process example can be constructed as follows. Con- 
sider a Poisson process on R with mean measm'e A#(.), where #(.) is a totally 
finite measure with # (R)  - c~ < ec and A is a discrete random variable whose 
p.g.fn is the L~vy example with P(z) as in Remark 3 of Section 3. The p.g.fl of 
this process is easily seen to be G[~], where 

(5.1) l o g G [ ~ ] = P  (exp { / n [ ~ ( t ) - l ] # ( d t ) } ) - P ( 1 )  

1 ( a -  2kb + 3kc+  4kd) 
k = l  

k 

J R  i=1  
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(5.2) = ~ ~.( ae-~°- 2kbe -2~ + 3kce -3~ + 4kde -4~) 
k=l 

Now choose a, b, c, d so that a - 2kb + 3kc + 4~d is non-negative for every k E 
{1, 2, . . .} .  Notice that the previously mentioned choice a = c = d = 1, b = 1/4 
is adequate. Then comparison of (5.1) with (2.2) reveals that in this case all the 
Hk(.) are non-negative measures. 

On the other hand, for this same choice of a, b, c, d and for k = 2c~, we find 
that the terms involving cv in (5.2) become 

c-4~ [(e3) ~ 1(4e2)~ + (9e)W ÷ 16~] 
- - 4  

For sufficiently large w this expression is negative since 4e 2 is the largest number 
being raised to the power w. Hence, it is possible to choose w so that, for at least 
one k, the corresponding measure Mk (-) in (5.2) is always negative. 

It is pleasing that L6vy's example, the first and simplest instance of the general 
phenomenon we are studying, can be used to generate an interesting point process 
example. A rather similar use of the L6vy example is in Kallenberg ((1975), 
Exercise 8.6); he used it to exhibit a mixed Poisson distribution which is infinitely 
divisible even though the mixing distribution is not. More complicated mixing 
distributions leading to the same result can be found in Shanbhag and Westcott 
(1977). 

In one respect the mixed Poisson process example considered above is not 
entirely satisfactory, as any point process so constructed will be a.s. finite. As an 
obvious extension we might try the same construction using a a-finite #(.) such 
as Lebesgue measure. In this case the construction does work and the log p.g.fl 
can be expressed in the form (5.1). However, rearrangement into the form (5.2) is 
not possible. This provides a nice contrast to an example in Waymire and Gupta 
(1983) where it is the form (2.3), corresponding to (5.2) above, that cannot always 
be rearranged in the form (2.2) corresponding to (5.1) above. 

6, Remarks on point process characterizations 

Recall that it was the problem of characterizing p.g.fls of the form (2.1) which 
motivated this research. In Section 2, we noted the attempts on this problem, 
via (2.2) and (2.3), by Ammann and Thall (1977, 1978) and Waymire and Gupta 
(1983). Because they concentrated on the rather special subclass of regular in- 
finitely divisible point processes, there is a simple direct probabilistic route to 
their results. 

The key observation is that any regular infinitely divisible point process is 
a Poisson cluster process with almost surely finite clusters. This result was first 
proved in the stationary case by Kerstan and Matthes (1964); see also Daley 
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and Vere-Jones ((1988), Proposition 8.4. VIII(ii)). The p.g.fl of such a process 
therefore has a well-known form, dating back at least to Moyal (1958) (see also 
Moyal (1962)), namely 

loggia] = I x ] -  (6.1) 

Here, #(.) is a Borel measure and Gs[~ [ x] is the p.g.fl of the (almost surely finite) 
subsidiary process generated by the cluster centre at x. It follows readily that 
logG[~] can be expressed in the form (2.3) where each Mk(') is non-negative; see 
Daley and Vere-Jones ((1988), Proposition 8.3. III). 

We must of course ensure that the cluster process is well-defined, in the sense 
of having an almost surely finite number of points in any bounded set. This is 
equivalent (Matthes (1963); see also Westcott (1971)) to 

(6.2) /R W(x; A)#(dx) < oc 

for all bounded Borel sets A, where W(x; A) is the probability of obtaining at least 
one subsidiary point in A from the cluster centred at x. In terms of the Mk(-), 
(6.2) can be expressed as either 

(6.3) 

o r  

(6.4) 

cc k 

k----1 j = l  

cc k 

k : l  j = l  

for all bounded Borel sets A; (6.3) comes from expressing the event 'at least one 
point in A' in terms of the mutually exclusive events 'k points in the cluster and j 
of them in A' (k, j > 1), while (6.4) comes from using inclusion-exclusion formulae 
on the same event. Condition (6.3) is (4.13) of Waymire and Cupta (1983) (cf. 
(8.3.24) of Daley and Vere-Jones (1988)) and (6.4) is, essentially, (C~) of Ammann 
and Thall (1977). 

We believe this approach has the advantage that the analytical conditions 
Mk(-) > 0 and (6.3), (6.4) emerge naturally from the probability structure. It 
also emphasizes that (2.3) rather than (2.2) is the more natural form to consider 
when the restriction of infinite divisibility is imposed. This was pointed out by 
Waymire and Gupta (1983). However, for finite sum exponents, such as in (2.1), 
we prefer (2.1) to the equivalent of (2.3) because of the interpretation of the Hk (.) 
as factorial cumulant measures. 

Beyond the class of regular infinitely divisible point processes, the original 
characterization problem for (2.1), with m > 2, is still open. The main example of 
Section 5 does not really elucidate the more subtle aspects of the problem. Even 
the next simplest case, m --- 3, seems intractable. Is (2.1) then always infinitely 
divisible, as is true for m -- 2, or are signed measures allowed, as suggested by 
Example 9? 



380 R. K. MILNE AND M. WESTCOTT 

Acknowledgements 

This work was initiated whilst one author (MW) was a Visiting Lecturer in 
the Department of Mathematics, University of Western Australia, and completed 
during the tenure by the other author (RKM) of a Mathematical Sciences Research 
Centre Visiting Fellowship in the Department of Statistics (I. A. S.), the Australian 
National University. Support from both these sources is gratefully acknowledged. 

It is a pleasure to thank Dr. D. J. Daley for comments on an earlier draft, and 
also the referee for his careful reading and suggestions. 

REFERENCES 

Ammann, L. P. and Thall, P. F. (1977). On the structure of regular infinitely divisible point 
processes, Stochastic Process. Appl., 6, 87-94. 

Ammann, L. P. and Thall, P. F. (1978). Count distributions, orderliness and invariance of 
Poisson cluster processes, J. Appl. Probab., 16, 261-273. 

Cuppens, R. (1975). Decomposition of Multivariate Probabilities, Academic Press, New York. 
Daley, D. J. and Vere-Jones, D. (1988). An Introduction to the Theory of Point Processes, 

Springer, Berlin. 
Feller, W. (1968). An Introduction to Probability Theory and Its Applications, Volume 1, 3rd 

ed., Wiley, New York. 
Gupta, R. P. and Jain, C. C. (1974). A generalized Hermite distribution and its properties, 

SIAM J. Appl. Math., 27, 359-363. 
Kallenberg, O. (1975). Random Measures, Akndemie-Verlag, Berlin (Also (1976) Academic Press, 

London). 
Kemp, A. W. and Kemp, C. D. (1965). Some properties of the 'Hermite' distribution, Biometrika, 

52, 381-394. 
Kemp, C. D. and Papageorgiou, H. (1982). Bivariate Hermite distributions, Sankhyd Ser. A, 44, 

269 28O. 
Kerstan, J. and Matthes, K. (1964). Station~re zuf~llige Punktfolgen II, Yahresbericht der 

Deutschen Mathematiker-Vereinigung, 66, 106-118. 
L~vy, P. (1937). Sur les exponentielles des polynSmes et sur l'arithm~tique des produits des lois 

de Poisson, Ann. Sci. Ecole Norm. Sup., 54, 231-292. 
Lukacs, E. (1970). Characteristic Functions, 2nd ed., Griffin, London. 
Matthes, K. (1963). Unbeschr~nkt teilbare Verteilungsgesetze station~rer Punktfolgen, Wis- 

sensehaftliche Zeitschrift der Hochschule fiir Elektrotechnik Ilmenau, 9, 235-238. 
Matthes, K., Kerstan, J. and Mecke, J. (1978). Infinitely Divisible Point Processes, Wiley, 

Chichester. 
Milne, R. K. and Westcott, M. (1972). Further results for Gauss-Poisson processes, Adv. in Appl. 

Probab., 4, 151-176. 
Moyal, J. E. (1958). Discussion on the paper of Neyman and Scott (1958), 36-37. 
Moyal, J. E. (1962). The general theory of stochastic population processes, Acta Math., 108, 

1-31. 
Newman, D. S. (1970). A new family of point processes which are characterized by their second 

moment properties, J. Appl. Probab., 7, 338-358. 
Neyman, J. and Scott, E. L. (1958). A statistical approach to problems of cosmology (with 

discussion), J. Roy. Statist. Soc. Ser. B, 20, 1-43. 
Shanbhag, D. N. and Westcott, M. (1977). A note on infinitely divisible point processes, J. Roy. 

Statist. Soc. Set. B, 39, 331-332. 
Steyn, H. S. (1976). On the multivariate Poisson Normal distribution, J. Amer. Statist. Assoc., 

71,233-236. 
SzegS, G. (1939). Orthogonal Polynomials, American Mathematical Society Colloquium Publi- 

cations, Vol. XXIII, American Mathematical Society, New York. 



GENERALIZED MULTIVARIATE HERMITE DISTRIBUTIONS 381 

Teicher, H. (1954). On the multivariate Poisson distribution, Skand. Al~tuarietidskr., 37, 1 9. 
Van Harn, K. (1978). Classifying infinitely divisible distributions by functional equations, Math- 

ematical Centre Tract 103, Mathematisch Centrum, Amsterdam. 
Waymire, E. and Gupta, V. K. (1983). An analysis of the Polya point process, Adv. Appl. 

Probab., 15, 39-53. 
Westcott, M. (1971). On existence and mixing results for cluster point processes~ J. Roy. Statist. 

Soc. Set. B, 33, 290-300. 


