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A b s t r a c t .  Let {Pa,n : v~ E (~, rl E H} be a family of probability measures ad- 
mitt ing a sufficient statistic for the nuisance parameter  r/. The paper presents 
conditions for consistency of (asymptotic) conditional maximum likelihood es- 
t imators for ~. An application to the Rasch-model (a stochastic model for 
psychological tests) yields a condition on the sequence of nuisance parameters 
which is sufficient for strong consistency of conditional maximum likelihood 
estimators, and necessary for the existence of any weakly consistent estimator- 
sequence. 
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1. Introduction 

Let (X, A) be a measurable space and # ] A  a G-finite measure. For ~ • (~ (a 
Hausdorff space) and r / •  H let P a , ~  I A be a p (= probability)-measure, equivalent 
to #, with #-density 

(1.1) p(x, 7) = q(x, a)po(S(x),  n), x • x ,  

where S is a measurable function from X into some measurable space (Y, B). 
q(., ~) and P0(', v ~, r/) are assumed to be measurable and positive. 
Our problem is to estimate v ~ from observations z l , . . . , x ~  which are inde- 

pendently distributed according to P a , n l ,  • • • ,  P a , n ~ ,  with the nuisance parameters 
711, - • - , fin unknown. 

If the representation (1.1) is suitably standardized (see (2.1)), q(., tg) may be 
in te rp re ted  as condi t iona l  dens i ty  of  z ,  given S. I t  can, therefore ,  be used to  define 
a C M L  ( =  condi t iona l  m a x i m u m  l ike l ihood) -es t imator  for ~ by  ~ log q(z , ,  v ~) = 
max.  The  pu rpos e  of  this  pape r  is to  give condi t ions  for the  cons i s t ency  of  C M L -  
e s t ima to r s  unde r  mild condi t ions  on the  sequence of  nu isance  p a r a m e t e r s  r/~, ~ E 
N. To accoun t  for the  poss ibi l i ty  t h a t  9 migh t  be identif iable f rom the  cond i t iona l  
d i s t r ibu t ion  of  z,  given S( z )  = y, on ly  for ce r ta in  values y, say for y E Y0 C Y, the  
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definition of the CML-est imator is based only on observations x, with S(x,) E Yo, 
n 

i.e. on the condition ~--~-1 ]-]Io (S(Z~))log q(x,, vq) = max. 
Theorem 2.1 in Section 2 gives conditions on the conditional distr ibution of 

x, given S, which guarantee tha t  such a sequence of restricted CML-estimators is 
consistent under a mild condition on the sequence of nuisance parameters,  namely 
Y~I P~o,,7, (S-~Yo) = oc. According to the Lemma of Borel-Cantelli this condition 
is equivalent to the requirement tha t  the sequence of observations x , ,  u E N, con- 
tains with probability 1 infinitely many elements which are suitable for the compu- 
tat ion of the restricted CML-estimator,  i.e. elements x, fulfilling S(x,) E Yo. If the 
nuisance parameters are independent realizations from a prior distribution over Y, 
say M, this condition amounts  to the requirement tha t  f P~,v(S-1yo)M(drl) > O. 

Section 2 will be concluded by a discussion of these results in their relation to 
earlier results by Andersen. 

After conditions for strong consistency (= convergence with probability 1) of 
restricted CML-estimators have been obtained in Section 2, Section 3 gives a con- 
dition on the sequence of nuisance parameters which is necessary for the existence 
of any weakly consistent (= stochastically convergent) estimator-sequence. 

Section 4 is on the problem of obtaining consistent estimators for i tem difficul- 
ties in the so-called Rasch-model for psychological tests. The results of Sections 2 
and 3 yield a condition on the sequence of the unknown ability parameters which 
(i) guarantees strong consistency of any sequence of restricted CML-estimators 
and which is (ii) necessary for the existence of even weakly consistent estimator- 
sequences. 

Some more technical auxiliary results are collected in Section 5. 

2. A consistency theorem 

To define the CML-estimator we need the following canonical version of the 
represent ation (1.1): 

(2.1) p(x,O,r]) = q(x,O)po(S(x),O, rl) for 0 • O, r/ • H, 

where 
(a) p(., 0, r/) is a density of P~,, I A with respect to some ~-finite measure 

 IA, 
(b) P0(', ~9, r/) is a density of Po,, o S I 13 with respect to some or-finite measure 

(c) the measures # I A and u I/3 are connected by a measure kernel M I Y x A, 
i.e. 

S-1B) = / 1B(y)M(y,A)u(dy) for A • A, t3 • / 3 .  #(A 

If X is a complete separable metric space and A its Borel algebra, then the 
existence of a representation (1.1) implies the existence of a canonical represen- 
tat ion fulfilling (2.1). This can be seen as follows: W.l.g. we may assume tha t  # 
is a p-measure. Then there exists (see, e.g., Ash (1972), p. 266) a Markov-kernel 
M I Y x A such tha t  

#(A;IS-1B)= f lB(p)M(y,A)r'(dy) with r ,=>oS.  
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From (1.1) we obtain (see Lemma 5.3) 

o s(~) =/p(x, ~, ~)l~(S(=))~(d~) 

= f ( /  q(~,~)~,(~,d~)) po(~,~,~)l~(y).(d~) for B ~ B. 

Hence/50(y, ¢, r]) := f q(x, ~)).~(y, dz)po(y, ~), r]) is a u-density of P0,n o S. Rewrit- 
ing (1.1) as 

q(x,~) 
p(x, o, 77) : f q(~, ~)M(~, d~) ~o(S(x), O, 77) 

yields the canonical representation. 
Start ing from the canonical representation (2.1), we define a measure Q~,~ [ A 

by 

(2.2) Qo,y(A) := / 1A(x)q(x,~))M(y, dx) for A C A. 

Using (2.1) and the conditions (a), (c) and (b) we obtain by Lemma 5.3 

(2.3) P~,v(AMS 1 B ) =  f ( f f  lA(x)q(x,v~)M(y, dx))1B(y)po(y,~),ri)u(dy ) 

= / Q~,y(A)lB(y)P~,~ o S(dy) for A E A, B c B. 

Applied for A = X this yields Q~,y(X) = 1 for P~,,1 o S-a.a. y c Y, i.e. Q~,y is 
a p-measure for Po,v o S-a.a. y E Y. Moreover, y -~ Qo;y(A) is B-measurable for 
every A E A. After modifying the definition of Qv,y on the exceptional null set 
to achieve Qo,y(X) = 1 for all y E Y, (y, A) ---, Q~,y(A) is a Markov-kernel on 
Y x A. Because of (2.3), this Markov-kernel is a (regular) conditional probabili ty 
of x, given S, under P~,v. 

By (2.2), q(-,~)) is a density of Q~,y [ A with respect to M(y, .) ] A. Since 
q(-, v~) is positive for every ~) E (9, q(.,~))/q(., ~0) is a density of Qo,y I .4 with 
respect to Q~o,y ] A. This implies 

(2.4) Qe;,v (q( . ,v~) ) = 1 
\q(.,~0) for all v ~ , o 0 E O  and all yEY,  

hence 

q(,,~) ) 
(2.5) Q~o,y log q(.,~)o) < 0 for v~,~)o c (~ and y E Y, 

with strict inequality unless Q~o,y{q(', tg) 7~ q(., tgo) } = 0. 
(Here and in the following we write P(f) for f fdP, if convenient.) 
Even if v~ is identifiable from Po,,~ in the family {P~,,~, : v ~t C O, r/  E H} 

(i.e. if Po,~, = P~,~ implies v ~t = v~), it may occur t ha t - - fo r  some y E S ( X ) ~ h e  
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parameter  ~ is not identifiable any more from Qo,y in the family {Qs,,y • tg' E O} 
(i.e. there are tg' ¢ d with Qa, s = Qs,s). (This occurs, in particular, in the 
Rasch-model considered in Section 4.) 

DEFINITION 1. y E Y is non-contracting if every ~) E ~} is identifiable from 
Q~,y in the family {Q~',v : ~9' E O} (i.e. if tg' # t9 implies Q~,,y # Q<y).  

Throughout  the following, Y0 denotes a nonempty set of non-contracting ele- 
ments in Y. 

To obtain an estimator which is simple enough to lend itself to a mathemat ica l  
t reatment ,  we introduce the concept of a restricted CML-est imator  which uses only 
observations x ,  for which S(x , )  E Yo. 

DEFINITION 2. An estimator ~)(~) is restricted CML if 

(2.6) ~ 1y 0 (S(xz,)) log q(x,, ¢(~)(x)) 
~ ' - -1  

7z 

= sup E 1Yo(S(z ')) l°gq(x"~)) for all x E X ~. 
9EO u=l 

For consistency of such estimator-sequences the following (weaker) technical 
condition suffices. 

An estimator-sequence ~9 (n), n E N, is restricted ACML (= DEFINITION 3. 

asymptot ic  CML) if 

(2.7) lim infvce Eun=l 1Yo (S(x,))  log[q(x., ~)(~)(x))/q(x~,, v~)] = 0 

for a l l x  E X  ~. 
(We leave the left hand side of (2.7) undefined if ~ = 1  1Yo(S(x-)) = 0 for 

all n E N, since this is an event of × ~--1 P~o,n~-pr°bability zero under condition 
(2.8).) 

In this definition, v ~(~) is considered as a map from X ~ into 0 ,  depending 
on as E X v through x s , . . . , x ~  only. It is natural  to think of ~9(~)(xl , . . . ,x~)  
as an estimator depending only on those elements x , ,  u = 1 , . . .  ,n ,  for which 
S(x , )  E Y0 (i.e. the elements x ,  which really enter condition (2.7)). This is, 
however, not required. 

Remark 1. A function ~(~) fulfilling (2.7) obviously exists. If O is a Haus- 
dorff space with countable base, ~(~) can always be defined such tha t  it becomes 
measurable, provided t9 -+ q(x, ~) is lower semicontinuous for every x E X. 

This can be seen as follows. Let f : X × O --+ N be measurable in x and lower 
semicontinuous in v ~, and let O0 = {@ : z/E N} be a dense subset of O. Let 

U := { (x, fl) E X × O : f(x,O) > sup 
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Since the section U~ := {O E (3 : (x, O) E U} is nonempty and open for every 
x E X, it contains elements of ~30. Let ~(x) = 0~ if 0n C Ux and ~ E U£ (the 
complement of U~) for u = 1 , . . . ,  n - 1. We have 

f ( x , ~ ( x ) )  > sup f ( x ,T)  - e, 
"tEE) 

and 

{ x  x -  = = n . .  n u ~ ~NUo~ for every n E N .  

Since (3 is a Hausdorff space with countable base, and 0 --+ f (x ,  ~) is lower 
semicontinuous for every x E X, x ~ sup~ee f ( x ,T )  is measurable (see, e.g., 
Pfanzagl and Wefelmeyer (1985), p. 451, Lemma 13.1.1). Hence U~ E A for every 
t9 E (3, and measurability of p follows. 

From these considerations, applied with f (x ,  ~)) replaced by ~'~ 1y~(S(x~)) • 
log q(x~,, O) and e = ( l / n ) ~  1y 0 (S(x~)), the existence of a sequence of measur- 
able estimators t~ (~) fulfilling (2.7) follows easily. 

The Consistency Theorem uses the following 

CONDITION C. A measurable function h : X ~ R fulfills Condition C for 
the family of p-measures {Qy I A : y E Y} if the following holds true. 

(i) supvcy Qv(h) < O, 
1+6 (ii) supycyQy(h+ ) < o c  for s o m e S > 0 ,  

(iii) h_ is uniformly integrable, i.e. limc_~o~ sup~cy Qv(h_l(c,~) o h_) = 0. 
(As usual, h+ and h_ are the positive and the negative part of h, respectively.) 

The uniformity in y, required in Condition C, is not unrealistic if the integrals 
Qy(f)  are continuous functions of y, and if Y is compact. Conditions similar 
to Condition C have been used by Hoadley ((1971), p. 1981) for consistency of 
ML-estimators in the case of known varying nuisance parameters. 

Throughout the following we write sup I (B )  := sup{f(0) : 0 E B}. 

THEOREM 2.1. Let 0 be a Hausdorff space with countable base, ~ --~ q(x, O) 
for every x E X a lower semicontinuous function, and }To E 13 a given subset of Y 
containing non-contracting elements only. 

Assume that the following conditions are fulfilled for some Oo E @. 
(i) For every neighborhood U of Oo there exists a cover of U c by a finite 

collection of sets Bj, j E { 1 , . . . , J } ,  such that, for every j E { 1 , . . . , J } ,  the 
function log[sup q(., Bj)/q(. ,  v~0)] fulfills Condition C for {Q~o,y : y E Y0}. 

(ii) The sequence 7, E H, u E N, fulfills 

0¢3 

(2.8) Z / D O o , ~  (~'~-lyo) ~-- oo. 
7 - / = 1  

Under these assumptions, any estimator-sequence fulfilling (2.7) is strongly 
consistent at ~o, i.e. 

o ~  

(2.9) lira v~(n)(x) = v~0 for × P~o,u -a.a. x E X ~. 
n- - -~  OO / 2 ~ 1  
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Remark 2. Condition (i) follows if it holds true for some compact neighbor- 
hood of 00, and if for every 0 # 00 there is an open neighborhood G9 such tha t  

sup Qa0,y(log[supq(., Vo)/q(., Oo)]) < oo. 
yCYo 

PROOF. Let U be an arbi t rary neighborhood of 00, and let x • X v be a 
fixed element. If 0 (~)(x) • U ~ infinitely often, there exists g C { 1 , . . . ,  J} such 
tha t  Ne := {n • N : v~(~)(m) • Be} is infinite. This implies 

logq(x~,0(~)(m)) _< logsupq(x~,,Be) for ~ e N, n • Ne, 

hence also 

ET=~ 1~0 (s(~)) log[q(x., o(~) (~))/q(~, 00)] 

< E~=~ 1~o(S(~))log[sup q(~., Be)/q(~.~ 0o)] 
-- E~=I 1Y0 (S(32")) 

for n E Ne. Since Ne is infinite, this implies 

lim E~=I 1go(S(x-))log[q(x., O(n)(x))/q(x. ,  00)] 
~ - ~  E~=I 1Yo(S(~)) 

< lira E~=I lYo (s(22te)) log[sup q(xz~, B~)/q(og.~., ,tgo) ] 
- ~ E ~ = l  1 Y o ( S ( ~ ) )  

< max lira ET=~ l~o(S(~.))log[supq(~.,Bj)/q(:~,Oo)] 
-- jC{1 ..... J} n--+oo E~=I 1Yo(S(X~)) 

By Lemma 5.2, applied with h(x) = log[supq(x, Bj) /q(x ,00)]  there exists a 
x~°°__l P~o,, -null set N C X ~ such tha t  the last expression is negative for m E 
N °. If the estimator-sequence 0 (~), n E N, fulfills (2.7), we obtain x C N if 
0 (~) (m) E U c for infinitely many n E N. The set N depends on U. Since (9 has a 
countable base, the assertion follows. [] 

In applications it is usually difficult to verify conditions on a sequence of 
unknown nuisance parameters.  The intention of Theorem 2.1 is, therefore, to keep 
these conditions as weak as possible. In fact, (2.8) is the only condition left for the 
sequence of nuisance parameters.  If it happens tha t  no y E Y is contracting, one 
is free to choose Y0 = Y, in which case Pa0,~ (Yo) = 1 for y E N. Then condition 
(2.8) holds true for any sequence ~ ,  l., E N. There are, however, applications of 
practical relevance where contracting values of S do occur.  One such case will 
be discussed in Section 4. Even if every y C Y is non-contracting, restricting 
the computat ion of the estimator to observations x~ with S(x~) in some subset 
Y0 C Y opens the possibility of excluding x .  with S(x~,) in a "nasty" part  of Y. By 
restriction to an appropriate subset Y0 for which condition C is fulfilled, one may 
obtain a consistent estimator-sequence in cases where the sequence of unrestricted 
CML-estimators fails to be consistent. 
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The following corollary refers to the situation where rl, , ~ E N, is not just an 
arbitrary sequence in H v, but a sequence of i.i.d.-realizations from a p-measure M 
on (H,C). In the following, Peo,V I A is the p-measure defined by Pao,~(A) = 
f P~o,,,(A)M(d~), A • A. 

COROLLARY 2.1. Let now (H,C) be a measurable space, and (x,~) 
p(x, O, 7) measurable for every ~ c @. Assume Condition (i) from Theorem 2.1, 
and 

(2.s') > o. 

Then 

(2.9') lira 0(~)(x) v~0 for ~ X ~. = P(%,M-a.a. x C 

PROOF. For any M-integrable function h : H ~ R we have 

lira n -1 ~ h(rl,) = / h(~)M(&?) 
n - - +  OQ 

for 3/l~-a.a. (rl,),cN E H ~. Hence f h(~)M(d~?) > 0 implies lim,~_~ E~=I  h(rl-) = 
oc for M~-a.a. (rl,),c~ E H ~. Applied for h(7l) = Poo,v(S-1Yo) this entails that 
Condition (2.8') implies Condition (2.8) for M~-a.a. ( r / , ) , ~  E H ~. [] 

A number of consistency theorems for CML-estimators has been given by 
Andersen ((1970), p. 286, Theorem 1, (1971), p. 44, Theorem 1, (1973a), p. 45, 
Theorem 2.1, (1980), p. 80, Theorem 3.7) under varying conditions and with proofs 
of varying force. All these theorems are restricted to the case that the likelihood 
equation has a unique solution. Andersen's conditions concerning the nuisance 
parameter amount to something like continuity of r/ ~ P~0,~l ((log[supq(-,B)/  
q(., v~0)]) 2) < ~ ,  and compactness of H. 

3. A condition for non-existence of consistent estimator-sequences 

The Consistency Theorem 2.1 is restricted to sequences of nuisance parameters 
rl~, p C N, for which Condition (2.8) holds true. If this condition fails, this does 
not necessarily exclude the existence of some consistent estimator-sequences--even 
such ones fulfilling (2.7). 

In Theorem 3.1 we give under (3.3) a condition which excludes the existence of 
any (even weakly) consistent estimator-sequences. The usefulness of this condition 
is obviously confined to families {P~,~ : ~ c O, rl C H} with finite or countable 
support. Even in this case it looks somewhat strange. Yet it suffices to answer the 
question about the existence of consistent estimator-sequences for the particular 
case considered in Section 4. 

Let P << Q denote absolute continuity of P with respect to Q. 
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THEOREM 3.1. (i) If 
o o  o o  

(3.1) × Pa,,v, << x Peo,, . ,  
u=l . = 1  

then there is no estimator-sequence ~)(~), n E N, which is weakly consistent at 9o 
and ~1, i.e. which fulfills 

o c  

(3.2) lira ~(~) = ~)~ stochastically under × P ~ , , .  for i = O, 1. 
n--+oo u = l  

(ii) Assume  there exists a sequence 2 ,  E X ,  u E N, such that 

o o  

(3.3) Z ( 1  - Pa{, , .{2,})  < oo for i = O, 1. 

Under this condition, Po~,v~ << P¢o,v~ for u E N implies (3.1). 

P R o o f .  (i) Relation (3.2) for i = 0 implies lim~-,oo t9 (~) = tg0 stochastically 
under  x~_l  P¢~,v . To see this, consider an arbi t rary subsequence N' C N. Since 
0 (~), n E N', converges to tg0 stochastically under ×~__lP¢o,v~, there exists a 
subsequence N" C N' such tha t  v ~(~), n E N", converges to 00 ×oo u = l  Poo,~. -a.e. 
Because of (3.1), this implies convergence of 0(~), n E N", to 00 x,~_-, Pa~,~ -a.e. 
Hence every subsequence of 0(~), n ~ N, contains a subsequence converging to O0 
×~--1 P~,~  -a.e. This implies stochastic convergence of 0(~), n E N, to ~o under 

(ii) Let 

2(o := l iminf{x  ~ X ~ : x ,  = 2 ,}  
" - - +  O O  

and 

X'~ : =  { x  E X ~ : x .  = 2 .  for u > ),}. 

We have X~ C X~+I, and 2(0 = LJx=l°° X~. Relation (3.3) implies (x °°.=1 P~,~.)(X0) 
= 1, hence 

(3.4) lim x= ,~ (2(x) = 1. 
/~  ---+ OO . 

For any set A ~ A ~, A N Xa = Ax x {(2 . ) .>x}.  The set Ax c X x, being a 
section of the measurable set A A Xa, is in A z. We have 

Because of (3.4), (x,~_l P~o,w)(X~) > 0 for A _> h0, say. Hence (x~°_ 1 P~o,,7.)(A) = 
0 implies (×x,=l P~o,v.)(Ax) = 0 for A _> A0. From POl,V~ << P~o,v. for u E N, we 
have (×,=1P~l ,V.)(Aa)  = 0 for A _> A0, hence, by (3.5), 

(X,=lP~h,v.) ( A A X x ) = 0  for A>_A0. 

Because of (3.4), this implies (×~°°__ 1 P ~ , v . ) ( A )  = 0. This proves (3.1). [] 
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4. An application to the Rasch-model 

In this section we apply the results of Sections 2 and 3 to a special case, the 
so-called Rasch-model  for psychological tests. (For the psychological background, 
see, e.g., Lord and Novick ((1968), Chapter  17), contr ibuted by A. Birnbaum.)  

From the formal point of view we have for ~ = (~1, . . .  ,~,~) E Nm and a E R 
a discrete p-measure defined for x = (x0, x ~ , . . . ,  x,~) c {0, 1} 1+'~ by 

e x p [ E ~ 2 o ( a  - ~i)xi] : =  . . . . . .  . 
11 =o(i + exp[  - 

In this definition of P~,~ read (% = 0. (For typographical  reasons we write Ps,~ (x) 
instead of Pe,~ ({x}).) 

The family {P~,~ : c~ E N} admits  the sufficient statistic 

m 

s( 0, : =  Z 
i 0 

which attains the values 0, 1~. . . ,  1 + m. 
m For k E {0, 1 , . . . ,  1 + m} let Ak((~) := ~ e x p [ -  ~ = 1  ~ixi], where the summa- 

tion extends over all x E {0, 1} ~+'~ with S(x) = k. 
We have 

(4.2) P6,a o S{k} : Ak(6) exp[ctk] (1 + exp[c~ - 6/]). 

Let Dk := S - l { k } .  For k E {0, 1 , . . . ,  1 + m} and 6 E ~'~ we define a p-measure 
Qk(',  (~) over {0, 1} l+m by 

(4.3) 

and 

Qk(x,(~) . -  Ak((~) exp - (~ixi 
i=1  

Qk(x, 6) := 0 elsewhere. 

if x E Dk 

With  this notation, representat ion (2.1) can be wri t ten as 

In this representation, Qs(~)(x,f) corresponds to q(x, (~), the density of the 
conditional distr ibution of x, given S(x) = k, with respect to the measure ker- 
nel M(k ,x )  = 1{~} (S(x)) .  Moreover, # and • are the counting measures over 
{0, 1} 1+'~ and {0, 1 , . . . ,  1 + m}, respectively. 

Among the values 0, 1 , . . . ,  1 + m at ta ined by the sumcient statistic S, the 
values 1 , . . . , m  are non-contracting. For the values k = 0 and k = l + m  the 
p-measures Qk(',(~) are identical for all ~ E R "~, since Do and Dl+m consist of 
a single (1 + m)-tuple  only, ( 0 , 0 , . . . , 0 )  and (1 ,1 , . . . , 1 )~  respectively. Hence 
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log[Qk(x~,,6(n)(x))/Q~(x~,6)] = 0 for k = 0 and k = 1 + m, so  tha t  CML- 
est imators in the usual sense are in this case identical with restricted CML- 
estimators fulfilling (2.6) with Y0 = { 1 , . . . ,  rn}. 

An est imator  6 (~) is restricted CML if (see (2.6)) 

(4.4) ~1{1 ,  ,~}(s(~)) log Qs<~)(x~, ~(~)(~)) 
/ / = 1  

n 

: sup ~1{~ ..... ~}(S(x~))logQ~(x~)(~,~) 
66~m z,:l 

for all • ~ ({0, 1}~+~) ~. 

Sufficient for consistency is the following weaker restricted ACML-condit ion,  
corresponding to (2.7), 

}%% E 1{1, ,~}(s(x~))log[Q~(~)(~,6(~)(*))/Q~(~)(x~,~)] 
(4.5) lim = 0 

1{1 . . . . .  rr~} (S(X~)) 
/]:1 

for all x E ({0, 1}1+'~) ~. 

THEOaEM 4.1. (i) For the family of p-measures given by (4.1), all estimator- 
sequences fulfilling (4.5) are strongly consistent at each 6 ~ [{'~ if  

o o  

(4.6) ~ exp[-]c~[]  = ~D. 

(ii) Condition (4.6) is necessary for the existence of weakly consistent esti- 
mator-sequences. 

Condit ion (4.6) is certainly fulfilled if sup~ea [c~[ < oc, but  it establishes 
consistency of restricted ACML-est imators  also for certain sequences a~, p ~ N, 
with lim~-~oo lay] = oc. It fails to guide our intuition if we think of c~,, ~, E N, 
as a sequence with [c~l, y C N, increasing: The distinction between c~, = log 
(which implies strong consistency of restricted ACML-est imator-sequences)  and 
a~ = 2 log ~ (which excludes the existence of any weakly consistent est imator-  
sequence) is not very clear from the intuitive point of view. A reassuring aspect  of 
Condit ion (4.6) is that  it guarantees consistency as long as there are enough small 
values Ic~l, not withstanding the occurrence of many large values la ,  I. 

For the particular model (4.1) Andersen ((1973a), p. 159, Theorem 5.1) asserts 
consistency under the condition that  in our no ta t ions - - the  nuisance parameters  
a~ are restricted to a compact  set, in Andersen ((1973b), p. 127, Theorem 2 and 
(1980), p. 247, Theorem 6.2) under conditions equivalent to 

(4.7) ~1{1 ..... ~}(s(~.)) = 
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(together with the redundant  condition 6~ ¢ 6j ¢ 0 for i ¢ j ¢ 0). 
Andersen's  assertion is presumably  to be unders tood in the sense that  the 

sequence of CML-est imators  converges to 6 for x~_l  Pe ,~ /a .a .  x E ({0, 1}l+m) N 
for which (4.7) holds true. Since this condition refers to an infinite sequence of 
observations, it appears to be meaningless. We may, however, interpret Andersen's  
result as a consistency theorem if conditions on the sequence a~, ~ E 51, make sure 
that  (4.7) holds for x,°°= 1 P~,~/a .a .  x E ({0, 1}1+'~) a. This is the case iff condition 
(4.6) holds true. 

The consistency results of Andersen are, again, based on the assumption that  
the CML-est imator  is unique. In Andersen ((1980), p. 248, Theorem 6.3) Andersen 

7~ states tha t  the CML-est imator  is unique if 0 < Y2,=1 x~i < n for i = 0, 1, . . . ,  m. 
As remarked by Fischer ((1981), p. 60) this is not true. (Andersen's use of his 
Theorem 3.2 is not justified.) If (3.4) holds true, the (necessary and sufficient) con- 
dition for existence and uniqueness of the CML-est imator  discovered by Fischer 
((1981), pp. 66-69, Theorems 3 and 4) is fulfilled for eventually all n C 5] for 
X oo ,=1 P&~/a .a .  x E ({0, 1}1+'~) ~. Hence scholars who are willing to accept An- 
dersen's consistency-proof for solutions of the likelihood equation might arrive at 
the conclusion that  the consistency result s ta ted in Theorem 4.1(i) is not entirely 
new. The first mathemat ica l ly  satisfying proof was obtained in the diploma-thesis 
of Hillgruber ((1990), p. 35, Satz 2.3.36). Our proof of Theorem 4.1 uses ideas 
from this thesis. 

PROOF OF THEOREM 4.1. (i) Let ~1 + := {j C N : a j  > 0} and N -  := {j C 
N : a j  _< 0}. We need the following relations. 

P ~ , ~ ( S - I { m } )  < oo implies, 
jEN + 

exp[-Ic~jl] < oc implies, (4.8') 
j cN  + 

< for all 
jEN + 

(4.8") 

P6,~j (S-1{1})  < oc implies, 
j E N -  

exp[--Ictjl ] < oe implies, 
j E N -  

Z ( s - l { k } )  < for all k { 1 , . . . ,  + 1}. 
j c N  

We shall prove (4.8'). The proof for (4.8") runs similarly. 
Since a ~ exp[(m + 1)c~]/l-[i~_0 (1 + e x p [ a -  6i]) is continuous and positive on 

R, and 

0 < lim exp[(m + 1)(~] 1 + exp[ct - 6i]) < oc, 
( 2 ~ O O  
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there exist 0 < C1((5) < C2((5) < OO such tha t  

C1(6 ) < exp[(m + 1)oe] (1 + exp[o~ - (5i]) _< c2((5) 
/ i=O 

for c~ E [0, oo), 

i.e. 

c~ ((5) exp[-I~F] _< exp[ ,~ ]  (1 + exp[~ - <) 

_< c~((5) exp[-I<]  for ~ ~ [0, o~). 

Hence (4.8') follows from (4.2). 
(ii) Tha t  consistent estimator-sequences do not exist if (4.6) fails, follows from 

Theorem 3.1. To see this, let 2j E {0, 1} l+'~ be defined by 

( 0 , . . . , 0 )  i f a j  < 0  
2J = (1, ,1) i f a j  > 0 .  

Since 
/D6,ct j ( s - - l { 1 , . . .  : fYt q- 1}) if a j  < 0 

if a j  > 0, 

oo o~ 1 y~j=lexp[-lc~jH < oc implies (3.3), i.e. Y-~- j=I ( -P~,~j (xJ) )  < oc, by means of 
(4.8). 

The sufficiency-part (i) of Theorem 4.1 follows from Theorem 2.1, applied with 
Y0 = { 1 , . . . , m } .  

(iii) To begin with we remark that  relations (4.8) imply the equivalence be- 
tween (2.8) and (4.6). This establishes condition (ii) of Theorem 2.1. 

Now we establish condition (i) of Theorem 2.1. Let k C {1 , . . . ,  m} be fixed. 
At first we shall show that  for every neighborhood U of (5o E N'~ there is a cover 
of U c by a finite collection of sets By, j = 1 , . . . ,  J, fulfilling 

(4.9) Q~(x, (50)log[sup Qk(*, Bj)/Qk(~, (50)] < 0 
xEDk 

(iv) Following the suggestion of Remark 2 we first show that  this holds t rue 
for the compact  set 

(4.10) NO(F) : :  {((51,- . .  ,(sin) E ~ m  : l(sil ~ r for  i : 1 , . . .~7Yt},  

provided r is sufficiently large. 
For j E { 1 , . . . , m }  let 

and 

B f ( F )  :=  {( (51 , . . . , (5m)  E ~rn : (sj > F} 

B ; ( f )  :=  {((51, . . .  ,(srn) e ~ m  : (sj < --F}. 
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W e  h a v e  

Uo(~y c Cj(Bj-(~)o Bj-(~)). 
j = l  

Now we shall show tha t  (4.9) holds for Bj = B+(r) and Bj = B~(r), provided 
r is sufficiently large. 

The following relation holds for arbi t rary x, y E Dk and arbi t rary 5 E N~ 

[ 1 i ~5~(x5 ~5) 
( 4 . 1 1 )  Q k ( z ,  5) - A k ( 5 )  e x p  - 5yX 5 < e x p  - - . 

j = l  j = l  

For any k E { 1 , . . . , m }  there is jx  + E Dk with jx  + = 0, and jx  + = 1. Let 

y E NI+~ be defined by Y0 = 1, yj = 0, and Yi = jx  + elsewhere. Since y E Dk we 
obtain from (4.11) tha t  

Qk(jx +, 5) < exp[-Sjl  , 

hence 
log sup Qk(~x÷, B [  ¢ ) )  < -~ .  

(The proof for B2(r ) uses i x -  E Dk with jx  o = 1 and jx 2 = 0.) 
Since logsupQk(x,B+(r)) <_ 0 for every x E Dk, we have for every r > 0 

y~ Q~ (x, 50) log sup Q~ (x, B 3 <)) 
x~Dk 

_< Qk0x + , 50)log sup Q k ( S  + , B [ ¢ ) )  _< -~Qk( jx  +, 50). 

Since Qk(x, 5o) > 0 for every x E D~, we have 

-,-0~(jx+, 50) < ~ Q~(x, 50)log Q~(~, 50) 
xcDk 

if r is sufficiently large. Hence (4.9) follows with B+(r) in place of Bj. 
(v) supQk(x ,  N m) <_ 1 for every x E {0, 1} 1+'~, implies 

E Qk(x, 50) log[sup Qk(x, [~) /Qk(x ,  50)] 
xEDk 

_< - ~ Qk(x, 50)logQk(x,50) < 
xCDk 

(since Qk(x,5o) > 0 for x E Dk). 
Since k E { 1 , . . . ,  m} is non-contracting, relation (2.5) implies 

Q~(x, 5o)]og[Qk(x, ~)/Q~¢, ~o)] < o 
xEDk 
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for every 5 ¢ 60. Since 6 --~ Qk(x, 6) is continuous, there exists (see Pfanzagl 
(1990), p. 90, Lemma L.7) an open neighborhood V6 of 6 such tha t  

60)log[sup 60)] < 0. 
x E D k  

Let U0 denote the compact neighborhood of 6o determined in (iv). If U is an 
arbi trary neighborhood of 6o, {V5 : 6 E Uo N U c} is an open cover of the compact 
set Uo A U c and contains, therefore, a finite subcover. Together with the sets 
B +(r ) ,  B~-(r), j = 1 , . . . ,  m determined in (iv) this provides a finite cover of U ¢ 
fulfilling condition (4.9). 

(vi) Since Qk(x, 6o) = 0 for x ¢ Dk, relation (4.9) may be rewrit ten as 

(4.12) E Qk(x, 60)log[sup q(x, Bj)/q(x, 60)] < 0, 
xe{0,1}~+ -~ 

with q(x, 6) := Qs(~)(x, 6). 
To stress tha t  the cover of U c by By, j = 1 , . . . ,  J ,  still depends on k we now 

write Bk,j, j = 1, . . . ,  Jk. Condition C requires a finite cover of U ~ which fulfills 
(i), (ii) and (iii) simultaneously for all k E { 1 , . . . ,  m}. Such one is given by 

{ ~ - ~ B ~ ' J k : J k E { l ' " " J k } f ° r k : l ' ' " ' m }  " k = l  

Condition C(i) now follows from (4.12). Conditions C(ii) and C(iii) follow from 
the fact tha t  0 < supq(x, Bj) _< 1 and 0 < q(x,6o) < 1 for every x E {0,1} l+m, so 
that 

x --~ log[sup q(x, Bj)/q(x, 6o)] 

is bounded on {0, 1} 1+~. [] 

5. Auxiliary results 

In this section we collect technical lemmas which are used in Section 2. 

LEMMA 5.1. If h fulfills Condition C for {Qv : Y E Y},  then the following 
holds true for every sequence y, E Y, ~ E ~: 

?% 

lim n -1 ~ h(x,) < 0 for X ~ =  l e e  Qy,_a.a. x C X ~. 
7% --~ 00 

U=I 

PROOF. By Condition C(i), Qv(h) <_ -2s  for some s > 0. By Condition 
C(iii) there is c > 0 such tha t  Q y ( h _ l ( c , ~ ) o h _ )  < s for y E Y. Wi th  h~ := 
h_l(0,c ] o h_ we obtain Qy(h+) - Qy(hc) < - s  for y E Y. Therefore, 

~,=1 •=1 
n n 

< ~ - - 1  ~ - ~ ( h + ( x ~ / )  - -  ( ~ , y , ( h + ) )  - Tt - 1  ~ ( h c ( X ~ )  - ( ~ y , ( h c ) )  8. 

71=1 L,:] 
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From a suitable version of the strong law of large numbers  we obtain for ×~°c=1 Qy- 
a.a. x E X ~ 

and 

75 

l i r a  73--1 ~ - ~ ( h _ r ( x y )  __ Q y . ( h + ) )  = 0 
~'~ ---+ oo 

7~ 

l i m  n 1 ~ ( h c ( x v ,  ) _ Qy~ ( h c ) )  = O. 
~---+ oo 

g ~ l  

(For the first equation use, e.g., Lo6ve ((1977), Section 17.4, p. 253) with bn = n 
and r~ = 1 + 6.) Hence the assertion follows. [] 

LEMMA 5.2. For ~ E N let P ,  I A be a p-measure. Assume  there exists a 
measurable funct ion S : X ~ Y and a conditional distribution of x, given S, i.e. 
a Markov-kernel Qy I A,  y E Y ,  such that 

(5.1) P.(AnS-ls)=/G(A)IB(y)P. oS(dy) for  A E A ,  B e B .  

Assume  that the funct ion h : X ~ ~ fulfills Condition C for  {Qy : y E Y0} 
for  some set Yo E B. 

I f  E.%1 P , ( S - 1 Y o )  = co, then 

n 

oc X~ (5.2) lira }-~,=1 l v o ( S ( x , ) ) h ( x . )  < 0 for × P,-a.a.  x 
~--*~ }-~'- ~ = 1 1Yo (S(x~)) ~ = 1  

PROOF. Let Yo denote the set of all sequences y. C Y, ~ E ~, such that 
{p E N : y. E Yo} is infinite. Let y E Yo be fixed. From Lemma 5.1, applied with 
Yo in place of Y, and with No :-- {p C ~ : y. C Yo} in place of N, we obtain that 
there exists a ×-~No Qy -null set ivy c X ~° such that 

(5.3) lim ~ - ~ = l l y ° ( Y ' ) h ( x ' )  
~ ~ = 1  1yo(Y-) < 0 for (x,) .C~o ~ N~. 

Let 2Vy denote the cylinder in X ~ with base Ny. We have (x,~__l Qy.)(;Yy)  = O, 
and relation (5.3) (with the left hand side viewed as a function of x C X ~) holds 
for all x ¢ Ny. 

With  

C(y )  E =11y0(y ) < 0j ,  [ 

relation (5.3) may be rewrit ten as 

001 Qy~) (5.4) x ( C ( y ) )  = 1 for every y E 3)o. 
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We remark that the left hand side of (5.4), considered as a function of y, is/3< 
measurable by Lemma 5.3 (applied with ic(y ) (x) in place of f(x, y)) and that Y0 E 

B N (since y --+ IYo(y,) is B~-measurable and 32o -- {y E YN : }-~,~--i ivo(y~) = 
~}). 

If ~,~=i P~(S-IYo) = oc, we obtain from the Lemma of Borel-Cantelli that 

.~  {x E XN:  (S (x . ) ) . c~  E Y0} = 1. 

Together with (5.4) this implies tha t  

(5.5) Qs(x~) (C((S(x,~))~e~)) -- i for × P~-a.a. x c X m. 
L, 1 ~=i 

Using Lemma 5.3 we obtain that 

----/(uXlQS(x,,)) (C((S(xu))~e~))(~1Pu)(din) : i, 

i.e. x • c((s(x~))~) for ×~i P~-a.a. x • X ~. This is the same as (5.2). [] 

LEMMA 5.3. Let # and u be (7-finite measures on measurable spaces" (X,A) 
and (Y, B), respectively. Let S : X -~ Y be a measurable function and M [ Y × A 
a measure kernel such that 

#(ANS-IB)--/IB(y)M(y,A)p(dy) for A•A, B•B. 

Let f :  X × Y --~ ~ be an A × B-measurable function such that x --+ f (x, S(x) ) 
is ,-integrable. Then f f(x,  y)M(y, d~) exists fo~ ,-a.a. y • Y, 

(5.6) y ~ / f (x ,  y)M(y, dx) is B-measurable 

and 

(5.7) f f (x ,S(x) )p(dx)  = / (/f(x,y)M(y, dx)) u(dy). 

PROOF. Since f is approximable by A × B-measurable elementary functions, 
it suffices to prove the assertion for f = 1c, with C • A × B. Let S denote the 
class of all sets C • A × B such tha t  (5.6) and (5.7) hold true for f = 1c. The 
class $ contains A × B for A • A and B • B, because f l d × B ( x , y ) M ( y ,  dx) = 
1B(y)M(y:A). Since S is a Dynkin-system, this implies S = A × B (see Ash 
(1972), p. 169, Theorem 4.1.2). [] 
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