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A b s t r a c t .  Given two random variables (X, Y) the condition of unbiasedness 
states that: E ( X  I Y = Y) = Y and E ( Y  [ X = x) = x both almost surely (a.s.). 
If the prior on Y is proper and has finite expectation or non-negative support, 
unbiasedness implies X = Y a.s. This paper examines the implications of 
unbiasedness when the prior on Y is improper. Since the improper case can 
be meaningfully analysed in a finitely additive framework, we revisit the whole 
issue of unbiasedness from this perspective. First we argue that a notion weaker 
than equality a.s., named coincidence, is more appropriate in a finitely additive 
setting. Next we discuss the meaning of unbiasedness from a Bayesian and 
fiducial perspective. We then show that unbiasedness and finite expectation of 
Y imply coincidence between X and Y, while a weaker conclusion follows if the 
improper prior on Y is only assumed to have positive support. We illustrate 
our approach throughout the paper by revisiting some examples discussed in 
the recent literature. 

Key words and phrases: Coincidence, dF-coherence, equality almost surely, 
finite additivity, improper prior, unbiasedness. 

i. Introduction 

This paper was motivated by Bickel and Mallows (1988) (henceforth Bg~M). 
Assuming the standard Kolomogorovian setup of probability theory, let (X, Y) 

be two random variables satisfying the following condition: 

(U) unbiasedness 
E(X I V  = Y) = Y (a.s.) 

E ( Y  I X = x )  = x (a.s.), 
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where a.s. means almost surely. 
It is shown, in the above paper, that  (U) together with either of the following 

conditions 

(FE) finite expectation 

(NN) non-negativity 

E(IYI) < +oo 

z > 0 (a.s.) 

leads to X = Y a.s. Of course, one obtains the same conclusion if (FE) and (NN) 
are referred to X instead of Y. 

In a Bayesian framework, the above conditions may be read as follows: given 
a probability distribution of X conditional on the mean parameter Y, if the prior 
on Y satisfies (FE) or (NN) and induces a posterior distribution such that E ( Y  I 
X = x) = x, then X = Y a.s. On the other hand this result need no longer be 
true, according to B&M, when the prior on Y is improper. However, their analysis 
of this case appears somewhat incomplete, since it does not address explicitly the 
issue of evaluating the joint probability distribution of (X, Y). We try to fill this 
gap by adopting a finitely additive approach which allows a probabilistic treatment 
of improper priors. 

The finitely additive nature of the resulting joint probability distribution sug- 
gests to reexamine the relevance of the concept of equality a.s. This leads to the 
adoption of a weaker notion, named coincidence by de Finetti (1937). These is- 
sues are discussed in Section 2 which contains also relevant notation and definitions 
used in the paper. 

Section 3 deals with three topics. In Subsection 3.1 we show that, for a fixed 
statistical model of X given Y, there do not always exist priors on Y inducing 
coincidence between X and Y: this happens, for example, for location families. 
On the other hand we also show that, for scale families, such priors do exist. Since 
unbiasedness appears to be a natural condition to achieve coincidence, we offer 
some statistical interpretations of condition (U) in Subsection 3.2 from a Bayesian 
and fiducial perspective. 

A critical discussion of B&M's results relative to the improper case is contained 
in Subsection 3.3. In particular B&M's examples are revisited, from a finitely 
additive viewpoint, in order to show that, even if equality a.s. fails, coincidence 
may hold. 

Some general results relating to improper priors and unbiasedness are con- 
tained in Section 4. In particular we show that (U) and (FE) imply coincidence 
between X and Y, while a weaker conclusion follows if (FE) is replaced by (NN). 

Three short Appendices summarize the main concepts for finitely additive 
probability distributions that  we use in the paper and review a useful technique 
to evaluate probabilities when the prior is improper. 

2. Notation and definitions 

Given a set Z and a or-field of subsets of Z, Qz, a probability measure on Qz 
is a non-negative or-additive function defined on Qz and taking value 1 on Z. 

If the assumption of cr-additivity is replaced by the weaker condition of finite 
additivity, then the corresponding set function is called probability. The natural 
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domain of a probability is any algebra of events. Nevertheless we shall henceforth 
consider only probabilities defined on ~r-algebras. 

Let W be a random variable (r.v.) on (Z, Qz, u) where u is a probability. 
If B is a Borel set of R, the set function uw(B) = u{z : W(z) E B} is called 
the probability distribution of W. If B = (-co,  w] then the function Fw(w) = 
z/w{(-cc, w]} is called the probability distribution function (p.d.f.) of W induced 

by z/w. 
We point out, at this stage, that  we shall consider inferential procedures which 

satisfy the condition of dF-coherence, introduced by Regazzini (1987). 
We refer the reader to this paper for a thorough treatment of this concept 

and, in particular, to its Section 3 for a discussion of inference from improper 
priors within this framework. Notice that  for improper prior we mean a non- 
negative, a-additive, non-finite, or-finite measure p. If, for a given or-finite measure 
r, there exists a density g such that  p(B) = fg  g(z)r(dz), for all Borel sets B, 
then g is named improper prior too; indeed the latter interpretation is standard 
in much of the current statistical literature. Finally a simple and intuitive method 
to construct a probability from 9 is illustrated in Appendix 1. 

The terms conditional probability, conditional probability distribution and con- 
ditional p.d.f, will always be interpreted, in this paper, according to the usual 
Kolmogorovian setup, i.e. in terms of a Radon-Nikodym derivative, see e.g. Lo4ve 
((1978), Section 30), provided they are dF-coherent. 

Assume that the conditions for applying the formal Bayes theorem with an 
improper prior 9 are satisfied. Then one may find a probability, 7c say, such that  
the standard posterior generated from g through the above rule is dF-coherent 
relative to the prior r< 

Consider two r.v.'s X and Y taking values, respectively, in X and y ,  with X 
and y Borel subsets of R. Let P be a probability defined on the a-algebra of Borel 
subsets of R 2, generated by B A X × B N Y, where/3 is the Borel ~-algebra of R. 
If A belongs to this a-field we shall often write, with a slight abuse of notation, 
P{(X,  Y) E A} instead of P(A). In particular if A = Az × 32 with Ax C_ /3 • X, 
then we shall also write P(A) = P ( X  E Ax). 

DEFINITION 2.1. X and Y are said to be a.s. equal with respect to P if 

(2.1) P { X  = Y}  = 1 

written X = Y a.s. [P]. 

In the sequel we shall omit the symbol [P] whenever it is clear from the context. 
It is well known that, if P is a probability measure, then (2.1) is equivalent to 

(2.2) P{t X -  YI < e}= 1 Ve > O. 

When ~r-additivity does not hold, (2.1) implies (2.2), while the converse is 
not generally true. This happens because the probability associated to the r.v. 
I X - YI might present an adherent mass to zero; see Appendix 3 for the definition 
of adherent mass. 
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On the other hand (2.2) is often perfectly adequate to describe the notion of 
equality in practical terms (e.g. if X and Y are two measurements, it is experi- 
mentally impossible to ascertain their value without error). 

Furthermore current mathematical literature on charges (e.g. Bhaskara Rao 
and Baskara Rao ((1983), p. 88)) adopts (2.2) as the standard definition of equality 
a.s., since results involving (2.1) in a a-additive context typically have a natural 
counterpart in a finitely additive setting if (2.1) is replaced with (2.2). 

However to emphasize the distinction between (2.1) and (2.2) we adopt the 
following 

DEFINITION 2.2. 
with respect to P if 

written X ,-~ Y [P]. 

(de Finetti (1937)). X and Y are said to be coincident 

P{IX-Yl< }=l, w > o ,  

In the sequel we shall assume that a statistical model, i.e. a conditional prob- 
ability distribution for X, given Y = y, is given for every y c 32, and that an 
improper prior g is assigned to Y. 

Having established that a probability ~r can be associated to g, we can use 7c, 
in conjunction with the statistical model, to generate a probability P for (X, Y); 
see Appendix 2. Since P need not be a-additive, we shall examine the implications 
of g on P in terms of the notion of coincidence (2.2). 

3. Unbiasedness and improper priors 

3.1 Prior probabilities and coincidence 
As recalled in the Introduction, B&M's results may be seen as providing con- 

ditions, on the prior for the mean parameter Y, which imply X = Y a.s. 
A preliminary question which appears natural to ask concerns the existence 

of such priors. We shall however replace the condition of equality a.s. with that 
of coincidence because of the previous remarks. 

The following two propositions provide an answer for two important classes of 
statistical models. 

PROPOSITION 3.1. Let F be a continuous p.d.f., induced by a probability mea- 
sure, with support the real line. For y E ( -o0 ,  +oc), let the conditional p.d.f, of 
X ,  given Y = y, belong to the location family F ( z -  y). Then there exists no prior 
for Y ,  for which X ~ Y .  

PROOF. Let 7r be a prior for Y. Then 

P{I x - YI < e} = f + ~ ( F ( e )  - r ( - e ) > ( d y )  

= F(e) - F ( - e )  < 1 Ve > O. 

Here, and in the sequel, integrals are of Stieltjes type; see Bhaskara Rao and 
Bhaskara Rao ((m83), p. 115). [] 
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PROPOSITION 3.2. Let F be a continuous p.d.f., induced by a probability mea- 
sure, with support (0, +~o). Given any y E (0, +oo) let the conditional p.d.f, of  X ,  
given Y = y, belong to the scale family F ( x / y ) .  Then, i f  7r denotes the prior of 
Y ,  a necessary and sufficient condition for  X ~ Y is 7r{(0, c]} = 1 Ve > 0, i.e. 7r 
assigns unitary adherent mass to the right of y = O. 

PROOF. i) Necessity. 

f { I X  - v l  ~ e} 

= F(1  + e/y)Tc(dy) + (F(1 + e/y)  - r ( 1  - c/y))Tc(dy) 

_< 7c{(0, el} + F(2)(1  - ~r{(0, e)}). 

Since F(2)  < 1, (2.2) implies 7c{(0, el} = 1 Ve > 0. 
ii) Sufficiency. Assume now 7r{(0, e]} = 1 for all e > 0. Then 

fO ~ P{IX - Yj < e} = F ( 1  + e/y)~(dy) 

= lim F(1  + e/y)  = 1. 
y-*0 + 

[] 

Remark  1. In the above proof  we have used the s tandard  procedure to eval- 
uate the joint probabil i ty P relative to (X, Y), for a fixed conditional probabil i ty  
distr ibution of X given Y and prior for Y. Notice however tha t  this procedure,  
while legitimate, is not compulsory in the setup of dF-coherent  probabilities. 

Remark 2. A prior ~r with 7c{(0, e]} = 1 Ve > 0, is said to assign uni tary  
adherent  mass to the right of 0. Finitely additive priors with total  mass adherent 
either to inf y or sup 32 (as 7c in Proposi t ion 3.2) typically correspond to improper  
priors according to the limiting procedure described in Appendix  1. 

Remark  3. A non-intuitive corollary of Proposi t ion 3.2 is tha t  X ~ Y may 
hold even wi thout  unbiasedness being satisfied as in the following example: let the 
conditional p.d.f, of X,  given Y = y, be negative exponential  with scale parameter  
1/y  and let 7c be generated by the improper  prior g(y) = 1/y  3 (y > 0). In this 
case E ( Y  I X = x) = x /2 ,  as a s tandard  prior to posterior computa t ion  shows, 
and 7c{(0, el} = 1 for all e > 0. 

Remark  4. Notice that  Proposit ions 3.1 and 3.2 still hold if the condition of 
coincidence between X and Y is replaced with that  between X and Y*, where 
Y* = E ( X  I Y ) ,  i.e. Y* = Y + K in Proposi t ion 3.1 and Y* = K Y  in Proposi t ion 
3.2, with K = f zd F( z ) .  In statistical terms changing Y to Y* is equivalent to 
reparametrizing the model  in terms of the mean-parameter .  
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3.2 On the notion of unbiasedness 
The previous subsection has shown that, given a conditional probability dis- 

tribution for X given Y (i.e. a statistical model such as the scale family), there 
exist priors for Y such that X ~ Y. 

Going back to B&M's results, we now discuss the unbiasedness condition (U) 
which appears to be quite natural in order to realize coincidence between X and 
Y. 

Notice first that (U) is stated for one observation X and generalizes to a sample 
(X1 , . . . ,  X~) (n > 1) only when a real valued sufficient statistic is available. 

Secondly we remark that condition (U) may be interpreted as saying that our 
prior information on Y is so poor that, whatever the experimental outcome X, 
this will be taken as an estimate of Y. Hence (U) can be regarded as a condition 
of "non-informativity" for the prior on Y. 

Suppose for example that (X1 , . . . ,  X~) is a sample from a real regular natural 
exponential family (see Brown (1986)) so that (U) may be rewritten in terms of 
the sufficient statistic )?~ = n -1 ~ Xi as 

E ( 2 ~  I P) = P, a.s., E ( p r 2 . ~  ) : 2n ,  a.s., 

where # = #(0) = E(X~ I 0), and 0 is the natural parameter. 
Using Theorems 1 and 2 of Diaconis and Ylvisaker (1979) and Theorem 3.3 

of Cifarelli and Regazzini (1987) it is straightforward to show that, under some 
regularity conditions, the improper prior g(O) = e, with c > 0, is the only one that 
satisfies (U). 

This result is consistent with the standard practice of viewing a constant prior 
as non-informative. 

Finally we point out that condition (U) is always satisfied by a fidueial prob- 
ability distribution whenever it can be regarded as an actual Bayesian posterior 
distribution. To see this recall a result by Lindley (1958) according to which a 
fiducial probability distribution for the real parameter Y* is, under some regular- 
ity conditions on the model, Bayesian posterior if and only if the p.d.f, of X* given 
Y* = y* (where X* is a sufficient statistic) can be written as H(u(x*)  - v(y*)) 
for some p.d.f. H (induced by a probability measure), and increasing functions 
u(.) and v(-) with a, possibly improper, uniform prior on v(Y*).  Since H can be 
assumed, without loss of generality, to have expectation zero, setting X = u(X*)  
and Y = v(Y*) ,  it follows that E ( X  I Y = Y) = Y and E ( Y  I X = x) = 
f yh(x  - y ) d y / f  h(x  - y)dy = x (where h is the density corresponding to H),  so 
that (U) is satisfied. We conclude that, when a fiducial distribution is also a pos- 
terior distribution, the unbiasedness condition (U) is always satisfied by suitable 
X and Y. 

3.3 A discussion of Bickel and Mallows' results for the improper case 
The implications of (U) when the prior is improper have been investigated by 

B&M. They claim that (U) and (NN) can fail to imply X = Y a.s. and offer two 
examples to support this conclusion. 

If however, besides (U) and (NN), the further condition that "the supports 
of X and Y are discrete with X having no point of accumulation" is added, then 
X = Y a.s. still holds (Theorem 4 of B&M). 
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Condition (FE) is not mentioned by B&M presumably because it is deemed 
to be irrelevant, from their viewpoint, in the presence of improper priors. 

To better appreciate their argument and illustrate our point of view consider 
the following example. 

Example 3.1. (Example 2 of B&M) Let W and Y be independent r.v.'s, 
with W having a continuous p.d.f. H, induced by a probability measure, having 
support (0, +oc) and such that E ( W )  = 1. Set X = W Y ;  then E ( X  I Y = Y) = Y. 
If 9(Y) = 1/Y 2 (Y > 0) is the improper prior for Y (so that (NN) holds), then 
standard calculations lead to E ( Y  ] X = x) = x, so that (U) holds. On the other 
hand (2.1) fails since X = W Y  with W not degenerate. 

This conclusion is correct and misleading at the same time, since it hides an 
essential feature of the joint probability distribution of (X, Y) which is possible 
to explore if a finitely additive approach is embraced. We will now show (see the 
continuation of Example 3.1 below) that indeed X and Y are coincident, i.e. (2.2) 
holds. Therefore we do not see this example as providing convincing evidence 
that improper priors behave differently from proper priors (which are actually 
probability measures), since we regard definition (2.2) more meaningful in this 
context than (2.1). 

Example 3.1. (continued) Following the procedure outlined in Appendix 1 
and 2, we first derive the marginal p.d.f, of Y, G say. Recalling that Y = (0, +oc), 
take the sequence of intervals {(c~, fl); c~ --* 0 +, fl --+ +oc}. Then 

0 y < a  

= lim J~ 1/t2dt 
1 /y2@ < y < 9 

~--*+~ 1 y > fl 

={01 y < O  
y > O .  

Notice that G is not right-continuous. The quantity G(0 +) - G(0) = 1 repre- 
sents the probability adherent (to the right) of zero. This is a typical example of 
a non-a-additive p.d.f. 

Since, for y > 0, G(y) = 1, it follows that P { X  < x , Y  <_ y} = P { X  <_ x}. 
Now, for x > 0, 

p { x  <_ z}  = P { W Y  <_ x} = dH( )da(y) 
J o  

= H(x / y )aa (y )  = lim H(x /y )  = 1. 
y-+O + 
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Therefore 

whence 

i . e . X ~ Y .  

P { X  <_ x , Y  < y} = 1 x , y > O  

P{I x -  YI > e} = 0 Ve > 0 

The above discussion applies also to 

Example 3.2. (Example 3 of B&M) Let W and Y be independent r.v.'s 
each taking values in the set {2J : j = 0, +1,-t-2,.. .}. Assume that  the p.d.f, of 
W is induced by a probability measure, while the prior on Y is improper with 
9(Y) = i / y ,  y = 2J; j = 0 ,+1 , : t :2 , . . . .  

As in Example 3.1 take E(W)  -- 1 and X = W Y .  It is easy to show that  
(NN) and (U) are satisfied. 

Taking the sequence {{2- '~ , . . . ,  2n}, m, n, = 1, 2 , . . .}  we conclude, through 
the usual limiting procedure, that the p.d.f, of Y presents again unitary adherent 
mass at the point zero. Arguing as before we therefore derive that X ~ Y. 

As a consequence, B&M's remark that the presence of a point of accumulation 
(at 0) in the support of Y (and X) implies failure of equality a.s. appears to be 
irrelevant as far as coincidence is concerned. 

This issue is further pursued in the next example which shows that  even if X 
has no point of accumulation, then (U) and (NN) do not imply X ~ Y. 

Example 3.3. Let W be a non degenerate r.v. taking values in the set of 
integers lying between - K  and K (K a positive integer), and having a p.d.f., 
induced by a probability measure, with density h such that  E(W)  = 0. Let Y 
take values in the set y = {0,4-1,+2, . . .}  and let g(y) = c with c > 0, be the 
improper prior for Y. Assume Y independent of W and set X = W + Y. 

Choosing the sequence of sets { - m , . . . ,  2 "~} (m = 0, 1 , . . . )  which converges 
to y ,  it is straightforward to show that Y presents unitary adherent mass at +ec, 
so that  (NN) holds. Since X = W + Y, X will also be a.s. non-negative. It is 
immediate to check that  E ( X  I Y = Y) = Y since E ( W )  = O. 

Adopting the rule employed by B&;M to compute E ( Y  I X = x), which could 
be formally justified using our limiting procedure, we have: 

E ( Y  I X = x) = Ey=_  yh(x  - y)g(y) 
+ec Ey=_  h(x  - y)g(y) 

Ez=_ (x - z)h(z) 
Q-C2<) 

E z = - ~  h(z) 
z X .  

Consequently (U) is also satisfied. Nevertheless, since W is neither degenerate 
on zero, nor admits adherent mass to zero, it follows that  X ~ Y cannot hold. 
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4. Some general results 

The present section discusses, in a general setting, the implications of unbi- 
asedness when the prior is improper. 

Having chosen to work with dF-coherent inferences, we shall evaluate proba- 
bilities, in the presence of an improper prior g, as follows: 

AI: the prior probabili ty ~r is computed from g according to the limiting 
procedure outlined in Appendix 1. 

A2: given a conditional probabili ty distr ibution for X given Y admit t ing 
density, the probabili ty relative to (X, Y) and the posterior distr ibution of Y 
given X (derived through a formal application of Bayes theorem) are computed 
as in Appendix 2. 

THEOREM 4.1. Let X and Y be r.v.'s taking values respectively in X C 
(-oc,  +c~) and Y -- (A ,B)  with - o c  <_ A < B < +c~. Assume a conditional 
probability distribution for X ,  given Y ,  is assigned and that Y has an improper 
prior g with 9 continuous. 

Then, if the probability assessments are made according to A1 and A2, (U) 
and (FE) imply X ~ Y .  

PROOF. Since g is continuous, A1 implies tha t  the prior 7r will present an 
adherent  mass a, say, to A and (1 - a) to B (0 < a < 1). If 0 < a < 1, then (FE) 
implies tha t  A and B must be both finite. Indeed if either A or B is infinite then 
E(IYI) = +oc,  because of the presence of positive adherent masses at A and B, 
violating (FE). To see this assume for simplicity A > - o c  and B = +oc.  Then 

f E(IYI) ~ ly]Tr(dy) + nTc{(n, +oc)} for all n > 0 ,  

so tha t  E(IYI) = +oo, since 7r{(n, +oc)} = 1 - a > 0 for all n > 0. 
Next we show tha t  i n f X  = i n f 3 ; - -  A and s u p X  = supY = B. Suppose 

i n f X  < A; then there exists x c X with i n f X  < x < A so that ,  by (U), E ( Y  I 
X = x) = x < A, which is impossible. Next suppose inf X > A; then there exists 
y E 32 with A < y < i n f X  so that ,  by (U), E ( X  I Y = Y) = Y < in fX,  which is 
impossible. Hence inf A" = inf 32 = A. Similarly one shows tha t  sup 2( = sup Y = 
B. 

Assume now A < 0 < B and denote with Fy the conditional p.d.f, of X,  given 
Y = y. From condition (U) we have 

A -- lim E ( X  I Y = Y) = lira (1 - -  F y ( x ) ) d x  - Fy(x)dx 
y - + A  + y---+A + 

whence 
B 

B - A = y-+A+lim/A F~(x)dx. 
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Since Fy(x) _< 1 Vx, we can apply Fatou's  lemma and obtain 

B 

( B -  A) <_/A limsupFy(x)dx <_ ( B -  A); 
y----~A+ 

whence, l imsup Fy(x) = 1 for x > A. 
Recall now that ,  letting py and u represent the Lebesgue-Stieltjes measures 

corresponding to Fy and to a p.d.f. F ,  respectively, the condition l imsuppy(C)  _< 
u(C) for all closed sets C _ ( - co ,  +ec)  is equivalent to Fy --+ F weakly (see Rao 
((1984), p. 222)). Since l imsuppy(C)  = 1 for all C = [x0, x] (x0 < A, x > A) the 
above condition implies u(C) = 1, so that:  

~" 0 x < A 
(4.1) F(x) 

1 x>_A. 

The same results hold if A and B (B > A) are both  non-positive or non- 
negative. 

Denote, as usual, with P the probability relative to (X, Y). Then 

(4.2) P { X  <_ x, Y <_ y} = Ft(x) (dt) 

= a lim Ft(x) because of the structure of 7c 
t-+A+ 

= aF(x) = a because of (4.1) 

for x > A and A < y < B. 
Furthermore it is immediate to verify tha t  

(4.3) P { X > x , Y > y } = I - a  x < B ,  y < B .  

Hence P presents, when X and Y are both  continuous, adherent mass a at 
the point (A, A) and (1 - a) at (B, B), whereas, if X and Y are both  discrete, the 
masses will be concentrated, with natural  modifications for the mixed case. 

We can therefore conclude tha t  X ~ Y. 
It remains to examine the case in which a = 0 or a = 1. When a = 0 condition 

(FE) only implies tha t  B < +oc.  Furthermore (4.2) implies P { X  <_ x, Y <_ y} = 0 
(x > A, A < y < B) whence the whole mass is adherent (or concentrated) to 
(B, B), so tha t  X ~ Y again. 

When a = 1, a similar argument  leads to the conclusion tha t  A > - o o  and 
P { X  > x , Y  > y} =O (x < B, y < B), so that X ~ Y again. [] 

From Example 3.3 we know tha t  (NN) and (U) do not necessarily imply X 
Y, the existence of a point of accumulation in the support  of Y being irrelevant. 

Yet in both examples the set y is unbounded and it can be checked tha t  the 
following result holds: 

P { X < _ x , Y < _ y } = P { X  < _ x } = P { Y < y }  - o c < x ,  y < ÷ o c ,  
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so tha t ,  in particular, 

(4.4) P { X  <_ x , Y  <_ x} = P { X  <_ x} = P { Y  <_ x} - +oo < x < +oo. 

As remarked in Cifarelli and Regazzini (1987), condition (4.4), within the 
context of a-additivity,  is equivalent to X = Y a.s. whereas if, as it happens in our 
case, limy__._~ P { Y  _< y} > 0 o r / and  limy~+oo P { Y  <_ y} < 1, (4.4) only states 
that 

P{I X - YI > e and IYI < c} = 0 w > 0 and 0 < C < +oo, 

so that ,  from (4.4), in general we cannot even conclude tha t  X ~ Y. Consequently 
(4.4) will be taken to identify only a condition of perfect linear association between 
X and Y. 

The essential difference between perfect linear association and coincidence is 
that ,  under the former, the adherent mass at (+oc, +oc)  o r / and  ( - c o , - o e )  is 
allowed to lay outside the region Ix - Yl G e. 

The following theorem shows tha t  a slight modification of the assumptions of 
unbiasedness and positivity actually induces a condition of perfect linear associa- 
tion. 

THEOREM 4.2. Under the same conditions of Theorem 4.1, (U) and i n fY  > 
- o c  (or supY < +oc)  imply that X and Y are perfectly linearly associated. 

PROOF. Assume inf ~Y = A > - o c .  Condit ion (U) implies tha t  inf X = inf 
and sup X = sup y = B _< +oo. 

If B < +oc,  following the proof of Theorem 4.1, deduce (4.3) which implies 
perfect linear association. 

Assume now B = +oo and, for simplicity, take A = 0. Then, arguing as in 
Theorem 4.1, from l i m E ( X  I Y = Y) = 0, (y --* 0 +) deduce 

i 
+ e ~  

0 > liminf(1 - Fy(x))dx >_ O, 
y - * 0  + 

whence F(x) = limy__~0+ Fy(x) -- 1 (x > 0) and the conclusion follows from (4.2). 
If B = +oe  and A is an arbi t rary constant  (or B < +oc and A _> - e c ) ,  a similar 
argument  leads to the conclusion. [] 
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Appendix 

1. Improper priors in a finitely additive context 
Let Y be a r.v., taking values in Y, having an improper prior g so that, for a 

given a-finite measure 7, 

yg(y)v(dy) = +oo. 

We outline, omitting measurability details, a method to associate a probability 
to g; see Regazzini ((1987), Section 3). 

Let {32~} be a sequence of subsets of Y converging to 3~ from below such that 

(A.1) 0 < p(Y,~) = £,~ g(y)r(dy) < -+-oo for all y~. 

Then the probability that Y E B c_ y ,  conditional on Y E Y~, is given by 

7c~(B) = p(B N Y~)/p(Yn). 

Finally the (non-a-additive) prior rr induced by g is computed as rr(B) = 
limn-++~o ten(B), whenever the limit exists. 

2. Evaluation of joint probabilities and dF-coherent posteriors for improper 
priors 
Assume, as in standard statistical applications, that a conditional probability 

for X given Y is assigned having density fy, and that Y has an improper prior g. 
The previous procedure of first performing the analysis conditional on Y E Yn and 
then passing to the limit may be applied also to compute probabilities relative to 
(X, Y) and to obtain a dF-coherent posterior for Y. 

Notice that, if 0 < f y  fy(x)g(y)r(dy) < +0% such a posterior, qx say, may be 
also obtained using a standard formal Bayes calculation, i.e. 

fy(x)g(y>(dy) 
qx(dy)= fyfy(x)g(y)r(dy); 

see Regazzini ((1987), p. 856). 

3. Adherent masses 
Let rr be a probability. Define G(y) = rc{(-oo, y]} and Gt(y) = rc{(-oo, y)}. 
If (Gz(y) - limt-+y- G(t)) = Pl(y) > 0, then Pz(Y) is said to be the probability 

adherent to the left of y. Similarly if (limt__+y+ G(t) - G(y)) = p~(y) > 0, then 
p~ (y) is said to be the probability adherent to the right of y. If rr is also a-additive 
then Pl (Y) -- P~ (Y) = 0 for all y. 

Furthermore if G(y) = po for all y _< Y0, say, G presents right adherent mass 
P0 to -~o;  similarly if 1 - G(y) = p~ for all y > y~ then G presents left adherent 
mass p~ to +oo. 
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