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Abstract. The coverage errors of the empirical likelihood confidence regions
for 8 in a linear regression model, Y; = 2;8 + ¢;, 1 < ¢ < n, are of order n™>.
Bartlett corrections may be employed to reduce the order of magnitude of the
coverage errors to n~ 2. For practical implementation of Bartlett correction, an

empirical Bartlett correction is given.
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1. Introduction
Considering a linear regression model of the form,
(1.1) Yi=z,0+¢, 1<i<n,

where ( is a p x 1 vector of unknown parameters and z; is a 1 x p vector of the
i-th fixed design point, for which scalar Y; is the response. We allow the ¢;’s to be
heteroscedastic, that is, the ¢;’s are independent random variables with mean zero
and variances 02 (z;). The data are observed in the form {(z;,Y;) |1 <i < n}.

A classical problem for linear regression model is how to construct confidence
regions for 3, when the distribution functions of ¢;’s are unknown. In these kinds
of nonparametric settings, the bootstrap has been used to construct confidence
regions for 4. But one drawback of the bootstrap is that it needs some subjective
instructions on the shapes and orientations of the confidence regions. Empirical
likelihood methods, as alternatives to the bootstrap method for constructing con-
fidence regions nonparametrically, were introduced by Owen (1988, 1990). An
important feature of empirical likelihood is that it uses only the data to determine
the shape and orientation of a confidence region. Furthermore in certain regu-
lar cases, empirical likelihood confidence regions are Bartlett correctable, meaning
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that simple empirical adjustments for scale can reduce coverage error from O(n~1!)
to O(n~2); for the case of smoothed function of means see DiCiccio et al. (1991),
and for that of a quantile see Chen and Hall (1993).

Empirical likelihood methods were proposed by Owen (1991) to construct
confidence regions for 3 in the model (1.1). He derived a nonparametric version of
Wilks’ theorem, ensuring that empirical likelihood confidence regions for § have
correct asymptotic coverages. There are, however, two questions to be answered.
They are “How accurate are the empirical likelihood confidence regions?” and “Are
the empirical likelihood confidence regions Bartlett correctable?”

This paper aims to answer these two questions. We demonstrate in Section 2
that the coverage errors of the empirical likelihood confidence regions for 3 are of
order n~!. In Section 3 we show that Bartlett correction may be used to reduce the
order of magnitude of the coverage errors to n~2. An empirical Bartlett correction
is given, which allow one to practically implement the Bartlett correction. A
simulation study is presented in Section 4.

We close this section with the following notations. Let X be an n x p matrix
with z; as the i-th row; and Aps denote the least squares estimator of 3, g =
(XTX)_l Yox;Y; and & =Y, — z;0Ls.

2. Wilks' theorem and coverage accuracy

As mentioned in Section 1, Owen (1991) proved a nonparametric version of
Wilks’ theorem for the empirical likelihood of 3, which enables us to construct
confidence regions with correct asymptotic coverages. In this section we investigate
the second order property of those confidence regions. We first give a Taylor
expansion for empirical log likelihood ratio, which is denoted by £(3). Then we
set up an Edgeworth expansion for the distribution function of (), which allows
us to evaluate coverage accuracy of the empirical likelihood confidence regions.

For the linear regression model (1.1), we know that

E(Y; | z;) =z, E()=0, Var(e)=0*(z;).

We define auxilliary variables z; = z7 (Y; — 2;83), for 1 < ¢ < n, and
n n
Vi, =n"t Z Cov(z;) =n"! Zx;fr:riUQ(xi),
i=1 3=1

and let vy, and v, denote the largest and smallest eigenvalues of V;,, respectively.

The problem of testing if 3 is the true parameter is equivalent to testing if
E{z} =0, for 1 <i<n. Let pi,...,p, be nonnegative numbers adding to unity.
Then the empirical log likelihood ratio, evaluated at true parameter value 3, is
defined by

() =—-2 _min log(np;).

Z piz;=0 Z
Using the Lagrange multiplier method, the optimal value for p; may be shown to
be given by,

1 1 .
<:<n.
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This gives
0B)=2) log(1+A"z),

where A is a p x 1 vector satisfying
1 24
n — =0
Z 1+ )\TZi
In terms of studentized variables w; = Vn_l/ 22’@', for 1 <1i < n, we have

(2.1) 0B3) =2 log(1 + ATw;),
where )\ satisfies

— W;

Since analytic solution of equations (2.1) and (2.2) can rarely be attained,
we have to derive an asymptotic expansion for £(3). To this end, we assume the
following regularity condition.

(2.3) There exist positive constants C; and Cs such that uniformly in n,

n
C1 < Vpn < vip < Cg; and n™2 ZEsz|[4 — 0, where || || is the
j=1
Euclidean norm.

Under condition (2.3), Owen (1991) shows that the A appearing in (2.2) satisfies
A=0,(n"1?).
We define
i =t ZE(wfl . wf’“),

i1 gk -1 J1 Je _ =17
AT = E (wit - wi® — @k,

where w! is the j-th component of w;. In particular, @/ =0, & ¥ = §7 %, §7 % is

the Kronecker delta.

Notice that £(3), given by (2.1) and (2.2), is similar to the empirical log
likelihood ratio for means in the independent and identically distributed case. The
only difference is that {w;}?"_; are independent but not identically distributed
random variables due to the presence of the fixed design points. However, by
modifying the expansion (3.6) in DiCiccio et al. (1988) we may obtain the following
expansion for 4(3),

(2.4)  n7U(B) = ATAT — AT RAT AR 4 gaﬂ' RUAT Ak AL 4 AT P AR T AT AR
209 AT AR AL 267 B AL ™ 47 4K Al
3
—f—djknO_élm'nAjAkAlAm

- %aﬂ' kLm AT AR ATA™ 4 O, (n %),
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We use here the convention that terms with repeated indices are to be summed
over. Based on expansion (2.4), we have

(2.5) 2(B) = (n2RTY(n'2R) + 0, (n=%/?),

where B = R; + Ry + R3 is a p-dimensional vector and R; = Op(n_l/ %) for
1 =1,2,3. Comparing terms in (2.4) with those in (2.5) yields,

. , , 1 1 .
Ry =4, Rj=- A RAR 4 cal b malan,
;3 1. 5 _.

R%—:—AJmAkmAk—l-—A]kmAkAl--—C_MkaAlmAkAl
8 3 12
-—io_tklmAijkAl—%—%@jkndlmnAmAkAl—idjklmAmAkAl,

12 9 4
where R{ is the j-th component of R;. Considering only the dominant term in

expansion (2.4),

(26) 4B8) =n {3 — @i} Vi {SaT (Vi — i)} + Opln=H/2)
= (BLs — B)"{Var(BLs)}  (BLs — B) + Op(n~"?).
Since Ors — B converges to N{0, Var(fBLs)} in distribution under condition (2.3),

(BLs — B)T Var ! (Bs)(Brs — B) S x%,  as n— oo,

Thus we obtain
(2.7) PU(B) < c} = PG <) +o(l) as n— oo,

which is the nonparametric version of Wilks’ theorem, and first proved by Owen
(1991).

From (2.6) we can see that ¢(3) implicitly uses the true variance of Grg to
construct confidence regions for 5. This is an advantage of empirical likelihood
over other resampling techniques, such as jackknife and bootstrap, which depend
on explicit estimates of Var(/3) and subsequently create problems about the quality
of these estimates. This point was noted by Wu (1986). Empirical likelihood can
avoid this problem, reflecting the feature “let the data themselves decide”. And
also note that the first term on the right of (2.6) is different from that given by
Owen (1991), who uses an estimate of Var(frg). However the difference has no

first order effect.
Using (2.7), a confidence region for 8 with nominal coverage level o can be
constructed as follows. First find from Xf} tables the value ¢, such that

P(x2 < ca) = o

Then R, = {f | 4(8) < ¢} is the a confidence region for 3, and (2.7) ensures
that it has correct asymptotic coverage. Before discussing the coverage accuracy
of Ry, let us define j1 = (p® +p)/2, j2 = j1/2 + p(p + 1)(2p + 1)/12, and

= (AL, AP AY L AP P AN YL AP PP
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being the p + j; + j» dimensional vector consisting of all distinct first three order

multivariate central moments of w; = V[l/ 2zi’s‘ Note that there are ji and jo
different second and third order multivariate central moments in U. Let 7,
n Cov(U). We define square matrices H; and Hy as follows,

=0 Y 6T @ ) 9 i) (el - B,
Hy=n"! Z(m? ®z! @] ) (2 ® 2 @ z){ef — E*(€))}.

There are p? rows and columns for H; and p3 for H,. Notice that the ranks of H;
and H, are not larger than j; and js, respectively. We denote 7;,, and (j,, as the
j1-th and j7o-th largest eigenvalues of H; and Hj respectively. Moreover let S; be
the (p — i) x p matrix obtained by removing top 4 rows of vl ® and Vn_jl/ ? the
j-th row of Vn_l/z. Clearly S, = Vo /% and Sp_1 = V[pl/z. We define j; x p? and
jo x p3 matrices By and By as follows,

v e V‘l/2 ® S,

vV V2 g Vnp1/2 %S, 1

V.2 %S, - i
® v1/2®v1/2®s2

Bl = : and
V_1/2 ® Sp-1

»
I

Vn_21/2 ® Vn—p1/2 © 5,1

Vi 12 o Vnp1/2 © 5,1
To derive an Edgeworth expansion for the distribution of £(3), we need the
following lemma, whose proof is deferred to the Appendix.
LEMMA 2.1. Assume that

(2.8)  both 1j,n — Vg and Gy — vk — (Mjyn — Uy )t are positive and
bounded away from zero; the ranks of By and By are j1 and js

respectively.
Then the smallest eigenvalue of T, is bounded away from zero.
We use this lemma to establish the following theorem.
THEOREM 2.1.  Assume (2.8) and that

(2.9) (i) there exist positive constants C1, Cy such that uniformly in n,
Ci < Upp, S v1p < Co; (i) |25 s for 1 <4 < n are uniformly bounded;

n
(iii) supn~? ZEJEJ-IM < o003 (iv) for every positive T,
" .
Jj=1
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n
lim n~t / ;| = 0; (v) for every positive b
Jim ; " &1 (v) f Y p ,

>rnt/2
the characteristic function g, of €, satisfies Cramér’s condition
lim sup |g,(t)| < 1.
Then P{l(3) < co} = 0 — acagp(ca)n™t + O(n=3/2) where g, is the density of X2
distribution, P(x3 < ca) = o, and
1

Theorem 2.1 states that the coverage error of the empirical likelihood confi-
dence region R, is of order n!. From (2.10) and the definitions of &/ # ™ ™ and
al ¥ ™ we have

P I R _ 1 _ _
a=p! 3" 1ZE(6?)(inn Lal)? - 3" 2Z{E(€?)E(6?)(Wn oy)®)
i=1 il

This reveals that the coverage error depends on a combination of the following
five factors: (i) the moments of ¢;’s, (ii) the nominal coverage level, (iii) the
configuration of the fixed design points, (iv) the sample size n, and (v) dimension,

p-
ProoF oF THEOREM 2.1. To prove the theorem we first derive an Edge-
worth expansion for the distribution of n*/2R. By the expansion R = R;+Ry+R3

and expressions for Ry, [ = 1,2,3, we may prove that the cumulants ki, ko, ... of
n'/2R satisfy the following formulae:

ki =n"Y2u4+0n %), ky=I4+n"'A+0(n7?),
k=077  j>3,

where I is the p X p identity matrix, u = (u,...,uP)?, A = (A; j)pxp and

j 1 1—i' m 141' m=j km 1—i'm—mk
NJ”—‘—EOt]kk, Az‘j=§@]m __?:ak & _56 Jmg k.
Let B be a class of Borel sets satisfying
(2.11) sup / ¢(v)dv =0(¢), €0,
BeB J(8B)«

where (9B) and (8B)¢ are the boundary of B and e-neighborhood of (0B) respec-
tively. A formal Edgeworth expansion for the distribution function of n'/2R is
given as follows,

(2.12) sup = O(n~%?),

Pn'?R e B) — / 7(v)o(v)dv
BeB B
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where
1
n(v) = Lt 2T+ o (o7 (up” 4+ A — r(u” + A},

#(v) is the density function of standard p-dimensional normal distribution, and tr
is the trace operation for square matrices.

Accepting that the Edgeworth expansion (2.12) may be justified, we shall
develop an Edgeworth expansion for the distribution of ¢(3). Put

H = (h; j)pxp = ,U,UT + A.
From (2.5) and by the symmetry of ¢(v) we have

(2.13) P{4(B) < ca}
= P{(n'?R)"(n'/?R) < ca} + O(n~*/?)

S RGO G

= P(Xp < Cq)
1
+5n—1/ g Zh”v ~ )+ 3 ke oy ¢ S(v)do
loll<ch pory
+O(n‘3/2)

P
=a—-p ! Z hi iCagp(ca)n ™t + O(n=3/%).

=1

After some simple algebra we may show that

plzp:h“ <1a33mm_1@jkmdjkm>.
3
Thus from (2.13) we obtain
P{(B) < ca} = @ — acagp(ca)n ™ + O(n™%2),
However, it remains to check that the formal expansion (2.12) is valid. Since
U= (A", AP AV APP AYIL qpPP)T _IZU“
where

U; = [x7V,7 Y ?€;, (2 @ 2:) BT {67 — E(e})}, (2 @ 3 ® 2;)B] {e2 — E()}]7,

1

we see that U is the mean of independent but not identically distributed random
vectors due to the presence of the fixed design points. However an Edgeworth
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expansion for this case is established by Bhattacharya and Rao ((1976), Theorem
20.6). Using Lemma 2.1, it may be shown that conditions (2.8) and (2.9) im-
ply the conditions of Theorem 20.6 of Bhattacharya and Rao (1976). Thus, we
may establish the following Edgeworth expansion for the distribution of U under
conditions (2.8) and (2.9),

(2.14) sup = O(n'?’/z),

BeB

P EB) - [ tstu)du

for every class B of Borel sets satisfying (2.11). In (2.14),

3

Ens(u) = ZPT(—¢ H{xen}) (W),

r=0

{xun}, 1 < v < 5, are the first five cumulants of U, P.(—=¢ : {xun})(u) is the
density of the finite signed measure with characteristic function P(it = {xun}) -
exp(—tTt/2), and P, is the Cramér-Edgeworth polynomial. From the expression
for R, we see that there exists a smooth function f, such that n'/?2R = f,(U).
Hence from Theorem 3.2 and Remarks 3.3 and 3.4 of Skovgaard (1981), we may
show in our case that the Edgeworth expansion (2.14) may be transformed by
sufficiently smooth function f,, to yield a valid Edgeworth expansion (2.12) under
conditions (2.8) and (2.9). O

3. Bartlett correction

In Section 2 we showed that the coverage errors of empirical likelihood confi-
dence regions for 3 are of order n=!. It is well known that part of the coverage
error is due to the fact that the mean of £(5) does not agree with the mean of
X3, that is E{£(3)} # p. This disagreement can be eliminated by rescaling £(8)
so that it has correct mean. We demonstrate in this section that the empirical
likelihood confidence region for 3 is Bartlett correctable. Thus, a simple empirical
correction for scale can reduce the size of coverage error from order n~! to order
n~2. For practical implementation of Bartlett correction, we give an empirical
Bartlett correction.

From expansion (2.4), we may obtain an expansion for E{{(3)} as follows,

(3.1) E{6(B)} =p(1+an™") +0(n™?),

where a is given by (2.10). The Bartlett correctability of empirical likelihood
confidence regions for 3 is discussed in following theorem.

THEOREM 3.1. Assume conditions (2.8) and (2.9). For any cq > 0,

P{(B) < ca(l+C(n )} =a+0(n"?),

where P(x2 < ¢o) = o and ( is either a or an n'/?-consistent estimate of a.
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PROOF. We establish only the case ¢ = a; the case ¢ is an n'/?-consistent

estimate of a can be treated in a similar way. According to Theorem 2.1, under
condition (2.8) and (2.9),
(3.2) P{(B) < ca(l4+an"1)}
= P{XIZ, <eca(l+ an_l)} — acagp{ca(l + an‘l)}n_
+0(n%?).

1

Note that g,(v) is the density of x2 distribution,

(3.3) P{X;Z) <cug(l+an™H} = P(Xfj < co) +acgp(ca)n™t 4+ 0(n7?),
and that
(3.4) gplca(l+an™")} = gyca) +0(n7?).

Substituting (3.3) and (3.4) into (3.2), gives
(3.5) P{(B) < ca(l+an™1)} = P(x2 < ca) + O(n3/?).

Moreover, by an arguments based on the oddness and evenness of polynomials in
the Edgeworth expansion (see for example Barndorff-Nielsen and Hall (1988)), the
O(n~3/2) term in (3.5) is actually O(n~2), when either ¢ or an n!/2-consistent
estimate of a is used. Thus the theorem is proved. O

From (2.10), we know that the Bartlett correction is given by

| 1 .. :
a:p—1<§a]jmm_§@jkmajkm>7

where

7

n
—jkm _ . —1 S\y,—1/2 Ty—1/2 Ty,~1/2, T
& =n g Ee)V, ;" x V3 TV,
i=1
n
~jj —12 4 —1,. T2
ajjmm:n E(Ez)(xlvn xz) ?
i=1

and Vn_]l-/2 is the j-th row of Vnﬁl/Q. But in practice, the Bartlett correction is
unknown because V,, and the moments of ¢;’s are unknown. In order to give an
n'/2_consistent estimate of a, we define

SN | T . 22
Vo.=n E T; €5,

which is an estimate of covariance matrix V,,. Accordingly, we let Vn‘l be the

inverse matrix of V,, and V;; /2 be the square root matrix of Vn"l. Now an estimate
of a, é say, may be proposed as follows,

1.5 1
o1 fLzjimm 1
(3.6) a=rp <2oz 3
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where

n
sj km - 30-1/2, Tv,~1/2, T¢r—
o =nt E &V, j/ ] v k/ xlv-1/2,T

7

i=1
aj jmm -1 sy Fr—1,_ T2
=Tn Z €; (mlvn .'171 )
i=1
2jkm 2jimm . . ~1/2 .
We can see that & and & 7™ ™ are established by replacing ¢;, V. /2 0

nj
s s . ) . . . ~—1/2 o —1/2
&l * ™ and &l 7 ™ ™ with their corresponding estimates é; and V, j/ , where V, j/

denotes the j-th row of Vo2,

We want to prove that a is a n
assume that

1/2_consistent estimate of a. To this end we

(3.7) there exist positive constants C;, Cy such that uniformly in n,

C1 < vpp < v1p < Oy; and there exist constants g1, gz > 0 such that
q1 < inf ||z]| < sup ||| < go; and supn™' > () < +oo.
n
THEOREM 3.2. Assume condition (3.7). Then,

i =a+0y(n?).
Clearly Theorem 3.2 is a direct consequence of the following Lemma 3.1.

LEMMA 3.1. Assume condition (3.7). Then,

&I =@ im0, and

~7 k —q —
&M =a P ™ 0p(nTY?),

PROOF. Since condition (3.7) means that the eigenvalues of V,, and design
points z; are all uniformly bounded respect to n, there must exist positive con-
stants g3 and g4 such that for any 1 <4¢,7<n

(38) Vi Pall < e T XTX) ] < aa
Using (3.8) and Chebyshev’s inequality gives us that

Vi = Vi + Op(n™Y3),
which implies that

(3.9) Vil =V +0,(n7%)  and V7=V i+0,(n"Y?), 1<j<p
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Put

k= —12 &V, 2TV, PtV YT and

—_jimm _ -1 4 1/—1,.T\2
&y =n E e (x;V, “x; )",

For any M > 0, using (3.8) and Chebyshev’s inequality again, we have
P{n1/2(~6j m m —~C_tj im m) > M}

1/22{6 BV, 2TV 2T v 2T > M}

n 2
<M E | Y (el - BVt e Tvn—;{%f}
i=1

< M2¢5n~! Z E{e — E(e))2.

From (3.7), we know that n™! Y E{e} — E(e})}? < oo. Therefore for any € > 0,
there exists a M, > 0 such that for any M > M.,

P{n'2@)? ™™ —aimmy s My <e
uniformly in n. Thus we obtain
(3.10) alimm=glimm 0 (n"?).
In a similar way we can prove that
(3.11) &)™ =al k™m0,
Now to prove Lemma 3.1 it is sufficient to show that
(3.12) &Fm =gl ™y 0,V
(3.13) &7 =l I 4 Op(n ).

We only give the proof of (3.13) here, since (3.12) may be derived using the same
method. By Taylor expansion, (3.9) and Schwarz inequality, we have
(3.14)  (z:V; '2l)? — (2;V 'aT)?

= 2z, V. e (VI = Vi Dal F + op(n_l/z)
(3.15)  |aVy, el | = eV, AV el | < ViRV e | < pas.
Following (3.9) and (3.15), we may show that there exist positive constants Cj
and Cy such that for 1 <i¢ < n,
(3.16) 2,V 2l < Cs + A,
(317) [(inn—lx?)Q - (xivn“lxzr)z‘ < C4HVn_1 - Vn_l“ + |A2|7
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where |A;| = Op(n™V/2) for i = 1,2 and ||A| = max, ; |a; ;| for any matrix
A= (CI,Z' ])

From the fact that € = (8 — Brs)x; + €;, and using the Binomial theorem, we
may show that for each integer k there exists a constant D;, such that

& — €| < Dilas(Brs ~ B)[{les]* ™" + |z:(Bus — B)[F1 ).

Now from (3.16)—(3.18),

(3.18)

(3.19) [ SR

= 7 IE - e @il T2
- H@ V) = (i T )|
< Dy|Brs — Bln~"
Y Nl el + llzsl s ~ 8wV taT)?
+ (CllVT = Vit 1Aaln Y
< (Q2D4|WLS — Bl el
+ 303 Dallus — B1*) (Ca + 4]
GVt = Vil + A ) e

Since (3.8) implies n™1 " |&]* = O,(1), and since n=1 3"} = O,(1), (3.14) can
be proved from (3.9), (3.19) and the fact that 8rs = 8+ O,(n=1/?).

After some simplification we may show that a has the following explicit form
1
a=p~t | gn 7t Y ElVytal) *Z{efﬂ? 2V, o)}

In some special cases, & has simpler forms.
1) If €,...,€, are i.id, which implies that model (1.1) is a homoscedastic
regression model, then

_ 1. .- _ 1.5 .= _
=p'n Sha O 23 {a(XTX) 195?}2—5#3 670N {m(XTX) a2}

>

whereuke—n IS fork=3,4,6=n"13%" &
2) If €1,...,6, are i.i.d and have a symmetric distribution, then the model
implies E(e3) = 0, and we may take

. 1 1. _ .
a=np 1n§/,b4 7Y o (XTX) a2
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4. Simulation results
In this section we use Monte Carlo simulation to examine the coverages of
the empirical likelihood confidence regions proposed in previous sections. Under

consideration is the following simple linear regression model:

Yi=1+z{4+¢, i=1,...,n

Table 1. The data set x? for 1 <4 < 150.

0 0 0

% z; % z; z x; [ z; i x;
1 1.00 31 8.90 61 14.89 91 23.80 121 37.20
2 140 32 9.30 62 15.01 92 24.10 122 37.60
3 1.50 33  9.70 63 15.67 93 24.20 123 37.80
4 1.70 34 9.90 64 15.71 94 24.70 124 38.30
5 2.00 35 10.00 65 15.85 95 24.98 125 38.70
6 2.30 36 10.30 66 15.97 96 25.30 126 38.90
7 2.50 37 10.40 67 16.29 97 26.00 127  39.40
8 2.67 38 10.55 68 16.38 98 27.00 128 39.80
9 3.00 39 10.70 69 16.71 99 29.00 129 40.00
10 3.30 40 11.00 70 17.00 100 29.50 130 40.50
11 3.46 41 11.23 71 17.20 101 29.80 131 40.90
12 3.50 42 11.47 72 17.35 102 30.10 132 41.10
13 4.00 43 11.66 73 17.62 103 30.60 133 41.60
14 4.40 44 11.89 74 18.00 104 31.00 134 42.00
15 4.50 45 12.09 75 18.50 105 31.20 135 42.20
16 4.90 46 12.21 76 18.50 106 31.70 136 42.70
17 5.00 47 12.43 77 19.00 107 32.10 137 43.10
18 5.20 48 12.64 78 19.33 108 32.30 138 43.30
19 5.50 49 12.91 79 19.42 109 32.80 139 43.80
20 6.00 50 13.00 80 19.78 110 33.20 140 44.20
21 6.30 51 13.23 81 19.98 111 33.40 141 44.40
22 6.70 52 13.44 82 20.02 112 33.90 142 44.90
23 6.85 53 13.51 83 20.51 113 34.30 143 45.30
24 7.00 54 13.66 84 21.00 114 34.50 144 45.50
25 7.15 55 13.79 85 21.31 115 35.00 145 46.00
26 7.30 56 13.81 86 21.79 116 35.40 146 46.40
27 7.70 57 13.81 87 22.69 117  35.60 147  46.60
28 8.00 58 14.04 88 22.81 118 36.10 148 47.10
29 8.20 59 14.19 89 23.00 119 36.50 149 47.50
30 8.50 60 14.34 90 23.40 120 36.70 150 47.70
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Table 2. Estimated true coverages, from 20, 000 simulations, of a-level empirical likelihood con-
fidence regions for 3. Rows headed “predic.”, “uncorr.”, “a” and “@” give the predicted uncor-
rected and Bartlett-corrected coverages respectively. The figures in parentheses are 102 times
the standard errors associated with the coverage probabilities.

(a) Normal error patterns

€ N(0,1) (29/2)Y/2N(0,1)

n o 0.90 0.95 0.90 0.95

30 predic.  0.872 0.931 0.868 0.930
uncorr.  0.839 (0.26) 0.904 (0.21)  0.833 (0.26) 0.897 (0.21)
a 0.870 (0.24) 0.924 (0.19)  0.867 (0.24) 0.921 (0.19)
é 0.867 (0.24) 0.922 (0.19)  0.858 (0.25) 0.915 (0.20)

50 predic.  0.884 0.939 0.884 0.939
uncorr.  0.872 (0.24) 0.928 (0.18)  0.869 (0.24) 0.927 (0.18)
a 0.888 (0.22) 0.939 (0.17)  0.886 (0.22) 0.940 (0.17)
a 0.887 (0.22) 0.939 (0.17)  0.883 (0.23) 0.938 (0.17)

100 predic.  0.891 0.944 0.889 0.943
uncorr.  0.890 (0.22) 0.942 (0.17)  0.888 (0.22) 0.941 (0.17)
a 0.899 (0.21) 0.948 (0.16)  0.899 (0.21) 0.948 (0.16)
é 0.899 (0.21) 0.948 (0.16)  0.897 (0.21) 0.947 (0.16)

150 predic.  0.894 0.946 0.894 0.946
uncorr.  0.894 (0.22) 0.946 (0.16)  0.893 (0.22) 0.948 (0.16)
a 0.900 (0.21) 0.949 (0.15)  0.898 (0.21) 0.951 (0.15)
a 0.900 (0.21) 0.949 (0.15)  0.898 (0.21) 0.951 (0.15)

The data set ¥ for 1 < ¢ < 150 is displayed in Table 1. For sample size
n < 150, we use the first n z{ as the fixed design points. Iour error patterns
were considered. They are two homoscedastic error patterns ¢; = N(0,1) and
€; = £(1.00) — 1.00, and two heteroscedastic error patterns €; = (1/2z9)Y/2N(0,1)
and € = (1/229)Y/2{£(1.00) — 1.00}, where N (0, 1) and £(1.00) are random vari-
ables with standard normal distribution and exponential distribution with unit
mean, respectively. For each of these four error patterns we chose sample size
n = 30, 50, 100, 150, and nominal coverage levels o = 0.90,0.95. The normal and
exponential random variables were generated by the routines of Press et al. (1989).

We give in Table 2 the coverages of the uncorrected confidence regions and two
corrected confidence regions based on 20,000 simulations. One of the corrected
confidence regions uses the theoretical Bartlett correction a, another uses the em-
pirical Bartlett correction d. Since we know the error pattern, sample size and
nominal coverage level a, we can calculate the theoretical coverages up to second
order by using Edgeworth expansion in Theorem 2.1. Because the theoretical cov-
erages can be computed without simulation, we call these “predicted coverages”.
We compare the “predicted coverages” with the uncorrected coverages in order
to see if the theoretical results are consistent with the empirical outputs. Also,
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Table 2. (continued).

(b) Exponential error patterns

€ £(1.00) — 1.00 (x9/2)1/2{£(1.00) — 1.00}
n o 0.90 0.95 0.90 0.95
30 predic.  0.835 0.908 0.829 0.904
uncorr.  0.800 (0.28) 0.864 (0.24)  0.788 (0.29) 0.854 (0.25)
a 0.863 (0.24) 0.914 (0.20)  0.847 (0.25) 0.906 (0.21)
a 0.838 (0.26) 0.895 (0.22)  0.812 (0.28) 0.874 (0.23)
50 predic.  0.863 0.926 0.863 0.926
uncorr.  0.837 (0.26) 0.900 (0.21)  0.836 (0.26) 0.898 (0.21)
a 0.872 (0.24) 0.927 (0.18)  0.872 (0.24) 0.924 (0.18)
a 0.860 (0.25) 0.919 (0.19)  0.853 (0.25) 0.910 (0.20)
100 predic.  0.880 0.937 0.876 0.934
uncorr.  0.871 (0.24) 0.926 (0.18)  0.869 (0.24) 0.924 (0.18)
a 0.893 (0.22) 0.942 (0.17)  0.892 (0.22) 0.942 (0.17)
a 0.888 {0.22) 0.938 (0.17)  0.880 (0.22) 0.932 (0.17)
150 predic. 0.888 0.942 0.886 0.941
uncorr.  0.884 (0.23) 0.939 (0.17)  0.884 (0.23) 0.934 (0.17)
a 0.896 (0.22) 0.947 (0.16)  0.897 (0.22) 0.945 (0.16)
a 0.895 (0.22) 0.946 (0.16)  0.895 (0.22) 0.944 (0.16)

standard errors are given for each simulated coverage and these serve as one of
the criteria for comparing accuracies among different kinds of simulated coverages.
The following conclusions may be drawn from the results shown in Table 2:

1) The simulated uncorrected coverages converge to the “predicted coverages”
as n increases. This empirically justifies the Edgeworth expansion developed in
Theorem 2.1.

2) Standard errors and absolute coverage errors both show that the Bartlett
corrected confidence regions have more accurate coverage than corresponding un-
corrected ones.

3) The empirically corrected confidence regions perform similarly to their the-
oretically corrected counterparts, except for the cases of skewed error patterns with
sample sizes n = 30 and 50. It seems that we need a larger sample size to ensure
G as a good estimate of a when the error ¢;’s are skewed.

Comparing Table 2(a) with Table 2(b), we observe that skewness in the error
patterns reduces the overall coverages. However this has little surprise for us since
it has been foreseen by their corresponding “predicted coverages”. In the exam-
ples considered, we see some reduction in coverages caused by heterscedasticity
when 7 is small. Nevertheless there is no clear evidence to say generally that
heterscedasticity reduces coverage accuracy when sample size is large. Our theory
shows that real coverage depends on the configuration of the fixed design points
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and the moments of the residuals when sample size, nominal coverage level and
dimensionality are all fixed.
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Appendix
PROOF OF LEMMA 2.1. Since T}, = Cov(U) = n' Y Cov(U;) and

Ui = o] V%6, (i @ 2) BT {2 — E(D)}, (23 @ @y ® 2:) B {ef — B()}7,

we have
I, T T3
T, = F?g [y Tas
Iy T33 Tss
where

Iy = V12 {n_l >l (w @ xi)E(E?)} By,
L = V2 {0 Yol (o @ 2 @ ) () } B,
Ty = By [0S (af @ 2f)(ws © 2){B(e}) — EX(D)}] B,

I's3 = By [n_l Z(l’;[ Rz @z )2 @ @ i) {E()) — EQ(G?)}] Bj.

There exists a nonsigular matrix S such that

I 0 0
STT,S=| 0 Tu-ThLT, 0
0 0 T35 — 3T — @

where
Q = (I35 — I'{3T12) (a2 — T15012) ™ (o — TT,T1s).

Now Lemma 2.1 can be proved by noting that the smallest eigenvalue of I'gy —

I'{,T2 is larger than 7;,, — v, and the smallest eigenvalue of I's3 — T'{3I'13 — Q

is larger than (j,n — vpn — (Mjyn — V) L
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