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A b s t r a c t .  Let X = (X@,~×~ be a random matrix whose elements are inde- 
pendent Bernoulli random variables, taking the values 0 and 1 with probability 
qlj and p~j (pij + q~j = 1) respectively. Upper and lower bounds for the prob- 
abilities of m non-overlapping occurrences of a square submatrix with all its 
elements being equal to 1, are obtained. Some Poisson convergence theorems 
are established for n ~ oc. Numerical results indicate that  the proposed 
bounds perform very well, even for moderate and small values of n. 

Key words and phrases: Random matrix, Bernoulli random variables, Poisson 
approximation, patterns, consecutive-k-out-of-n:F system. 

1. Introduction 

Let  Xi j ,  i = 1, 2 , . . . ,  n, j = 1, 2 , . . . ,  n be a double sequence of independent  
Bernoulli  r a n d o m  variables wi th  success (failure) probabi l i t ies  p~j (qij) and denote  

by X = (Xi j )n×~ the respect ive r a n d o m  matr ix .  A success-block of size k (k 
a posit ive integer) is a k × k square  s u b m a t r i x  of X with  all its e lements  being 
equal to 1 (successes). The  purpose  of this pape r  is to s tudy  the  d is t r ibut ion of 
the number  N~,k of occurrences of non-over lapping success blocks of size k. The  
t e rm  "non-over lapping" means  t ha t  no two success submat r ices  have e lements  in 
common  (we count  f rom scratch every t ime  a success block occurs).  

I t  is obvious t ha t  the  d is t r ibut ion of N~,k is a two-dimensional  version of the  
so-called Binomial  d is t r ibut ion of order k which has been extensively s tudied (see 
Feller (1968), Hirano (1986), Aki and Hirano (1989), Godbole  (1991), Fu (1993), 
Fu and Kou t r a s  (1994) and  references therein).  

The  dis t r ibut ion of Nn,~ is closely re la ted to the  reliabili ty of a sys tem which is 
called 2-dimensional consecutive-k-out-@n:F system. This  model  was in t roduced 
by  Salvia and Lasher  (1990) as follows: A k2/n2:F sys t em is a square grid of size 
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n (containing n 2 components) .  The  system fails if and only if there is at least 
one square grid of size k (2 < k < n - 1) tha t  contains all failed components .  As 
Salvia and Lasher (1990) indicate, this model is useful in integrated-circuit  design 
and pa t t e rn  detection. It is clear tha t  the reliability of a k2/n2:F system is equal 
to P[N~,~ = 0]. Generalizing Salvia and Lasher 's  model, we may introduce a 2- 
dimensional m-consecutive-k-out-of-n:F system, assuming tha t  the system fails if 
and only if at least m non-overlapping failure square grids of size k have occurred 
(m _> 1). 

The  present paper  is organized as follows: In Section 2 we approximate  the 
probabil i ty P[N~,k = 0] by a lower and an upper  bound which perform very 
well, especially if the failure probabilit ies qij are high (Pij are low). Numerical  
comparisons to the "Chen-Stein method"-based  bounds,  given by Kout ras  et al. 
(1993), are also provided and some limit theorems for large n are established. In 
Section 3 we develop lower .and upper  bounds for the probabilit ies P[N~,k = x], 
x _> 1 in the iid case, and use them to obtain a Poisson convergence theorem. 
Finally, in Section 4 we introduce some addit ional  models and indicate how the 
analysis conducted in Sections 2 and 3 can be proper ly  modified to cover these 
si tuations as well. 

2. Probabil ity of zero success block occurrences 

The  next  theorem provides a lower and an upper  bound for the probabi l i ty  of 
no occurrence of success block of size k, in an n × n mat r ix  X = (Xij)  consisting 
of independent  Bernoulli r andom variables with 

P[Xi j  = 1] = p~j, P[Xi j  = O] = q~j, pij + q~j = 1. 

THEOREM 2.1. Let ~/ij = 7 i j (X) ,  k < i < n, k <_ j < n be the following 
binary random variables 

Then 

PROOF. 

n 

i=k  j = k  

~/ij =" 

i j 

tL=i - -k÷l  ~ ' = j - - k ÷ l  

= 1]} < P [1v . ,k  = o] 

/I _< H { 1  -- qi-k,j-k+lqi, j-kP[~/ij  = 11}. 
i =k  j = k  

Convention. q~j = P[Xi j  = O] = 1 if at least one of i, j is equal to zero. 

For the lower bound,  note  tha t  

P[N~,k = O] = P 1 - 7ij) = 1 
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and make use of the following inequality which is valid for any sequence of associ- 
ated Bernoulli variables Y~, r = 1, 2 , . . . ,  N (see Barlow and Proschan (1981)) 

(2.1) I I  P[¥~ = 1] _< P Y~ = 1 . 
r = l  r = l  

To establish the upper bound we work as follows: For every given (i, j )  with 
k <_ i , j  <_ n we define r = 1 + (i - k) + ( j  - k ) (n  - k + 1) (a 1-1 t ransformation 
performing a column-by-column traversing of the matr ix  X) and denote by A~ the 
event {Tij = 1}. It is clear tha t  

N = ( n  - k + 1) 2 

Ctl = P[Al l  = P[~/kk = 1] = qolq~oP[%k = 11, 

~ = P  Ar A , r > l .  

For given r > 1 (which corresponds to a specific ( i , j ) ) ,  we introduce the index set 

/~ = {1, 2 , . . . , r  - 1} • {1 + (i~ - k) + ( j l  - k ) ( n -  k + 1) I ( i~, jx)  E J~} 

where 

(2.2) P [ N ~ , ~ = O ] = ( 1 - P [ A x l ) ( 1 - P [ A 2  I A i ] ) " "  1 - P  A N  A'  z 

N 

= 1-[(1 - ~ )  
r = l  

where 

J r  = { ( i l , j l )  I max[( / - -  k + 1), k] _< il  < min[(i + k - 1), hi, 

max[(j  - k + 1),k] < j l  _< j}  

and the event B< • X i - k , j - k + l  = 0 and X i , j - ~  = 0. Since 
(i) ~-1 , r-1 , B~(NI:I Al) = = 

(ii) A~ and C~ are independent 
we conclude tha t  

P A r  A = P[A~. I C~] = P[A~.] 

(A~ is the complementary event of A~.) and employing the chain rule we deduce 
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and therefore, 

(2.5) ~r >_ P 
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A~ B~ A' z P B~ z~ A'I = P[A'~]P B,. N A~ . 
\ 1 = 1  L I1=1 J 

Now, it is quite intuitive, tha t  the information tha t  some of the variables associated 
with AI (1 < 1 < r - 1) are equal to 0 (i.e. the occurrence of the condition A~-IA '~ /=1 I] 
can only increase the probability of the event B~ (or else leave the probabili ty 
unchanged if X i - k , j - k + l  and X i , j _  k a r e  not used in n ~ - l a q  

' ' / = 1  ~ l ] "  
Hence, intuitively, 

l=1 

For a formal proof of this, we form the index set Jr* which consists of all l E 
{1, 2 , . . . ,  r - 1} such tha t  Az makes use of the variables X i -k , j - k+ l  or X<j-k. 
Carrying out the same analysis as the one used in the proof of (2.4) we obtain 

P 
/z=l. 
k l ¢ I  

F 

: A'I 1 I1=1 
> P[B~]P [rNIAII]LI=I 

which is obviously equivalent to (2.6). The upper bound of the theorem is now 
immediately deduced from (2.2), (2.3), (2.5) and (2.6). [] 

Introducing the notation: 

~{~ = P [ z { j  = 1] = E [ z { ~ ]  = 

bij = q i - k , j - k + l q i , j - k a i j ,  

i j 

/ x : i - k + l  u : j - k + l  

and 

1~I n L B ~  = L B n ( ( > j ) ~ × ~ )  = 1 - [ ( 1  - ~ j ) ,  
i=k j = k  

fI UB~ = UB,~((pij),~x,~) = E ( 1  - bij). 
i=k j = k  

it follows tha t  the lower and upper bounds given in Theorem 2.1 can be wri t ten 
a s  
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It is clear that, when the failure probabilities qij are high (i.e. the successes in the 
double Bernoulli sequence are sparse), then UB~ is expected to be close to LB~; 
thus, a good approximation to the reliability P[N~,k = 0] is yielded. 

Theorem 2.1 is directly applicable to a k2/n2:F system with independent but 
not necessarily identical components. Denoting by Pij = P[Xij  = 0] the failure 
probability of component (i, j) ,  we may state the following: 

(i) P[N~,k = 0] is the exact reliability R~ of the system. 
(ii) LBn is a lower bound developed from minimal cut sets, see Barlow and 

Proschan (1981). 
(iii) UB~ is an upper bound based on minimal cut sets too. The advantage 

of UB~ over the so called minimal path set upper bound, Barlow and Proschan 
(1981) (whose computation for this specific system is tedious), is that the former 
performs very well with systems containing high reliability components, a fact that  
is not valid in general for the latter. 

(iv) When component reliabilities are close to 1, the lower and upper bounds 
(LB,~ and UB~) provide very good approximations for the system reliability R~. 

Koutras et al. (1993) studied the k2/n2:F system using the Chen-Stein meth- 
od. Since the Chen-Stein's lower bound LB~ was found to be, in most of the 
cases, worse than the minimal cut bound LB,~ hence they proposed to use LB~ 
for approximating the reliability R~ from below, and to use the Chen-Stein's up- 
per bound UB~ for approximating the reliability R~ from above. Our extensive 
numerical experimentation indicated that UB~ is better than UB~ in most cases. 
Tables 1 and 2 (next page) present the values of LB~, LB~, UB~, UB~ for several 
values of n and k, and component reliabilities 

0.5 i f l i - j [  < 1 
0.70 i f i + j o d d  II. q~J = i 1 - 

I. qij = 0.75 i f i + j e v e n ,  1 li - j l  if l i -  jl > l , 

respectively. 
It is worth mentioning that Theorem 2.1 could also be stated for non square 

matrices X and nonsquare success blocks. More specifically we have the next 

THEOREM 2.2. Let X = (Xij)~lxn2 be a random matrix of binary variables 
X~j with E[X~jl = p~j = 1 - qij, and denote by N(n l ,  n2; kl, k2) the number of 
occurrences of success blocks of size kl x k2. I f  

i j 

t t = i - k l  + l u=j--k2+ l 

then 

7%1 n2 

U H { 1 - P [ 7 ~ J  
i=kl  j=k2 

= 1 ] }  _< - -  o] 

nl n2 

-< i-[ [I {1- = i]}. 
i=k l  j=k2  
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Table  1. Lower  a n d  u p p e r  b o u n d s  for t h e  re l iabi l i ty  of  a 2 - d i m e n s i o n a i  s y s t e m  wi th  

0.70 i f i + j o d d  

qij = 0.75 if i + j even.  

n k LBs L B n  UBn UBs 

3 2 0 .9577 0.9777 0 .9834 0.9978 

5 2 0 .8364 0.9137 0.9448 0.9915 

5 3 0 .9999 0.9999 0 .9999 0 .9999 

5 4 1.0000 1.0000 1.0000 1.0000 

10 2 0.3044 0.6332 0.7708 0 .9637 

10 3 0.9993 0.9994 0 ,9997 0.9996 

10 4 1.0000 1.0000 1.0000 1.0000 

20 2 - -0 .6514 0.1305 0.3292 0.9139 

20 3 0.9965 0.9972 0.9984 0.9978 

20 4 1.0000 1.0000 1.0000 1.0000 

50 2 - 0 . 9 0 0 9  0.0000 0.0007 0.9009 

50 3 0.9755 0.9801 0.9892 0.9848 

50 4 1.0000 1.0000 1.0000 1.0000 

50 5 1.0000 1.0000 1.0000 1.0000 

Tab le  2. Lower  a n d  u p p e r  b o u n d s  for t h e  re l iabi l i ty  of  a 2 - d i m e n s i o n a l  s y s t e m  w i t h  

0.50 if li - Jl < 1 
1 

qij = 1 -  ~li- J ~ i f t i + j l  > 1. 

n k LBs  L B n  UBn UBz 

3 2 0.1014 0.7725 0.8661 1.4562 

5 2 - 1 . 2 7 2 3  0.4302 0.7156 2.1536 

5 3 0.9718 0.9881 0.9942 1.0045 

5 4 1.0000 1.0000 1.0000 1.0000 

10 2 - -2 .6844 0.0872 0.4342 2.8706 

10 3 0.9075 0.9611 0.9851 1.0147 

10 4 0.9999 0 .9999 1.0000 1.0000 

20 2 - 3 . 0 4 6 1  0.0035 0.1570 3.0542 

20 3 0.7841 0.9091 0.9672 1.0342 

20 4 0.9996 0.9998 0.9999 0.9999 

50 2 --3 .0625 0.0000 0,0074 3.0625 

50 3 0 .4524 0.7695 0 .9154 1.0868 

50 4 0.9989 0.9993 0 .9997 0 .9997 

50 5 1.0000 1.0000 1.0000 1.0000 
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Convention. qij = P[Xi j  = 0] = 1 if at least one of i, j is equal to zero. 

PROOF. It can be easily proved with exactly the same technique as the one 
used in the proof of Theorem 2.1. [] 

Another interesting point in the proof of Theorem 2.1 is tha t  the upper bound 
UB~ depends on the traversing direction used when jumping from ( i , j )  to r. 
Performing the numbering in a different fashion, it is not difficult to verify tha t  
(for example) the following upper bounds for P[N~,k = 0] could also be obtained 

i=k j = k  

i = k j = k  

(Convention: qij = 1 i f i  = O, k + l  or j = O, k +  1). If qij are changing in a 
systematic fashion (for example, increase or decrease as i, j increase), a proper 
choice of the upper bound may improve slightly the upper approximating value. 

The rest of the present paragraph is dedicated to the development of limit 
theorems for the probability P[N~,k = O] as n ~ oc. To this purpose let us 
assume tha t  the success (failure) probabilities are functions of n (the dimension 
of the matrix,  or the number of system's components in reliability terms) i.e., 
p~j = p~j (n), q~j = q~j (n). 

Introducing the notations 

i j 

#=i--k+1 ~=j- -k+ l 

= 

we have the next theorem. 

then 

THEOREM 2.3. / f  

f: f::f::E f: 1 a j(n)]z 1 lim 7 = lim ~- [bij(n)] l = A, 
n - - ~ O 0  n - - ~  O Q  

/=1 i=k j = k  /=1 i=k j = k  

P R O O F .  

and 

lim P[N~,k = O] = e a. 
n - - ~  o o  

Observe tha t  both  quantities 

~q, n O 0  ~_ f t  n 

- l o g  LB~ = E E [ - l o g ( 1  - a{j(n))] = E 7 E E [ a / ]  (n)]z 
i : k  j : k  / : 1  i k j : k  
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n 7% 

l = l  i=k j = k  

tend to/~ as n --~ oo. Therefore, in virtue of Theorem 2.1 we have 

lim {logP[Nn,~ = 0]} = - A  
7%---+(2<3 

and the proof is completed. [] 

In the iid case with qn = q~j(n), p~ = p i j (n) ,  i <_ i , j  <_ n, we obtain the 
following upper and lower bounds 

(2.7) LB7% = (1 -k2~(n-k+l)2 - Pn J , UB7% = (1 - ~/nPn~2-k2~(7%-~+l)2J 

and Theorem 2.3 yields the next corollary. 

COROLLARY 2.1. I f  lim7%-+c~ -2-k2 ,~ p~ = )~, then lim7%__+oo P[N~k = 0] = e -~.  

Similar results are also valid when k = k~ depends on n. More specifically we 
have the following corollary. 

COROLLARY 2.2. I f  k7% is unbounded and satisfies (a) l im~-+oo(n-k~)  = oo, 

(b) lim~__+oo(n k ,2 ~ - 7%) p~ = )~, and (c) lim7%-+oo q7% = 1, then 

lim P[N~,~ = O] = e -x .  
7 % ~ 0 0  

PROOF. Note tha t  (a), (b) and (c) imply 

k 2 ~s2 2 k2n 
lim ( n - k ~ + l ) 2 p 7 %  ~ = lim ( n - k , ~ + l )  q,~p7% = A  

? % - - + 0 0  ?%- - -+00  

and apply Theorem 2.3 or make direct use of (2.7). [] 

There are many cases of p7% and k7% (unbounded) which satisfy the conditions 

(a), (b) and (c), for example k~ ~ log n /  log(log n) and p ,  ~ [ ) ~ / ( n -  k~)2] 1/k~. 

COROLLARY 2.3. I f  the sequence k7% is bounded f rom above, and 

2 k~ (2.8) lim n p~ 
7% ---~ (X3 

then lim~--+oo P[N7%,k = 0] = e -~.  

= A  

PROOF. It is not difficult to verify tha t  when k7% is bounded, condition (2.8) 
implies the validity of conditions (a), (b) and (c) of Corollary 2.2; hence, the result. 

[] 

We mention tha t  Corollaries 2.1 and 2.2 (under slightly different assumptions) 
were also proved (in reliability terminology) by Koutras  et al. (1993). 
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3. Poisson convergence 

Employing the bounds developed in the previous section, in this section we 
are going to derive the limiting distribution of Nn,k for the lid case 

q~ =qi,j(n), p~=p i j (n )  for all l < i , j  < n .  

The method to be used is an extension of Fu's (1993) technique in the 2-dimen- 
sional space which needs no computation of moments of any order. It is worth 
mentioning that for the approximation of P[Nn,~ = m], m > 0 (in the non- 
overlapping case) the Chen-Stein method (see Arratia et al. (1989), Barbour and 
Holst (1989), Barbour et al. (1992)) is not applicable unless certain couplings are 
employed. In this case, the establishment of bounds for the total variation distance 
between the auxiliary variables is rather tedious. 

For proving the main theorem of this section, the next two lemmas will be 
needed. 

LEMMA 3.1. Let S be any subset of {1, 2 , . . . ,  n} x {1, 2 , . . . ,  n} and denote 
by N~,k(S) the number of occurrences of a success block of size k within S. Then 

~2 
P[N~,k(S) = O] _> ( 1 -  Pn )lSl 

where IS[ denotes the cardinality orS.  

PROOF. I f A = { ( i , j ) : k < i < n , k < _ j < _ n } i t i s o b v i o u s t h a t  

P [ N n , k ( S ) = O ] > P [ T i j = O f o r a I I ( i , j ) E S N A ] > _ P  [(i,j)esnArI ( 1 - ' T i J ) = 1 ]  

and by virtue of (2.1) we conclude that 

k2)l,S'nAI k 2 . P[Nr~,k(S)=O]>_ H ( 1 -  P[TiJ = 1]) = ( 1 - P n  -> ( 1 - P ~ ) l S l  [ ]  
( i , j ) ~ S A A  

LEMMA 3.2. Let N(n*, n; k), n* << n be the number of occurrences of a suc- 
cess block of size k <_ n in a binary random matrix X = (Xij)n*xn. Then 

P[N(n*,n;k)  = 0] _< (1 - qnpn2 k2)(n*--k--1)(n--k--1) 

for all n* = 1 , 2 , . . . , n .  

PROOF. If n* _> k, the result is a direct consequence of Theorem 2.1. For 
n* < k the inequality becomes trivial since its LHS equals 1, while the RHS is 
greater than or equal to 1. [] 
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The next theorem states that ,  roughly speaking, if the success probabilities 
p~ are small, then the random variable 5%,k follows asymptotical ly (n -+ co) the 
Poisson distribution. More specifically, we have the following 

THEOREM 3. i. 

(3.1) 

t h e n  

(3.2) 

I f  the  su cc e s s  probab i l i t i e s  p~  s a t i s f y  the  c o n d i t i o n  

2 k 2 
• P n  --+ /~, 38  r~--+ ~ 

lim P [ N n  k = m] = e - h -  
~----+OC ' T ~ !  

f o r  e v e r y  m = O, 1 , 2 , . . . .  

PROOF. The special case m = 0 has already been treated in Corollary 2.1. 
Let m k 1 and assume tha t  n > m ( k  + 1). For every pair ( i , j ) ,  k ÷ 1 _< i , j  < n 
we introduce the index set 

(3.3) Iiy = { ( # , , ) :  i - k << # < i , j  - k < ,  < j }  

and the binary variable 

&j = ~ j  (1 - x ~ , j _ k ) ( 1  - x ~ _ k , j ) ( 1  - X ~ - k , 5 - k ) .  

Also, for every j = ( j l , j 2 : . . . , j ~ )  with k + 1 _< j r  _< n, r = 1, 2 , . . . , m  and every 
i = (il, i 2 , . . . ,  ira) satisfying the constraints 

i 1 _ > k + 1 ,  i~ - i~_ l >_ k + l r = 2, . . . , m (3 .4)  

we define 
m 

I . ( i , j )  = { 1 , 2 , . . . , n }  × { 1 , 2 , . . . , n }  - U [i~,j~ 
r = l  

and denote by A , ( i , j )  the event 

{~ , j~  = 1 for all r = 1 , 2 , . . . , m  and N , ~ , k ( I , ( i , j ) )  = 0}. 

The definition of A,  (i, j )  implies tha t  

d , ( i , j )  C_ {Nn,k = m} for every i , j ,  

and since A,( . ,  .) are disjoint, we conclude tha t  

(3.5) P[Nn,  = > P U U A . ( i , j )  = P [ A . ( i , j ) ]  
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On the other hand, employing Lemma 3.1, we obtain 

(3.6) P[A,(i,j)] = P[~i~,j,. = 1, r = 1, 2 , . . . ,  m]P[N~,k(I,(i,j)) = 0] 
k 2 3 m _ k 2 ~ n 2 - - r n ( k + l )  2 

-> (Pn %)  ( 1 - p ~  ] 

Employing (3.5), (3.6) and taking into account  the fact tha t  the number  of possible 

selections of the vector j is ( n -  k)~ and of the vector i is (n  2 m k )  (because 

of constraints  (3.4)), we deduce 

(3.7) P[Nn,~ 0 ] > ( n  k)~ (n  2 ink) 3m ,~2(1  k2)n2-,~(k+l) 2 
= - - q n  P n  - -  P n  • 

In order to obta in  an upper  bound for the probabil i ty  P[Nn,k = 0] we proceed as 
follows. Let  

I.~j= {(p,u) : i - k  + l <_p<_i , j -k  + l <_u<_j}, k < _ i , j < n  

and denote  by i = (il,i2,...,i,~) an m-tuple  of integers such tha t  k _< i l  _< 
i2 _< .-- _< i,~ < n. For every choice of i, we select j = (jl ,j2,. . . , j ,~) so tha t  
k _< j~ _< n and 

(3.8) I~*,j~Y) I[,j~ = ¢  for all s =  1 , 2 , . . . , r - i ,  r = 2 , 3 , . . . , m .  

Notice that ,  no ma t t e r  what  i is, there  always exist proper  choices of j ;  for exam- 
ple, j r  = rk, r = 1, 2, . . . ,  m, always provides a valid selection. 

In t roducing 

and the event 

± * ( i , j )  = { 1 , 2 , . . . , n }  × { 1 , 2 , . . . , n }  - 
r = l  

A*(i,j) = {7~,j~ -- 1 for all r = 1 , 2 , . . . , m  and N~,k(I*(i,j)) = 0} 

P[N~,~=m] < E E P [ A * ( i , j ) ] ,  
(3.9) i j 

P[A*(i,j)] k 2 m , =- (Pn ) P[Nn,k(I (i,j)) = 0]. 

Next,  observe tha t  the set 

I** = U{i - k +  1 , . . . , i t }  
r : l  

we may state that 



190 J A M E S  C. F U  A N D  M A R K O S  V. K O U T R A S  

can be expressed as a union of disjoint sets of consecutive integers, i.e. 

where 

1 

: U  . . . .  " ' *  * - - 1 } ,  I** {%,~s+l ,"  % + n  s 
s = l  

1 

(3.10) n s > n - i n k ,  l < l < m + l. 

Defining 

we obtain 

** "* '* . . , ' *  * 1}x{1 ,2 , . .  ,n} I~ = { % , % + 1 , .  z , + n , -  

l 

=0] < H 
8 = i  

which, by using Lemma 3.2 and (3.10), yields 

(3.11) P [ N , ~ , k ( I * ( i , j ) )  = O] ~ (1 - -  ~ 2 ~ k 2 ~  ( n - k + l ) [ n - m ( 2 k - 1 ) - k ÷ l ]  

Finally, (3.9) and (3.11} give the following upper bound for the probability 
P[Nn,k  = 

( n - k + l )  '~ 
\ / 

rnk  2 ~ _2 _ k  2 ~ ( n - k ÷ l ) [ n - m ( 2 k - 1 ) - k ÷ l ]  
P n  [1 - -  q n P n  ) 

Under the condition (3.1), the limiting expression (3.2) is now an immediate con- 
sequence of the lower and upper bounds given by equations (3.7) and (3.12) re- 
spectively. [] 

The next corollary describes the limiting (n --~ oe) behaviour of a 2-dimen- 
sional m-consecu t i ve -k -ou t -o f -n  system with iid components. 

COROLLARY 3.1. Let  Rn  be the reliability o f  a 2 -d imens iona l  m-consecu t i ve -  
2 k 2 

k-ou t -o f -n  s y s t em  with componen t  reliabilities q~ = 1 - p n .  I f  n p~ ~ ;~ as n --~ oc 

then 
m - - 1  As 

lim R~ = E e - h - -  
n --+ ~:~ X! " 

x : 0  

PROOF. Due to the definition of the system, we have 

rn--1 

and employing Theorem 3. i, we get the result immediately. [] 
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4. Additional models 

In this paragraph we introduce some additional models, closely related to the 
one studied so far, and indicate how the analysis conducted in paragraphs 2 and 
3 could be adapted to the new cases. 

(a) Assume tha t  besides the success blocks of size k obtained through k × k 
submatrices of X,  we are also interested in success blocks over subsets of the form 

{ ( # , p ) : i - k + l < _ p < _ i , , = n - k + j + l , . . . , n ,  1 , . . . , j }  

k < i < n ,  l<_j<k.  

In other words, this means tha t  the rows of X are wrapped around so tha t  the 
first column of X becomes next to the last one. This formulation would be useful 
for the s tudy of a two-dimensional consecutive-k-out-of-n reliability system whose 
components are placed on the side surface of a cylinder. Let N~, k denote the 
number of success blocks (regular and extended). Introducing the notat ion 

X i , - j  = X i , n _  j ,  P i , - j  = P i , n - j ,  q i , - j  = q i , n - j ,  

l < i < n  and O<_j<k 

we can extend the definition of the binary variables 7ij over all k < i < n, 1 < j < n 
and employing the same reasoning as in Theorem 2.1 we can prove tha t  

12[ I ~ {  1 - P[Tij 
i=k j= l  

= 1]}  _< P[Xg,  = o] 

/I _< 1-1{1 - qi-k,j-~+lq<j-kP['Tij 
i=k j= l  

= 1]} .  

With  this in mind, it is not difficult to state and prove results similar to the ones 
given in Theorems 2.2, 2.3 and Corollaries 2.1, 2.2, 2.3. 

(b) Assume tha t  the "wrapping" procedure described in (a) is performed in 
both  rows and columns of the matr ix  X and consider the total  number of success 
blocks. In reliability context this setup fits to a 2-dimensional consecutive-k-out- 
of-n system whose components are placed on the surface of a sphere. 

The extension of Theorems 2.1, 2.2, 2.3 is rather straightforward (all summa- 
tions and products with respect to i and j are now performed over 1, 2 , . . . ,  n in- 
stead of k, k +  1 , . . . ,  n). Corollaries 2.1 and 2.3 remain unchanged while conditions 

(a), (b) and (c) of Corollary 2.2 become (i) l imn--~ n2p~ ~ = A, (ii) lim~-~oo qn = 1. 
(c) Consider a 3-dimensional random matr ix  X = (X~jr)~×n×~ whose entries 

X~jr are Bernoulli variables with success (failure) probabilities p~j~ (q~j~). Let N~,k 
denote the number of success cubes of size k (3-dimensional k x k × k submatrices of 
X with all its elements equal to 1). The probabili ty P[N~,k = 0] is closely related 
to a 3-dimensional consecutive-k-out-of-n system which, as mentioned by Salvia 
and Lasher (1990), is applicable in medical diagnostics. Again, the adapta t ion  of 
the results of the previous paragraphs to this setup is rather  straightforward. 
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