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A b s t r a c t .  The coverage errors of the empirical likelihood confidence regions 
for/3 in a linear regression model, Yi = zi/3 + ci, 1 < i < n, are of order n -1. 
Bartlett corrections may be employed to reduce the order of magnitude of the 
coverage errors to n -2. For practical implementation of Bartlett correction, an 
empirical Bartlett correction is given. 
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1. Introduction 

Considering a linear regression model  of the form, 

(1.1) Yi = xi¢7 + e~, 1 < i < n, 

where /3  is a p × 1 vector of unknown parameters  and xi is a 1 × p vector of the 
i- th fixed design point,  for which scalar Yi is the response. We allow the ci's to be 
heteroscedastic,  tha t  is, the ei's are independent  r andom variables with mean zero 
and variances G2(xi) .  The  da ta  are observed in the form {(zi,  Yi) ] 1 < i < n}. 

A classical problem for linear regression model is how to construct  confidence 
regions for fl, when the dis tr ibut ion functions of ci's are unknown. In these kinds 
of nonparamet r ic  settings, the boo ts t rap  has been used to construct  confidence 
regions for/3. But  one drawback of the boots t rap  is tha t  it needs some subjective 
instruct ions on the shapes and orientat ions of the confidence regions. Empirical  
likelihood methods,  as al ternatives to the boo ts t rap  me thod  for construct ing con- 
fidence regions nonparametrical ly,  were int roduced by Owen (1988, 1990). An 
impor tan t  feature of empirical likelihood is tha t  it uses only the da ta  to  determine 
the shape and or ientat ion of a confidence region. Fur thermore  in certain regu- 
lar cases, empirical likelihood confidence regions are Bar t le t t  correctable,  meaning 
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that simple empirical adjustments for scale can reduce coverage error from O(n-1) 
to O(n-2);  for the case of smoothed function of means see DiCiccio et aI. (1991), 
and for that of a quantile see Chen and Hall (1993). 

Empirical likelihood methods were proposed by Owen (1991) to construct 
confidence regions for/3 in the model (1.1). He derived a nonparametric version of 
Wilks' theorem, ensuring that empirical likelihood confidence regions for/3 have 
correct asymptotic coverages. There are, however, two questions to be answered. 
They are "How accurate are the empirical likelihood confidence regions?" and "Are 
the empirical likelihood confidence regions Bartlett correctable?" 

This paper aims to answer these two questions. We demonstrate in Section 2 
that the coverage errors of the empirical likelihood confidence regions for/3 are of 
order n -1. In Section 3 we show that Bartlett correction may be used to reduce the 
order of magnitude of the coverage errors to n -2. An empirical Bartlett correction 
is given, which allow one to practically implement the Bartlett correction. A 
simulation study is presented in Section 4. 

We close this section with the following notations. Let X be an n × p matrix 
with xi as the i-th row; and /~LS denote the least squares estimator of/3, /3LS = 
( X r X )  -1 ~'~ xiY/; and ei = Y / -  xi/3LS. 

2. Wilks' theorem and coverage accuracy 

As mentioned in Section 1, Owen (1991) proved a nonparametric version of 
Wilks' theorem for the empirical likelihood of fl, which enables us to construct 
confidence regions with correct asymptotic coverages. In this section we investigate 
the second order property of those confidence regions. We first give a Taylor 
expansion for empirical log likelihood ratio, which is denoted by g(fl). Then we 
set up an Edgeworth expansion for the distribution function of g(fl), which allows 
us to evaluate coverage accuracy of the empirical likelihood confidence regions. 

For the linear regression model (1.1), we know that 

I xO = x 9, = 0, Var( i) =  2(xd. 

We define auxilliary variables zi = x~(Yi - xi/~), for 1 < i < n, and 

rV-n = n - 1  E Cov(z/ )  = n -1 ~Tx~o-~(x~), 
/=1  /=1  

and let vl~ and vp~ denote the largest and smallest eigenvalues of V~, respectively. 
The problem of testing if ,~ is the true parameter is equivalent to testing if 

E{zi} = 0, for 1 < i < n. Let P l , . . .  ,Pn be nonnegative numbers adding to unity. 
Then the empirical log likelihood ratio, evaluated at true parameter value /3, is 
defined by 

g ( ~ ) = - 2  min E log(npi). 
E Pizi=O 

Using the Lagrange multiplier method, the optimal value for Pi may be shown to 
be given by, 

1 1 
P i - -  n l + A r z ~  l < i < n .  
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This gives 

g(fl) = 2 y ~  log(1 + A Tzi), 

where A is a p x 1 vector satisfying 

n - 1  
X-" Zi 

O. 
Z_, 1 + ATzi 

In terms of studentized variables wi = v ~ l / 2 z i ,  for 1 < i < n, we have 

e(fl) = 2 ~ l o g ( 1  + A % d ,  (2.1) 

where A satisfies 
Wi 

(2.2) n-1 E 1 + ATwi -- O. 

Since analytic solution of equations (2.1) and (2.2) can rarely be attained, 
we have to derive an asymptotic expansion for g(fl). To this end, we assume the 
following regularity condition. 

(2.3) There exist positive constants C1 and C2 such that uniformly in n, 

C1 < vp~ < vl~ < 6'2; and n - 2 ~ E l l z j l [  4 --+ o, where t[ l[ is the 
j = l  

Euclidean norm. 

Under condition (2.3), Owen (1991) shows that the A appearing in (2.2) satisfies 

/~ = O p ( n - - 1 / 2 ) .  

We define 

Jk), ~ j l ' " j k  ~_ ~--1 E E ( w ~  " " w {  

AJl""Jk = n-X ~-~(wJl . . .  wJk _ ~jl...jk ), ~ i i 

where w j is the j - th  component of wi. In particular, ~J = 0, ~J k __ (~j k (~j k is 
the Kronecker delta. 

Notice that g(fl), given by (2.1) and (2.2), is similar to the empirical log 
likelihood ratio for means in the independent and identically distributed case. The 

W n only difference is that { i}i=l are independent but not identically distributed 
random variables due to the presence of the fixed design points. However, by 
modifying the expansion (3.6) in DiCiccio et al. (1988) we may obtain the following 
expansion for g(fl), 

2_ j  ~ IAJAkA  l ÷ Aj  iA k IAJA k (2.4) n-1@3)  = AJA  j - A j kAJAk + 5o~ 

2 A j  k ~AJAkA ~ _ 2c~j k ,~A ~ mAJAkA~ + 

÷ 5j  k ~6z ~. ~AJAkAIA,~  

l ( d  k 1 ,~AJAkAIA,~ + 0 ; ( n - 5 / 2 ) .  
2 
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We use here the convention that terms with repeated indices are to be summed 

over. Based on expansion (2.4), we have 

(2.5) e(9) = (~l/2~r)(~l/2R) + op(~-3/2), 

where R = R1 + R2 + R3 is a p-dimensional vector and Rt = Op(n -l/2) for 
1 = 1, 2, 3. Comparing terms in (2.4) with those in (2.5) yields, 

R~ : At R~ : - -1A,  ~A k + _lj  k ~ 
' 2 3 

RJ3 = ~ A  j '~A k '~Ak + ~ A  j l~ ~ A k A  t - ~oe5 -J k "~A z '~AkA ~ 

5 &k t ,~A j , ~ A k A t +  ~cg ~ ~eJ "~ "~A'~AkA z - ~6J k I ,~A,~AkA z, 
12 

where R~ is the j - t h  component  of Rz. Considering only the dominant  te rm in 
expansion (2.4), 

= (9~s - 9 ) ~ { V a r ( � L s ) } - ~ ( � L s  - 5 )  + o ~ ( ~ - ~ / ~ ) .  

Since/3LS --/3 converges to N{0,  Var(/3LS)} in distr ibution under condition (2.3), 

(/3LS -- /3)r  Mar-1 (/3LS)(/3LS --/3) -+~ Xp 2, as n --~ oo. 

Thus we obtain 

(2.7) e{e(/3) < c} = P(X~ < c) + o(1) as n -+ ~ ,  

which is the nonparametr ic  version of Wilks' theorem, and first proved by Owen 
(1991). 

From (2.6) we can see that  g(/3) implicitly uses the true variance of /3LS to 
construct  confidence regions for /3. This is an advantage of empirical likelihood 
over other resampling techniques, such as jackknife and boots t rap ,  which depend 
on explicit est imates of Vat(/3) and subsequently create problems about  the quality 
of these estimates. This point was noted by Wu (1986). Empirical likelihood can 
avoid this problem, reflecting the feature "let the da ta  themselves decide". And 
also note that  the first te rm on the right of (2.6) is different from tha t  given by 
Owen (1991), who uses an est imate of Var(/3LS). However the difference has no 
first order effect. 

Using (2.7), a confidence region for /3 with nominal coverage level a can be 
constructed as follows. First  find from X~ 2 tables the value c~ such that  

P(x~ < c ~ )  = ~ .  

Then R~ = {/3 I e(/3) < c~} is the a confidence region for /3, and (2.7) ensures 
tha t  it has correct asymptot ic  coverage. Before discussing the coverage accuracy 
of R(~, let us define j l  = (p2 _~_ p)/2, j2 = j l / 2  + p(p + 1)(2p + 1)/12, and 

C = ( A 1 , . . . , A P ,  A 1 1 . . . , A  p p A z 11 . . . , A  p p ~,), 
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being the p + j l  + j2 dimensional vector consisting of all distinct first three order 

multivariate central moments of wi = V~l/2zi's. Note that there are j l  and j2 
different second and third order multivariate central moments in 0 .  Let Tn = 
n Cov(0-). We define square matrices H1 and / /2  as follows, 

HI = o ® xd{4 - 

H2 =n -I E(x T ®x T - 

There are p2 rows and columns for H1 and p3 for/-/2. Notice that the ranks of HI 
and / /2  are not larger than j l  and j2, respectively. We denote ~jl~ and ~j2~ as the 
j l - th  and j2-th largest eigenvalues of H1 and/-/2 respectively. Moreover let Si be 

the (p - i) × p matrix obtained by removing top i rows of V~ -1/2, and V~j ~/2 the 

j - th  row of V~ 1/e. Clearly So = V~ 1/2 and Sp-1 = V~p 1/2. We define j l  × p2 and 
j2 × p3 matrices Bx and B2 as follows, 

( V~ 1/e ® So ) 
B1 = " and Be = 

E~ 1/2 ® Sp-1 

V~ 1/2 ® V~ 1/2 ® So "~ 

V~ 1/2 ® V~ 1/2 ® Sp-i 
V~ 1/2 ® V~ 1/2 ® $2 

V~ 1/2 ® VJp 1/e ® 8~-1 

Vnp 1/2 ~ gnp 1/2 ® Sp-1 / 

To derive an Edgeworth expansion for the distribution of ~(~), we need the 
following lemma, whose proof is deferred to the Appendix. 

LE~4MA 2.1. Assume that 

(2.8) - 1  a n d  ~ j 2 n  - -  Vp - 1  - -  ( l ~ j l n  - -  Vpn l )  - 1  a r e  positive a n d  both T51~ - vp~ 

bounded away from zero; the ranks of B1 and B2 are j l  and j2 

respectively. 

Then the smallest eigenvalue of T~ is bounded away from zero. 

We use this lemma to establish the following theorem. 

THEOREM 2.1. Assume (2.8) and that 

(2.9) (i) there exist positive constants C1, C2 such that uniformly in n, 

C1 < vp~ < Vl~ <_ C2; (ii) ]]xi]] 's for 1 < i < n are uniformly bounded; 
n 

(iii) supn  -1 EE]ey115 < oc; (iv) for every positive T, 
n j=l 
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f 
lim n - 1 } ~  [ lej115 = O; (v) for every positive b, 

n---~oo ~-~.= J l e j ] > ~ n i / 2  

the characteristic function g~ of e~ satisfies Cramdr's condition 
lim sup Ig (t/I < 1 

n---~oc [tl>b 

2 Then P{g(/3) < ca} = a - acc~gp(ca)n -1 + O(n -3/2) where 9p is the density Of Xp 
distribution, P(X2p < ca) = c~, and 

(503 ,~ 1 _ j  k ' k  ) ( 2 . 1 0 )  a = p - - 1  1 • 3 rn - -  ~O~ rnt~ 3 m . 

Theorem 2.1 states that the coverage error of the empirical likelihood confi- 
dence region R~ is of order n -1. From (2.10) and the definitions of (~J J "~ "~ and 
(~j k m we have 

a = p - 1  [ ~E(e4 i ) (X iVn- lxT)2~n-2E{E(e3)E@3)(XzVnlXl )3}] .  ~ n - 1  _ - 

i=1  i,1 

This reveals that the coverage error depends on a combination of the following 
five factors: (i) the moments of e~'s, (ii) the nominal coverage level, (iii) the 
configuration of the fixed design points, (iv) the sample size n, and (v) dimension, 
p. 

PROOF OF THEOREM 2.1. To prove the theorem we first derive an Edge- 
worth expansion for the distribution of nl/2R. By the expansion R = R1 +R2 +R3 
and expressions for R1, l ---- 1, 2, 3, we may prove that the cumulants kl, k2, . . ,  of 
nl/2R satisfy the following formulae: 

kl = n-1/2# + 0(n-3/2), k2 = I + n - l A  + O(n-2), 

kj = O(n -*/2) j > 3, 

where I is the p × p identity matrix, p = (#1, . . . ,  pp)T A = (Ai j)p×p and 

Let B be a class of Borel sets satisfying 

(2.11) sup f ¢(v)dv = O(e), e ~ 0, 
BEI3 J (OB)~ 

where (OB) and (OB) ~ are the boundary of B and e-neighborhood of (OB) respec- 
tively. A formal Edgeworth expansion for the distribution function of nl /2R is 
given as follows, 

(2.12) sup p(nl /2R E B) - [ 7r ( v ) ( ~ ( v ) d v  0 ( n - 3 / 2 ) ,  
B~B JB 
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where 

1 
7r(v) = 1 + n-U2pTv + ~n I{vT(ff/zT + A)v -- tr(pp T -- LN)}, 

¢(v) is the density function of standard p-dimensional normal distribution, and tr 
is the t race operat ion for square matrices. 

Accepting tha t  the Edgeworth  expansion (2.12) may be justified, we shall 
develop an Edgeworth  expansion for the dis tr ibut ion of g(/3). P u t  

H = (h~ j)p×p = ##T  + A. 

From (2.5) and by the symmet ry  of ¢(v) we have 

(2.1a) P{e(9) < ca} 
= P{(~I/2R)T(~I/2R) < ca} + 0 (~  -a/2) 

: ,,Jr!l<4/2 ~( , )¢(v)~ + O(~ -~/~) 

: P(g < ca) 

i#j 

+ O(n -3/2) 
p 

= ~ - p-~ ~ h{ ~c~g~(c~)~ -~ + o ( ~ - ~ n ) .  
/=1  

After some simple algebra we may show tha t  

E p--1  1 " j m .,~ _ &; ~ k m p-1  hi i = ~ " ~  • 
i=1  

Thus from (2.13) we obtain 

P{~(~) < ~ }  = ~ _ a~g~(~)~ -~ + o(,<~/~). 

However, it remains to check tha t  the formal expansion (2.12) is valid. Since 

= ( A 1  . . .  , A P A  1 1 . . .  ,A p p A 1 1 1 , . . .  ,A p p p)T = 7b-1 E U i ,  

where 

u~ = [ ~ T v # l / ~ ,  (x~ o x d B T { 4  - e ( 4 ) } ,  (x~ o z~ o ~ d B ~ { 4  - z ( 4 ) } ] <  

we see tha t  0 is the mean of independent  but  not identically d is t r ibuted random 
vectors due to the presence of the fixed design points. However an Edgeworth  
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expansion for this case is established by Bhattacharya and Rao ((1976), Theorem 
20.6). Using Lemma 2.1, it may be shown that conditions (2.8) and (2.9) im- 
ply the conditions of Theorem 20.6 of Bhattacharya and Rao (1976). Thus, we 
may establish the following Edgeworth expansion for the distribution of U under 
conditions (2.8) and (2.9), 

(2.14) s BsuP P(O • B) - £ = 

for every class B of Borel sets satisfying (2.11). In (2.14), 

3 

r 0 

{X~n}, 1 < , < 5, are the first five cumulants of O, P ~ ( - ¢  : {X~n})(u) is the 
density of the finite signed measure with characteristic function P~(it : {)~,~}) • 
exp(-- tTt /2) ,  and /5  is the Cram~r-Edgeworth polynomial. From the expression 
for R, we see that there exists a smooth function F~ such that n l / 2 R  = fn(O).  
Hence from Theorem 3.2 and Remarks 3.3 and 3.4 of Skovgaard (1981), we may 
show in our case that the Edgeworth expansion (2.14) may be transformed by 
sufficiently smooth function f~, to yield a valid Edgeworth expansion (2.12) under 
conditions (2.8) and (2.9). [] 

3. Bartlett correction 

In Section 2 we showed that the coverage errors of empirical likelihood confi- 
dence regions for ~ are of order n -1. It is well known that part of the coverage 
error is due to the fact that the mean of f(/3) does not agree with the mean of 
Xp 2, that is E{f(~/)} ~ p. This disagreement can be eliminated by rescaling g(~) 
so that it has correct mean. We demonstrate in this section that the empirical 
likelihood confidence region for ~/is Bartlett correctable. Thus, a simple empirical 
correction for scale can reduce the size of coverage error from order n -x to order 
n -2. For practical implementation of Bartlett correction, we give an empirical 
Bartlett correction. 

From expansion (2.4), we may obtain an expansion for E{g(fl)} as follows, 

(3.1) E{e(/9)} : p(1 + an -I) + O(n-2), 

where a is given by (2.10). The Bartlett correctability of empirical likelihood 
confidence regions for fi is discussed in following theorem. 

THEOREM 3.1. Assume conditions (2.8) and (2.9). For any c~ > O, 

P { e ( 9 )  < c (1 + = + 

where P(X2B < %) = a and ~ is either a or an ni/2-consistent estimate of a. 
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PROOF. We establish only the case ¢ = a; the case ¢ is an n l /<cons i s ten t  
est imate of a can be t reated in a similar way. According to Theorem 2.1, under 
condition (2.8) and (2.9), 

(3.2) P{g(fl) < c .(1 + a~%-1)} 

: P{Xp 2 < Cc~(] @ aTZ-1)} -- ac~gp{c~(1 + a7%-1)}Tt -1 

+ O(n-a/2). 

2 distribution, Note tha t  gp(V) is the density of Xv 

P{X 2 < cc~(l + an-l)} = P(X~ < ca) + acgp(c~)n -1 + O(n-2), (3.3) 

and tha t  

(3.4) + = + 

Subst i tut ing (3.3) and (3.4) into (3.2), gives 

(3.5) P{e(/~) < cc~(l -~- a~%-1)} = P(Xp 2 < Cc~) -I- O(Tt--3/2). 

Moreover, by an arguments based on the oddness and evenness of polynomials in 
the Edgeworth expansion (see for example Barndorff-Nielsen and Hall (1988)), the 
0(7% -a/2) term in (3.5) is actually O(n-2), when either a or an n l /<cons i s ten t  
est imate of a is used. Thus the theorem is proved. [] 

From (2.10), we know tha t  the Bar t le t t  correction is given by 

a = p - 1  (1 j m 1- j  k 1~ ) 

where 
n 

O~ j k m = 7%--1 ~--~ ,~/ 3xT7--I/2 TTr--I/2 TTr-I/2_T h ~ i q ) v ~ j  x i v~k xi %.~ x i ,  
i=1 

~j j m ra = 7%--1E E((4)(xiv'zlxT)2' 

i=1 

and Kn-]/2 is the j-th row of K~ -1/2. But in practice, the Bartlett correction is 
unknown because V~ and the moments of ei's are unknown. In order to give an 
n l /<cons i s ten t  est imate of a, we define 

< = xTxi4, 

which is an est imate of covariance matr ix  V,~. Accordingly, we let l>~ -1 be the 

inverse matr ix  of 1),~ and r/~ -1/2 be the square root matr ix  of r~-s. Now an est imate 
of a, 5 say, may be proposed as follows, 

(3.6) ~t = p--l ( ~ ^ j  j m rn ~j k rn~3' k m ) ,  
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where 

n 
(~j k m - - l ~  TM ^3¢~--1/2 T¢r--1/2 T~7--1/2_T 

= n 2._.,ci v~ J x i  v,~ k x i  vn ,~ ~i  , 
i=1  

m ^4 ^ - -1  T 2 ~j j m : ~--1 E Ci(xiVn xi  ) " 
i=1  

V - 1 / 2  We can see tha t  ~J k ~ and ~J j ~ m are established by replacing ei, .~ j in 
A -1/2 ^ -1/2 

~j k ,~ and &J J "~ "~ with their corresponding estimates ~i and V~ j , where V~ j 

denotes the j - t h  row of l)~ -1/2. 
We want to prove that  & is a nl/2-consistent est imate of a. To this end we 

assume tha t  

(3.7) there exist positive constants C1, C2 such tha t  uniformly in n, 

C1 _< vp~ < vl~ < C2; and there exist constants ql, q2 > 0 such tha t  

ql <- inf IIx~II _< sup IIx~ll <- q2; and s u p n  - 1 E  E(e8) -< +oc.  
n 

THEOREM 3.2. A s s u m e  condi t ion  (3.7). Then,  

a = a + @ ( n - 1 / 2 ) .  

Clearly Theorem 3.2 is a direct consequence of the following Lemma 3.1. 

LEMMA 3.1. A s s u m e  condi t ion  (3.7). Then,  

~ j  j m m ~- ~ j  j m m _~_ O p ( n - 1 / 2 )  

~ j  k .~ = 5~ j k m + @ ( n - 1 / 2 ) .  

and 

PROOF. Since condition (3.7) means tha t  the eigenvalues of g~ and design 
points xi are all uniformly bounded respect to n, there must exist positive con- 
stants q3 and q4 such tha t  for any 1 < i, j _< n 

(3.8) Vn -1/2-T I [ ( n - I x T x ) - l x ~ I I  < q4. j wi ~-- q3, 

Using (3.8) and Chebyshev's inequality gives us tha t  

lSn = Vn -t- Op(n-1/2) ,  

which implies tha t  

( 3 . 9 )  Vn - 1  P n  - 1  @ Op(7~ -1/2) and ^ -1 -1 = vi~ j = v i ~ + o p ( n - 1 / 2 ) ,  1 < j <_ p.  
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Pu t  

n 

• m 3.r--i/2 TT~---1/2 TTr - -1 /2xT  ~3 0 k = 7%--1 E (i Vn j X i v~ k x i % . ,  ~ and 
i=1  

?% 

I~ E 4( Tl/-~-I T)2 j m rn = 7%--1 Ei Xi Xi . 

i=1 

For any M > 0, using (3.8) and Chebyshev 's  inequality again, we have 

/o{7%1/2((~j  a m m ~j j m m)  > M} 

[ ~{ r~, 4 --1/2 T,r--I/2 TTz--I/2_T ] . . . .  
= p 7%-1/2 ¢ 4 _ ] y ~ ¢ i ) ~ V n  j Xi Vn k Xi Vn m :Li > M 

L i=1  

[~ rT/ 4 . . . .  - -1 /2  TTr--I/2 TTT-I/2_T] 2 

ki=l 
, * - - 2  6 - - 1 E  E { ( 3  E @ 3 ) } 2 "  <_ 1vl q37% 

From (3.7), we know that  n -1 E E{c~ - E@~)} 2 < oc. Therefore for a n y ~  > 0, 
there exists a M~ > 0 such that  for any M > M~, 

P{7%1/2( G ~ ~ - ~ J  ~ )  > M} <~ 

uniformly in n. Thus we obtain 

(3.10) &~o j m m = ~j j m m + Op(n-1 /2) .  

In a similar way we can prove that  

(3.11) o j  ° k ~ = ~j k m ÷ 0p(7%-1/2). 

Now to prove Lemma 3.1 it is sufficient to show that  

(3.12) (~j k m = ( ~  k m ÷ O p ( I t - 1 / 2 ) ,  

(3.13) a j j m ,,~ : do j ~ ~ + Op(n_l/2)" 

We only give the proof  of (3.13) here, since (3.12) may be derived using the same 
method.  By Taylor expansion, (3.9) and Schwarz inequality, we have 

(3.14) ^ - - 1  T 2 --1 T 2 (~vl ~ ) - (xy; ~ ) 
: 2(~{v#l~){~{(< 1 - v#l>[} + o;(7%-1/2), 

(3.15) I~{v#lxyl = l~{vjl/2v:l/2xTI <_ II~{vjl/21111v:l/2xyll <_ p£. 

Following (3.9) and (3.15), we may show that there exist positive constants C3 
and C4 such that for 1 < i < n, 

(3.16) I~<I~TI _< C3 + ]All, 
(3.17) ^ - - 1  r 2 --1 T 2 - ( ~ E :  ~ ) I -  < I(x~V,~ x{ ) C41tl)~ -~ - -  vn-lil ÷ IZX21, 
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where JAil = Op(n -1/2) for i = 1,2 and BLAIR = maxi j lai j[ for any matr ix  
A = (ai j). 

From the fact tha t  ~ = (/3 - ~LS)Xi -I- •i, and using the Binomial theorem, we 
may show tha t  for each integer k there exists a constant  Dk such tha t  

(3.18) I~) - c~l -< D~Ixi(/3LS -/3)l{Ici] ~-1 + Ixi(~LS - / ~ ) l k - 1 }  - 

Now from (3.16)-(3• 18), 

(3.19) la ~ ~ ~ ~ - ~ J ~ ~l  

- 1  E ^4 = - ( x ~ <  x~ ) 

+ ~ { ( ~ v ~  ~i ) ~ ~ 

< D4/IC~LS -/3lln -1 

• ~ I[xili {l~il 3 + 11~i113 II~Ls - ~ll 3 }(ziK~ -1 xiz ) 
4 -I- (C4[ l?n  - 1  - < 11[-I-]z~2l)n - 1 E  ~i 

< (q2DallflCS --,6[In -a E le~13 

q4C3D4 9114) (c3 + I~1 I) + i 

+ ( cnll%-~ - v : l l l  + IzX~l) ~ -~  Z ~4. 

4 = Op(1), (3.14) can Since (3.8)implies n-1  }-~'. I~l 3 - -0~(1 ) ,  and since n -1 ~ e  i 
be proved from (3.9), (3.19) and the fact that /3Ls = /3  + Op(n-1/2). [] 

After some simplification we may show tha t  ~ has the following explicit form 

= ~ ( x ~ K  x~) ~ / _ : ~ l  ( (7- ~] ^4 ^--1 T 9 l n - - 2 V ~ f ~ 3 ~ 3 \ X i , n  lXl23 J 

i=1 i,l 

In some special cases, ~ has simpler forms. 
1) If e l , . . .  ,c~ are i.i.d, which implies tha t  model (1.1) is a homoscedastic 

regression model, then 

n ^2 ^k for k = 3, 4, &2 = n-1  ~ i = l  Q" where/2k ~ = n -1 }-~-i=1 Q 
2) If c1 , . . . ,  en are i.i.d and have a symmetric  distribution, then the model 

implies E(e~) = 0, and we may take 

: p-l~zl/~ 4 e~r -4 V ~ f x  (xTx]-IxTI2 .~..~l i \  ] i J • 2 
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4. Simulation results 

In this section we use Monte Carlo simulation to examine the coverages of 
the empirical likelihood confidence regions proposed in previous sections. Under 
consideration is the following simple linear regression model: 

o Y~ = 1 +x~ +e~, i = l , . . . , n .  

Table 1. The  da t a  set x~ ° for 1 < i <  150. 

1 1,00 31 8.90 61 14.89 91 23.80 121 37.20 

2 1.40 32 9.30 62 15.01 92 24.10 122 37.60 

3 1,50 33 9.70 63 15.67 93 24.20 123 37.80 

4 1.70 34 9.90 64 15.71 94 24,70 124 38.30 

5 2.00 35 10.00 65 15.85 95 24.98 125 38.70 

6 2.30 36 10.30 66 15.97 96 25.30 126 38.90 

7 2.50 37 10.40 67 16.29 97 26.00 127 39.40 

8 2.67 38 10.55 68 16.38 98 27.00 128 39.80 

9 3.00 39 10.70 69 16.71 99 29.00 129 40.00 

10 3.30 40 11.00 70 17.00 100 29.50 130 40.50 

11 3.46 41 11,23 71 17,20 101 29.90 131 40~90 

12 3.50 42 11.47 72 17.35 102 30.10 132 41.10 

13 4.00 43 11.66 73 17.62 103 30.60 133 41.60 

14 4.40 44 11.89 74 18.00 104 31.00 134 42.00 

15 4.50 45 12.09 75 18.50 105 31.20 135 42.20 

16 4.90 46 12.21 76 18.50 106 31.70 136 42.70 

17 5.00 47 12.43 77 19.00 107 32.10 137 43.10 

18 5,20 48 12.64 78 19.33 108 32,30 138 43.30 

19 5.50 49 12.91 79 19.42 109 32.80 139 43.80 

20 6.00 50 13.00 80 19.78 110 33.20 140 44.20 

21 6.30 51 13.23 81 19.98 111 33.40 141 44.40 

22 6.70 52 13.44 82 20.02 112 33.90 142 44.90 

23 6.85 53 13.51 83 20.51 113 34.30 143 45.30 

24 7.00 54 13.66 84 21.00 114 34.50 144 45.50 

25 7.15 55 13.79 85 21,31 115 35.00 145 46.00 

26 7.30 56 13.81 86 21.79 116 35,40 146 46.40 

27 7.70 57 13.81 87 22.69 117 35.60 147 46.60 

28 8.00 58 14.04 88 22.81 118 36.10 148 47.10 

29 8.20 59 14.19 89 23.00 119 36.50 149 47.50 

30 8.50 60 14.34 90 23.40 120 36.70 150 47.70 

i x~ i x~ i o i x? i x~ 
z z X i  z z 
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Table 2. Estimated true coverages, from 20,000 simulations, of c~-level empirical likelihood con- 
fidence regions for/3. Rows headed "predic.", "uncorr.", "a" and "&" give the predicted uncor- 
rected and Bartlett-corrected coverages respectively. The figures in parentheses are 102 times 
the standard errors associated with the coverage probabilities. 

(a) Normal error patterns 

~ X(0, 1) (x°/2)l/2N(0, 1) 

n a 0.90 0.95 0.90 0.95 
30 predic. 0.872 0.931 0.868 0.930 

uncorr. 0.839 (0.26) 0.904 (0.21) 0.833 (0.26) 0.897 (0.21) 
a 0.870 (0.24) 0.924 (0.19) 0.867 (0.24) 0.921 (0.19) 
& 0.867 (0.24) 0.922 (0.19) 0.858 (0.25) 0.915 (0.20) 

50 predic. 0.884 0.939 0.884 0.939 

uncorr. 0.872 (0.24) 0.928 (0.18) 0.869 (0.24) 0.927 (0.18) 

a 0.888 (0.22) 0.939 (0.17) 0.886 (0.22) 0.940 (0.17) 

& 0.887 (0.22) 0.939 (0.17) 0.883 (0.23) 0.938 (0.17) 

100 predic. 0.891 0.944 0.889 0.943 

uncorr. 0.890 (0.22) 0.942 (0.17) 0.888 (0.22) 0.941 (0.17) 

a 0.899 (0.21) 0.948 (0.16) 0.899 (0.21) 0.948 (0.16) 
& 0.899 (0.21) 0.948 (0.16) 0.897 (0.21) 0.947 (0.16) 

150 predic. 0.894 0.946 0.894 0.946 

uncorr. 0.894 (0.22) 0.946 (0.16) 0.893 (0.22) 0.948 (0.16) 
a 0.900 (0.21) 0.949 (0.15) 0.898 (0.21) 0.951 (0.15) 

& 0.900 (0.21) 0.949 (0.15) 0.898 (0.21) 0.951 (0.15) 

0 for 1 < i < 150 is d isplayed in Table  1. For  sample  size T h e  d a t a  set x i _ _ 
n < 150, we use the  first n z ° as the  fixed design points .  Four  error  p a t t e r n s  
were considered.  T h e y  are two homoscedas t i c  er ror  p a t t e r n s  ei = N(0 ,  1) and  
ei = g(1 .00)  - 1.00, and  two he te roscedas t ic  error  p a t t e r n s  ei = ( 1 / 2 x ° ) l / 2 N ( O ,  1) 
and  ei = ( 1 / 2 x ° ) 1 / 2 { g ( 1 . 0 0 )  - 1.00}, where  N(0 ,  1) and  g(1 .00)  are r a n d o m  vari- 
ables wi th  s t a n d a r d  no rma l  d i s t r ibu t ion  and  exponen t i a l  d i s t r ibu t ion  wi th  un i t  
mean ,  respectively.  For  each of  these  four er ror  p a t t e r n s  we chose sample  size 
n = 30, 50, 100,150,  and  nomina l  coverage levels a = 0.90, 0.95. T h e  n o r m a l  and  

exponen t i a l  r a n d o m  variables  were gene ra t ed  by  the  rout ines  of  Press  et  al. (1989). 

We give in Table  2 the  coverages of  the  unco r r ec t ed  conf idence regions and  two 
cor rec ted  conf idence regions based  on 20,000 s imula t ions .  One  of  the  cor rec ted  
conf idence regions uses the  theore t ica l  B a r t l e t t  cor rec t ion  a, ano the r  uses the  em- 
pirical Ba r t l e t t  cor rec t ion  &. Since we know the  er ror  pa t t e rn ,  sample  size and  
nomina l  coverage level c~, we can  ca lcula te  the  theore t i ca l  coverages  up to  second  
order  by  using E d g e w o r t h  expans ion  in T h e o r e m  2.1. Because  the  theore t i ca l  cov- 
erages can  be  c o m p u t e d  w i t h o u t  s imulat ion,  we call these  "pred ic ted  coverages" .  
We c o m p a r e  the  "predic ted  coverages" wi th  the  u n c o r r e c t e d  coverages  in order  
to  see if t he  theore t ica l  resul ts  are consis tent  wi th  the  empir ica l  ou tpu t s .  Also, 
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Table 2. (continued). 

(b) Exponential error patterns 

635 

ei 8'(1.00) - -  1 . 0 0  ( X ? / 2 ) 1 / 2 { E ( I . O 0 )  --  1.00} 

n a 0.90 0.95 0.90 0.95 

30 predic. 0.835 0.908 0.829 0.904 
uncorr. 0.800 (0.28) 0.864 (0.24) 0.788 (0.29) 0.854 (0.25) 
a 0.863 (0.24) 0.914 (0.20) 0.847 (0.25) 0.906 (0.21) 
& 0.838 (0.26) 0.895 (0.22) 0.812 (0.28) 0.874 (0.23) 

50 predic. 0.863 0.926 0.863 0.926 
uncorr. 0.837 (0.26) 0.900 (0.21) 0.836 (0.26) 0.898 (0.21) 
a 0.872 (0.24) 0.927 (0.18) 0.872 (0.24) 0.924 (0.18) 
& 0.860 (0.25) 0.919 (0.19) 0.853 (0.25) 0.910 (0.20) 

i00 predic. 0.880 0.937 0.876 0.934 

uncorr. 0.871 (0.24) 0.926 (0.18) 0.869 (0.24) 0.924 (0.18) 
a 0.893 (0.22) 0.942 (0.17) 0.892 (0.22) 0.942 (0.17) 
& 0.888 (0.22) 0.938 (0.17) 0.880 (0.22) 0.932 (0.17) 

150 predic. 0.888 0.942 0.886 0.941 
uncorr. 0.884 (0.23) 0.939 (0.17) 0.884 (0.23) 0.934 (0.17) 
a 0.896 (0.22) 0.947 (0.16) 0.897 (0.22) 0.945 (0.16) 
a 0.895 (0.22) 0.946 (0.16) 0.895 (0.22) 0.944 (0.16) 

s t a n d a r d  e r rors  are g iven for each  s i m u l a t e d  coverage  and  these  serve as one of 
the  c r i t e r i a  for c o m p a r i n g  accurac ies  a m o n g  different  k inds  of  s i m u l a t e d  coverages .  
T h e  fol lowing conc lus ions  m a y  be  d r a w n  f rom the  resu l t s  shown  in Tab l e  2: 

1) T h e  s i m u l a t e d  u n c o r r e c t e d  coverages  converge  to  the  "p red i c t ed  coverages"  
as n increases .  Th i s  empi r i ca l ly  just i f ies  the  E d g e w o r t h  e x p a n s i o n  deve loped  in 
T h e o r e m  2.1. 

2) S t a n d a r d  e r rors  and  abso lu t e  coverage  e r rors  b o t h  show t h a t  t he  B a r t l e t t  
co r r ec t ed  conf idence  regions  have  m o r e  a c c u r a t e  coverage  t h a n  c o r r e s p o n d i n g  un-  
co r r ec t ed  ones. 

3) T h e  empi r i ca l ly  co r r ec t ed  conf idence  regions  p e r f o r m  s imi la r ly  to  the i r  the -  
o re t i ca l ly  co r r ec t ed  c o u n t e r p a r t s ,  excep t  for the  cases of  skewed er ror  p a t t e r n s  w i th  
s a m p l e  sizes n = 30 and  50. I t  s eems  t h a t  we need  a larger  s a m p l e  size to  ensure  

as a g o o d  e s t i m a t e  of  a w h e n  the  e r ror  ei 's  are  skewed.  

C o m p a r i n g  Tab le  2(a) w i th  Tab l e  2(b) ,  we obse rve  t h a t  skewness  in t he  e r ror  
p a t t e r n s  reduces  t he  overal l  coverages .  Howeve r  th is  has  l i t t le  surpr i se  for us since 
it has  been  foreseen by  the i r  c o r r e s p o n d i n g  "p red i c t ed  coverages" .  In  t he  e x a m -  
ples cons idered ,  we see some  r e d u c t i o n  in coverages  caused  by  h e t e r s c e d a s t i c i t y  
w h e n  n is smal l .  Neve r the l e s s  the re  is no clear  ev idence  to  say  gene ra l ly  t h a t  
he t e r s cedas t i c i t y  reduces  coverage  a c c u r a c y  w h e n  s a m p l e  size is large.  O u r  t h e o r y  
shows t h a t  real  coverage  d e p e n d s  on the  conf igu ra t ion  of  t he  fixed des ign  po in t s  
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and the moments  of the residuals when sample size, nominal  coverage level and 
dimensionali ty are all fixed. 
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Appendix 

PROOF OF LEMMA 2.1. Since T~ = Cov(U) = n -1 ~ Cov(Ui) and 

u~ = ¢ T v ~ / ~ ,  (~  o x~)BT{~ - E(~)} ,  (~ o ~ o ~ ) B y { ~  - E(~)} ]  ~, 

we have 

where 

Ip F12 FJ.3 ) 
T n =  F1T2 F22 F23 

~F1T3 FT3 F33 

F12 = Vn-1/2 {7%-1 E zT  (xi @ xi)E@3) } BT '  

F3 3 = B2 [?%-IE(xT @xT @xT)(z i @xi @ xi){E@/6)_ E2((.3)}] B2 T. 

There  exists a nonsigular mat r ix  S such tha t  (! o 
STTrt S = P22 -- FT2F12 

0 

0 ) 
0 

F33 - rTar13 - Q 

where 

Q = (Fl3 - FT3I~12)(F22 - FT2F12)-l(F23 - r/2F~3 ). 

Now Lemma 2.1 can be proved by noting tha t  the smallest eigenvalue of F22 - 
-1 and the smallest eigenvalue of Fa3 - FTaFla - Q FT2F12 is larger than  ~/jl~ - vp~ 

--1 --i --i __ __ ~Upn ) is larger t han  Q2~ Vp~ - -  ( ~ ] j l n  
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