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A b s t r a c t .  Under a normal assumption, Liski (1991, Biometrics, 47, 659- 
668) gave some measurements for assessing influential observations in a Growth 
Curve Model (GCM) with a known covariance. For the GCM with an arbitrary 
(p.d.) covariance structure, known as unstructured covariance matrix (UCM), 
the problems of detecting multiple outliers are discussed in this paper. When 
a multivariate normal error is assumed, the MLEs of the parameters in the 
Multiple-Individual-Deletion model (MIDM) and the Mean-Shift-Regression 
model (MSRM) are derived, respectively. In order to detect multiple outliers 
in the GCM with UCM, the likelihood ratio testing statistic in MSRM is es- 
tablished and its null distribution is derived. For illustration, two numerical 
examples are discussed, which shows that the criteria presented in this paper 
are useful in practice. 

Key words and phrases: Elliptically contoured distribution, growth curve 
model, influential observation, multiple outlier detection criterion, statistical 
diagnostic. 

I .  Introduction 

The  growth curve model (GCM) is a generalized mult ivariate  model  of variance 
analysis, which is useful especially for growths of animals and plants so tha t  it is 
applied extensively to biostatistics, medical research and epidemiology. It was first 
proposed by Pot thof f  and Roy (1964) and then  subsequently considered by many  
authors,  including Rao (1965, 1966, 1967), Khat r i  (1966), Geisser (1970) and yon 
Rosen (1989, 1990, 1991). 
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Consider a GCM: 

(1.1) Ypx~ = XpxmB.~x~Z~x~ + Epx~ 

where X and Z are known design matrices of rank m < p and r < n, respectively, 
and the regression coefficient B is unknown. Furthermore, the columns of the 
error matrix E are independent p-variate normal with a mean vector 0 and a 
common unknown covariance matrix E > 0, i.e., Y ~ Np,~,(XBZ, E ® In), where 
the notation ® denotes the Kronecker product of matrices. 

Under the normal assumption, Rao (1965, 1966), Khatri (1966) and von 
Rosen (1989), using different methods, obtained the maximum likelihood estimates 
(MLEs) of the parameters B and E as follows 

(1.2) 

and 

(1.3) 

--_ ( X ~ - S - l x ) - l x z s  - 1  yZ~(ZZ+) -1 

= l ( y _  X B Z ) ( Y - X B Z )  ~ = 1 ( S  + QsYPz+ Y+Q~), 
n 

where Qs = S Q ( Q ~ S Q ) - I Q  ~-, S = Y ( I n  -- P z ¢ ) Y  ~- and O E Q, a set of 
matrices defined as 

(1.4) Q = { Q I  Q : p x ( p -  m),rank( Q) = p - m and X~- Q = O} • 

Throughout this paper PA ---- A ( A ~ A )  -1A~- denotes the projection matrix of A 
on condition that ATA is nonsingular. The matrix S is positive definite with 
probability one as long as n > p + r (Okamato (1973)). Furthermore, von Rosen 
(1990) discussed some asymptotic properties of the MLEs (1.2) and (1.3). He 

also derived some useful formulae for higher moments o f /~  and ~] (see von Rosen 
(1990, 1991)). 

On the statistical diagnostic, a number of papers and books have been pub- 
lished dealing with the problems of detecting outliers and influential observations, 
especially in an ordinary regression analysis (ORA). Based on the empirical in- 
fluence function of the regression coefficient, Cook (1977) introduced a statistic to 
investigate the influence of an observation on the regression fit. Since then many 
measurements in a certain sense have been proposed to identify whether or not 
a subset of the observations is an. outlier or influential set. According to Cook's 
definition, an observation can be judged to be influential if some important fea- 
tures of the analysis are substantially altered when it is deleted from the data set. 
The so-called outliers are the observations that do not follow the pattern of the 
majority of the data. The problems of detecting multiple outliers and influential 
observations in the GCM, however, are more complicated than those in the ORA, 
and few works on this subject have been developed. Recently, Liski (1991) has 
presented some methods of detecting outliers and influential observations in the 
GCM with a covariance matrix ~ -- ~2 G, where G is a known positive definite 
(p.d.) matrix (G > 0) and a2 > 0 i s  an unknown scalar. When E > 0 is an 
unknown arbitrary covariance matrix, known as unstructured covariance matrix 
(UCM), the problems of effectively detecting outliers and influential observations 
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in the GCM become more difficult because the M L E / ~  given by (1.2) is a nonlin- 
ear function of the response matrix Y, as pointed out by Liski (1991). However, 
the problem with an unknown UCM is the most usual case in practice and should 
be investigated completely. In this paper, a solution to this important case is 
presented. 

In the next section, a convenient formula for the empirical influence function 
of B is established. Also the relationship between the MLEs of the parameters 
in the Multiple-Individual-Deletion model (MIDM) and the Mean-Shift-Regression 
model (MSRM) is investigated. This relation implies that MIDM is equivalent 
to MSRM in the sense of the MLE of the regression coefficient. This conclusion, 
however, does not hold for the MLE of the covariance matrix E. In order to detect 
multiple outliers in the GCM with UCM, the likelihood ratio testing statistic for 
MSRM is established and its exact null distribution is derived in Section 3. For 
illustration, the Dental Data (Potthoff and Roy (1964)) and the Mouse Data (Rao 
(1984)) are analyzed in the last section, which shows that the presented criteria 
are useful in practice. 

2. Multiple-Individual-Deletion and Mean-Shift-Regression 

In this section the MLEs of the parameters in MIDM and MSRM are de- 
rived. Also, the relationships of the MLEs for the GCM, MIDM and MSRM are 
investigated. 

2.1 MLEs of B and E for MIDM 
Let I -- {il, i 2 , . . . , i k}  (n > p + k) be a set containing the indices of the k 

individuals to be deleted, where the number k is given. Without loss of generality, 
the index set can be assumed to be I = { n -  k + 1, n -  k + 2 , . . . , n }  so that Y 
can be partitioned as Y = (Y(I), YI). The matrices Z and E are partitioned 
as Z = (Z(x), Z~) and E = (Eu) , EI),  respectively. Thus, the GCM (1.1) after 
deleting YI becomes 

(2.1) Y(I) = XBZ(I) + E(I), 

which is known as the Multiple-Individual-Deletion model (MIDM), where E(x) 
Np,n-k(O, E ® In-k).  Similar to (1.2) and (1.3), the MLEs of B and E for MIDM 
(2.1) are 

(2.2) /~(I) = ( XT S ~  X) -1X T S ~  Y(I) zi'ri)(Z(I)zi'ri))-I 
and 

^ 1 
(2.3) E(z) - n - ]~(S(I) + Qs(I) Y(hPz~)Y( ' I )  Qs(~)), 

respectively, where S(I) = Y(i)( In-k  - Pzh) )Y(}  ). Throughout this paper we 

assume n > r + p + k so that S(I) is positive definite with probability one. 

In order to derive the empirical influence function o f /~ ,  i.e., the difference 
be tween/~  and/~(I),  we need first to find out the empirical influence function of 
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S. This was previously derived in the literature (see, e.g. Chatterjee and Hadi 
(19SS), pp. 42-46). 

LEMMA 2.1. The  relationship between S and SU) is given by 

(2.4) •(I) = S -- e i ( I k  -- H i ) - l e }  " 

where H I  = Z [ ( Z Z ' ~ ) - I Z I  and e = Y ( I n  - P z * )  = (e(i), e i )  is the residual o f  

Y regressed on Z .  Therefore,  we have 

(2 .5)  S~I~ : S -1 -[- s - l e i ( I k - -  H i - -  e ; S - l e i ) - l e ; S  -1. 

With help of Lemma 2.1 the empirical influence function of the MLE of B can 
be derived as follows. 

THEOaEM 2.1. The relationship between the M L E s  B and B( I )  is given by 

(2 .6)  /3(z) mE -~ -- ( x ' r s - I x ) - I x T s - l e I V I I K [ ( Z Z T )  -1,  

where V I  = Ik - H x  - e [ S - l e i  + e [ S - 1 X ( X ' r S - 1 X ) - I x ~ S - l e I  and K I  = 
Z I  - Z Y ~ S - l e I  + Z Y ~ S - 1 X ( X ~ S - 1 X ) - I X ~ S - l e z .  

PROOF. On the one hand, it is easy to show 

(2.7) Y(I) ~ ~ -1  Z ( I ) ( Z ( I ) Z ( I ) )  = Y Z ~ ( Z Z ~ )  -1  - e z ( I k  - H I ) - I Z / ( Z Z ~ )  -1 

(see, e.g. Cook and Weisberg (1982), pp. 135-137). By using (2.5) and (2.7) we 
have 

(2.8) x ~s~ r.)zs)IZ(i)zs~) -1 
= { x ~ s  - 1  + x ~ s - l ~ ( z k  - H I  - ~ ; s - ~ ) - ~ T s - 1 }  

• { Y Z + ( Z Z ~ )  -1 - e i ( I k  - H , ) - I z [ ( z z ' ~ )  - 1 }  

= X ~ S  -1  y Z ~ ( Z Z ~ )  -1  

+ X T S - - l e i ( i k  -- H I - e ; s - l e i ) - l e } - S  - 1  y z ~ ( Z Z ~ ' )  -1  

- X * S - l e ~ ( I k  _ H ± ) - I z [ ( z z ~ )  -1 

- X T S - l e i ( I k  - H I  - e ' ~ S - l e i )  -1  

• e y S - l e i ( I k  - H I ) - I Z [ ( Z Z * )  -1  

= X ' r S  -1  y z ' r ( Z Z r )  -1 

+ X ~ S - l e z ( I k  - H I  - e [ S - l e i ) - l e ' ; S  -1  Y Z ~ ( Z Z ~ - )  -1 

- X ~ S - l e i ( I k  - H I  - e [ S - l e I ) - I z [ ( z z T )  - 1  

= X ~ - S  -1  y Z ~ - ( Z Z ~ - ) - ~  

- X ~ ' S - l e i ( I k  - H I  - e ~ S - l e i )  -1 

• ( Z I  - Z Y * S - l e z ) ~ - ( Z Z ' ~ )  -~.  
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On the other hand, from (2.5) we have 

( 2 . 9 )  7 --1 --1 (x  s(~)x) = ( x ~ s - l x ) - l - ( x ~ s - l x ) - l x ~ s - l e x  

• ( I k  - H x  - e [ S - l e i  

+ e ' f S - 1 X ( X r S - 1 X ) - I x ~ S - l e I )  - 1  

e[  S - l  x ( x'~ s - l  X )  -1. 

By using (2.8) and (2.9), we obtain that 

~- --1 --1 w --1 (2.1o) i~(~) = (x  s(~)x) x s(x) Y(~)z~)(z(~)z~)) -1 
= ( X ~ - S - 1 X ) - I x ~ - s - 1  r z~ ' (ZZ ' r )  -1 

_ ( X ' r S - l x ) - l x ' r S - l e i  

• ( I k  - H x  - e [ S - l e z  + e [ s - Z x ( x ~ s - 1 x ) - I x ¢ S - l e z )  - 1  

• e I S - I X ( X ' r S - I X ) - I x ~ ' s - 1  y Z ¢ ( Z Z ¢ )  - 1  

- ( X ¢ S - 1 X ) - l x ¢ S - l e z ( I k  - H z  - e [ S - l e i )  - 1  

• ( z ,  - Z Y ¢ S - l e s ) ¢ ( z z ¢ )  -1 + ( X ¢ S - l X ) - l X ¢ S - l e i  

• ( f k  -- H I  - e ' [ s - l e i  + e ' ~ S - l X ( X Z S - l X ) - l x ' r S - l e i )  - 1  

" e T S - l X ( X r S - 1 X ) - l x r S - l e I ( I k  -- H I  -- e T S - l e x )  - 1  

• ( Z ,  - -  z r r s - l e I ) ' r ( Z Z ' r )  - 1 .  

Noting that the last term of (2.10) can be expressed as 

( X~" S - l  x ) - l  x ' r  s - l  eI( ik -- H z  - e; s - l  ei) -1 

• ( Z I  -- Z Y ' r S - l e I ) ' r ( Z Z ' r )  - 1  -- ( x ' r s - l x ) - l x ~ - s - l e I  

• ( I k  -- H I  - e ~ S - l e ,  + e ; S - l X ( X ~ - S - l x ) - l x ' r s - l e i )  - 1  

• ( Z I  - -  Z Y ' r S - l e I ) ' r ( Z Z ' r )  - 1 ,  
^ 

the MLE BU) can be simplified as 

B(I) = B -- ( X ~ S - l X ) - l X ~ S - l e I  

• ( I k  - H I  - e T S - l e i  -~- e T S - I x ( x ~ s - I x ) - I x ~ s - l e I )  -1 

• (ZI -- z r ' r s - l e ,  -k Z y ' r s - 1 x ( x z s - 1 x ) - l x ' r s - l e I ) ~ - ( Z Z r )  -1 

B - - ( x ' r s - l x ) - l x r S - X e i  V I I K f ( Z Z ' r )  -1, 

and the proof is complete. [] 

R e m a r k  2.1. By using the formula 

(2.11) S -1 -- S - - I x ( x T S - - I x ) - - I x T s - - 1  
_ Q (  ~ - 1  ~ ~ - 1  ~ - 1  Q SQ) Q S--1 QS - = = Q s S  = Q s S  Qs 

where Q E Q (see, e.g., von Rosen (1990)), we obtain 

(2.12) V, - Ik / / i  ~--,~-,-,,-1 ~- 7- 
- - e i  c 4 s ~  Q s e i  and K I  --  Z I -  Z Y  Q s S - 1 Q s e i .  

These are other simplified forms of the matrices V1 and KI.  According to (2.11) 
and (2.12), however, both VI and KI  do not depend upon the choice of the matrix 
Q in the set Q. 
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2.2 ML Es  of B and E for M S R M  

Consider the following Mean-Shift-Regression model (MSRM): 

(2.13) Ypxn = X p x m B m x r Z r x n  + Xpxm(~mxkDk×n  + Ep×n 

where E ~.. Np,n(O, E®In ) ,  (~ is a mean shift parameter and D = (dm_k_t_l ,  din_k+2, 
. . . ,  d~) ~ is a matrix of indicator variables, that is d/, the i-th column of DT., is a n- 
variate vector whose i-th element is one and others equal to zero ( n - k + 1  < i < n). 
Obviously, Z D  r = ZI,  Y D  r = Yz  and D D  r = Ik. 

THEOREM 2.2. The MLEs  of B ,  • and E for  M S R M  are, respectively, 

(2.14) 
(~  7. --1 --1 7" --1 = ( X  S(I ) X )  X S(x ) eZ(Ik - - / / I )  -1, 

E~ _-- 1 .  {(n - k)E(i) + Qs(,) Y1 Y ;  Q~(~)}. 
n 

PROOF. Let B =  (B,O)  and 2 ~ = (Z ~ , D r ) , t h e n  Y ~ N p , ~ ( X B 2 ,  E ®  

IN) and the MLEs of B and 5] are 

(2.15) B = (x~  s j~  x ) - l  xT. s j  1Y  27. ( 2 2~) -1 
and 

(2.16) ~"a = 1 .  {S~ + Q& Y P2 ~  YT.Qs~},  
n 

respectively, where Sa = Y ( I ~  - P2~)  Y~" Partition B into B = (/~a, 6) ,  where 

/ ~  and ~ are the MLEs of B and • for MSRM, respectively. Since P2~ = 

Pz~  + P(I~-Pz~)D~, so that 

(2.17) Sa = Y ( I n  - P2~)  YT. 

= Y ( I n  - Pz~ )  Y~- - YP(x~-Pz~)D~ Y7. 

= S - Y ( I n  - P z ~ ) D 7 . { D ( I n  - P z ~ ) D ' ~ } - I D ( I .  - Pz~ )  Y~- 

= S - Y ( I n  - Pz~)D7. ( Ik  - H ± ) - I D ( I , ,  - P z~ )  Y7. 

= S - e i ( I k  -- H i ) - l e [  

= S(~). 

On the other hand, because 

and 

(227.) -1 ( (Z(I)Z~I))-1 - ( Z Z T . ) - I z I ( I k - H I )  -1 ) 
= \ -Z[ (Z(~)Z(s ) )  -1 (I~ - HI) -1 

Y z7. ( 2 27.) -1 = ( Y(1)z~)( z(~)z~)) -1, e~(Ik - H x ) - l ) ,  
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the MLE B in (2.15) can be written as 

b ---- (X T S ~  X) -1 X T S~ii~ ( Y ( I ) Z S )  ( z ( I )  z~I))  - 1  , ¢ i ( I k  -- H I ) - I )  

= ( B ( , ) , ( X ~ S ~ I I ~ X ) - I x ' r S S ~ e , ( I  k - Hx)-l), 

which implies that /~a =/~(I )  and ~ = ( X ~ S ~ X ) - I x ' ~ S ~ e I ( I k  - / / i )  -1. In 

order to derive the relationship between E~ in (2.16) and ~3(O in (2.3), we notice 
that Sa = S(x) results in YP2~ Y~ = Y(O PzS) Yi~) + Yx Y]-. Therefore, 

1 
= n(S(o + Qs(~)YP2~ Y~Qs(I)) 

~ ~ y~r:"  = (SU) + Qs(o Yu)Pzs)  YioQs<~) + Qs(1) I7I x ws<~)) 

_ n - k ^  1 
n E(x) + -n Qs(° Yx Y[  Q~(~) 

and the proof is complete• [] 

Theorem 2.2 implies that for a GCM with UCM, the MLE of the regression 
coefficient in MIDM is the same as that in MSRM, which is coincident with the 
corresponding fact in the ORA (see, e.g., Cook and Weisberg (1982)). This con- 
clusion, however, does not hold for the MLE of the covariance parameter. 

Theorems 2.1 and 2.2 establish the relationships among the MLEs/~,/~(I)  and 

/ ~ .  Although the relation of the MLEs of E in MIDM and MSRM is derived, the 
relationship between E~ (or E(I)) and E is not clear• The ratio of the determinant 

of Ea to that of E, however, can be established, which is extremely useful in 
multiple outlier detection• 

THEOREM 2.3. The relationship between the determinants of Ea and E is 
given by 

(2.18) Tx - d e t ( ~ ] ) / d e t ( ~ ] a )  

= det{Xk + e[s-lx(x~s-lx)-lx*s-le~ 
• (I~ - / / i  - e ~ ' S - l e i )  - I  } 

O r  

(2.19) AI -= de t (~]a) /de t (~)  
det{Ik ~ -1 ~ -1 -1 ~ -1 = - e ± S ( o X ( X  S(x ) X )  X S ( o e i  

T --i --i • (Ik - 11I + e x SU) ex) }. 



144 JIAN-XIN PAN AND KAI-TAI FANG 

PROOF. 

(2.20) de t (E)  = 1 
u p  

1 
u p 

1 
nP 
1 

uP 

1 
?~P 

From (1.3), noting (2.11) and the definition of S,  we know that  

• d e t { S  + Qs Y P z .  Y~  Q~} 

• de t (S)  • det{Ip + Q~S - 1 Q s "  r P z ,  Y~}  

• d e t ( S ) ,  det{Ip + Q ( Q ~ S Q ) - I Q  ~. Y P z .  Y~}  

• g e t ( S ) ,  de t{ Ip -m + ( Q ~ S Q )  -1 .  Q~ Y P z ,  Y ~ Q }  

• d e t ( S ) ,  d e t { ( Q ~ S Q )  -1 } 

• d e t { ( Q ~ S Q ) +  Q~ YPz~  Y ~ Q }  
1 

-- d e t ( S ) ,  d e t { ( Q ~ S Q ) - l }  • d e t { Q  ~ Y Y ~ Q } .  
np 

In the same manner  it follows 

(2.21) de t (~a )  = 1 .  de t (Sa)"  det{(Q~'Sa Q ) - I }  • d e t { Q  ~ y y r  Q}. 
np 

On the one hand, (2.17) and (2.4) imply 

det(S~) = get{S(1)} 

= d e t ( S ) -  det{Ip - s - l e I ( I k  -- H I ) - l e [ }  

= d e t ( S ) ,  det{Ik -- e [ S - l e i  • (Ik -- HI)  -1 } 

= det{(Ik - H I ) - I }  • d e t ( S ) ,  det{Ik -- HI  - e [ S - l e x }  

and 

de t (Q~S~ Q) = det{ Q~S(x) Q} 

= ge t (Q~SQ)  • det{Ip_m - ( Q r S Q ) - l Q ~ e l ( I k  - H i ) - l e [  Q} 

= de t (Q~SQ)  • det{Ik - e [  Q ( Q r S Q ) - I  Q~er .  (Ik - Hx) -1 } 

= det{(Ik - H I ) - 1 }  • de t (Q~SQ)  

. det{I~ - HI  - e T Q ( Q ~ S Q )  -1 Q~ei}.  

Therefore, according to (2.20) and (2.21) we can conclude that  

det( ) 
T I -  

d e t ( X a )  

_ ~ de t (S)  ~ d e t ( Q ~ S ~ Q )  Ldet(So)}" } I. de t (Q~SQ)  

det{Ik - HI - e[ Q( Qr S Q ) - I  Q~ e[} 

det{Ik - HI  - e [ S - l e i }  

det{(Ik -- HI  - eT S - l e i )  + e[ S - I  X ( X r  S - I  X ) - I  X~  S - l  eI} 

d e t { ( X k  --  --  
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On the other hand, (2.4) and (2.17) also imply that 

(2.22) 

and 

(2.23) 

det(S) = det{Su)} • de t{I  p + S ( i ~ e i ( I k -  H i ) - l e [ }  

det{S(r)} det{Ik + " -1 = • e I S(I ) ei" (Ik -- HI) -1} 
T - - 1  = det{(Ik -- HI) -1}  • det{S(i)}- det{Ik - HI + e I S(I ) ei} 

= det{(Ik -- Hx) -1} -det(S=).  det{I~ - Hz + e;S~{e~}  

de t (Qr  SQ ) = det{ Qr S(I) Q} 

• det{/p_m + ( Q r S ( I ) O ) - i  Q~ei(Ik - Hi)-le[ Q} 

= d e t ( Q ' & Q )  
• det{Ik + e[  Q(Q'~S(I)Q)-I Q'e±.  (Ik - / t / )  -1 } 

= det{(Ik -- HI) -1}  • det(Q~S~Q) 

• det{(Ik - 1ti + e[ Q(Q~S(r )Q) - I  Q~ei)}. 

Furthermore, (2.22) and (2.23) provide that 

det(~) 
(2.24) At = 

det( ) 
_ ,j'det(S~) f< de t (QrSO)  

det(S) } " } [ [ det(QzSa Q) 
det{(Ik -- HI + e; Q( Qr S(,) Q )-I  Q~ ei)} 

det{(I  - H ,  + 

det { (Ik -- Hz + e[ S~¢ ei ) - e[ S~¢ X ( X r S ~  X )-  I X ~ S(~ e, } 

det{Ik - e~ S ~  X r --1 --1 r --1 = ( X  S ( I )X  ) X S(i )eI 

• (Ik-H,+eiS  e ) -1} 

and the proof is complete. [] 

It is noted that the expression (2.19) is particularly important for deriving the 
distribution of At because S(O is independent of ex, which will be explained in 
detail in the next section. 

3. Mul t ip le  out l ier  detect ion in GCM 

In this section, we deal with the problem of detecting multiple outliers in a 
GCM with UCM. In regression diagnostic, it is well-known that the mean-shift 
model is one of the most common outlier-generating models (see, e.g., Barnett and 
Lewis (1984)). Whether or not there are discordant outliers in the observations 
is reduced to testing if the mean of the population is shifted. For the GCM with 
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UCM, this problem is transformed into testing whether or not the mean shift 
parameter • in MSRM is zero. In other words, it is sufficient to test the following 
hypothesis 

(3.1) H : ~ = 0 ~ K : ~ ¢ 0 .  

When the null hypothesis is rejected at level c~, I(I = (Y~-k+l, Y ~ - k + 2 , . . . ,  Y~) are 
declared as k discordant outliers at level c~ (ref., e.g., Cook and Weisberg (1982), 
pp. 28-30; Chatterjee and Hadi (1988), pp. 187-190). 

From the definition of the statistic A1 (or Tz), it is obvious that the likelihood 
ratio testing criterion of (3.1) is equivalent to rejecting the null hypothesis H if 
A1 (or T~) is significantly small (or large). What we need to do here is to derive 
the exact null distribution of the testing statistic A± (or TI). It seems that the 
hypothesis test problem (3.1) can be reduced to a specific case of general linear 
hypotheses concerning the regression coefficient B, and the exact null distribution 
of the latter was obtained by Tang and Gupta (1986) and Nagarsenker (1977) by 
aid of solving Wilk's type-B integral equations and zonal polynomials, respectively. 
By using those methods, however, the computation for looking for the critical 
value of A± (or TI) is complex and burdensome. On the other hand, when the 
general methodology provided by Khatri (1966) is applied to looking for the null 
distribution of A~ (or TI), it is involved inevitably in investigating the relationship 
between A1 (or Tz) and Khatri 's criterion. Actually, it can be shown that  the 
testing criterion based on Az (or Tz) is equivalent to that of Khatri (1966), but 
the proof of this conclusion is involved in some heavy loads of matrix derivation. 
Instead of doing directly in such a way, we present an alternative approach to derive 
briefly the null distribution of AI, which emphasizes a much highlight and intuitive 
background on statistical diagnostic. In fact, there is a much simpler distribution 
form for the statistic AI under the null hypothesis H, that is a Wilk's distribution 
with degree freedom m, n - k - r = p + m and k, i.e., A(m, n - k - r - p + m, k). 
Before deriving this conclusion, we need the following lemma. 

LEMMA 3.1. The matr i x  S ( 5  given in (2.3) is independent  of  e~ in (2.4). 

PROOF. According to (2.7), the residual el  can be simplified as 

e1 = Y ~ -  Y Z ~ ( Z Z ~ ) - I z I  
Y I  -r v -1 = - Y ( 1 ) Z ( I ) ( Z ( I ) Z u )  ) Zz  - e i ( I k  -- H z ) - I H z ,  

which induces 

ei(Ik + (Ik -- H t ) - I  HI) = YI - Y ( I ) Z ~ ) ( Z ( I ) Z ~ ) ) - I  z , ,  

equivalently, 

(3.2) el = ( Y I  - Y u ) Z S ) ( Z ( , ) Z ~ ) ) - I  z ~ ) ( I k  - H I )  

where we use the fact 

( t ,  - H~) -1  = Ik + (I~ - H ~ ) - I H ,  = Ik + H±(Ik  - H~) -~.  
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From the definition of S(~) = Yu) ( In_k  - Pz(z))Y(}), it is clear tha t  S(z) is 

independent  of Yz and Y(I)Z~r)(Z(I)ZS))-I .  From (3.2), we know that  S(I) is 
independent  of ez, and the proof  is complete. [] 

THEOREM 3.1. For MSRM,  the likelihood ratio test of level a of H : • = 0 
versus K : • ~ 0 is equivalent to rejecting H if Tz > C~ -- 1/C~, where the 
statistic TI is defined by (2.18) and C~ denotes the lower 100a% critical point of 
the Wilk's distribution A(m, n - k - r - p + m, k). 

PROOF. According to the relationship Tz -= A/1,  it is enough to prove that  
Az ~ A ( m , n  - k - r - p +  m,k )  under the null hypothesis  H.  From (2.24), first, 
the statist ic A/ can be simplified as follows 

(3.3) 
det{Ik + (Ik -- H i ) - l / 2 e ' [  Q( Q ~ S ( z ) Q ) - I  Q~ei(Ik  - H I )  - 1 / 2 }  

AI = 
det{Ik + (I~ -- H i ) - l / 2 e ~ S ~ e i ( I k  - H r ) - l / 2 }  

where Q E Q. Let Q = FIA1F2  be the singular value decomposi t ion (SVD) of Q, 
where r l  and F2 are p x p and (p - m) x (p - m) orthogonal matrices, respectively, 
and A1 = (A, 0) ~ is a p x (p - m) matr ix in which A = diag(Az, . . . ,Ap_,~)  
(Ai ¢ 0, 1 < i < p - m). Denote  A = r ~ s ( ~ ) r l  a n d  12 = r T e i ( r k  - H~) -1/2 
Corresponding to the orders of r l  and F2, the matr ix  A and 12 can be par t i t ioned 
into, respectively, 

( All A12 ) (121) 
A = \ A21 A22 and 12 = 122 

where the sizes of A l l ,  A22, A12(-- A~I), 121 and 122 are ( p -  m) x ( p -  m), m x m, 
(p - m) z m, (p - m) x k and m x k, respectively. It can be shown that  

(3.4) (Ik H ~ ) - l / 2 e f  ~ -1 - Q(Q S(I)Q) Q ei(Ik - Hz) -1/2 = 121~A11-1121 

and 

(3 .5)  - Hi)-l/2e;S(ii ei(I  - HI)-1/  = 12 A-I12. 

By using (3.4) and (3.5), the statistic Az in (3.3) becomes 

det(Ik + 12~A1-:121) de t (A)  det(A11 + 12112~) 
(3.6) A1 = det(Ik + v~A-112) = det(A11) de t (A  + 1212~) 

( Cll  C12) such that C~l-= A l l  q-12112~. Let C -- A 4- ~a ,~ and part i t ion C = C21 C2 2 

If we denote A22.1 --= A22 - A 2 1 A ~ A 1 2  and C22.1 = C22 - C21C~11C12, then 
(3.6) can be wri t ten as 

det(A22.1) det(A22.1) 
(3.7) A 1 -  det(C22.1) - det(A22.1 + W22.1)' 
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where W22.1 = C22.1 - A22.1. Now, let us derive the null distribution of A1 from 

(3.7). 
By the definition of S(I), under the null hypothesis H, it is obvious S(I) 

W p ( n - k - r , E )  so that A ~ W p ( n - k - r , E * )  where E* = r T ~ r l  and Wp(k, r~) 
is the p-dimensional Wishart distribution with parameters k and E. Furthermore, 

(3.8) A22.1 ~ W , ~ ( n  - k - r - p + rn, E~2.1 ) 

and is independent of A12 and A n  (see, e.g., Muirhead (1982), pp. 93-95), where 

~ ,  ~ , - 1 ~ ,  and E* = ( E~i E~2)  in which partition corre- 

sponds to that of A. On the other hand, notice that 

(AI  (3.9) W22.1=v2 2 +  

which is a function of ~, A12 and All .  Since A is independent of ~ according 
to Lemma 3.1, we know A22.1 is independent of W22.1. Finally, under the null 
hypothesis H, as e1 ~ Np,k(O,  E*®Ik) so that za ,~ ~ W ; ( k ,  E*) and is independent 
of A. Furthermore, C = A + ~ , ~  ~ W p ( n  - r, E*) thus C22.1 = A22.1 + W22.1 
W m ( n  - r - p + 0 ,  E~2.1 ). This fact and (3.8) imply 

(3.10) W22.1 r,J W m ( k  , ~-']~2.1) 

as A22.1 is independent of W22.1. According to the definition of Wilk's distribution 
(see, e.g., Muirhead (1982)), we know that under H 

A~ ~-, A(m, n - k - r - p + m ,  k)  

and the proof is complete. [] 

R e m a r k  3.1. W h e n k =  l a n d I = { i }  (l < i < n) , which means to detect 
whether or not the i-th individual is a single discordant outlier, according to Wilk's 
distributional property we know under the null hypothesis 

n - r - p _ _ 1  - A i  ~ Frn,n-r-p. 
(3.11) m Ai 

Therefore, the i-th individual is declared as a single discordant outlier if 

e $ s - l X ( X z S - l X ) - l x r s - l e i  > 1 + m C *  
(3.12) Ti = 1 + 1 - p ~  - e ~ S - l e ~  n -  r - p '  

where pi~ is the i-th diagonal element of the projection matrix Pz~, ei is the 
i-th column of the residual e and C~ is the upper 100a% critical point of the 

distribution Fm,n-r-p.  

R e m a r k  3.2. When k = 2 and I = { i , j }  (1 < i , j  << n , i  ~ j ) ,  we want 
to detect whether or not the ( i , j ) - th  individual pair is a discordant outlier pair. 
According to Wilk's distributional property we know under the null hypothesis 

n - r - p - 2  1 -  V/-~,,j  
(3.13) ~ F2rn,2(n--r--p--2)" 
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Therefore, the (i, j ) - th  individual is declared as a discordant outlier pair if 

(3.14) Ti,j > l + n _ r ~ p  - 2  ' 

where C** is the upper 100a% critical point of the distribution F2~,2(n-~-p-2) 
and Ti,y is defined by (2.18). 

Remark 3.3. In general, the index subset I could not be given in advance 
even though the number k is fixed. In this case, a reasonable test statistic 

(3.15)  Ami nk ---- i n } n { i l }  

is proposed to detect multiple outliers, where I runs over all subsets containing k 
k indexes. The exact null distribution of Amin, however, is unknown because Ai's 

are not independent mutually. In this situation, Bonferroni's principle in multiple 
comparisons is recommended (ref., e.g., Cook and Weisberg (1982), pp. 26-27; 
Barnett and Lewis (1984), pp. 256-258). 

Remark 3.4. Denote AI (Y)  = A1 then it is obvious that A~(c~Y) - 
A~(Y) -- A ~ ( Y - X B Z )  for all a > 0 and all m × r matrix B. Therefore, 
the null distribution of A1 is distribution-free or distribution-robust in the class of 
elliptically contoured distributions (see, e.g., Fang and Zhang (1990)). This fact 
implies that the outlier detection criteria given in Theorem 3.1, (3.12), (3.14) and 
(3.15) can be extended to elliptically contoured distributions. 

4. lllustrative examples 

In this section some of the results developed in the preceding sections are 
applied to two biological data sets analyzed by Rao (1984, 1987) and Lee (1988, 
1991). The primary objective is to illustrate the applications of our results. Fol- 
lowing Lee (1991), an arbitrary covariance structure 5] > 0 can be assumed in the 
following analyses. 

4.1 Dental data 
This data set was first considered by Potthoff and Roy (1964) and later ana- 

lyzed by Lee and Geisser (1975), Rao (1987) and Lee (1988, 1991). Dental mea- 
surements were made on 11 girls and 16 boys at ages 8, 10, 12 and 14 years. Each 
measurement is the distance, in millimeters, from the center of the pituitary to 
the pterygomaxillary fissure. 

Since the measurements are obtained at equal time intervals, the design ma- 
trices X and Z can be taken as the following forms, respectively: 

(18 1 1 1 )  ~- (1~  0 )  
X = 10 12 14 and Z = 1 116 , 

where ls is a s-variant vector with components l's. Table 1 displays some nu- 
merical results of the measurements in decreasing order discussed in the preceding 
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Table 1. Diagnostic statistic for dental data. 

Individual No. Pii Ti Individual-pair No. Ti,j 

24 0.0625 1.9197 (20, 24) 2.6654 

15 0.0625 1.4433 (15, 24) 2.6210 

21 0.0625 1.2961 (10, 24) 2.5190 

10 0.0909 1.2738 (21, 24) 2.4665 

20 0.0625 1.2297 (3,24) 2.2575 

2 
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1.2 

1 
0 10 20 

6, 

1 
30 5 10 

Fig. 1. Fig. 2. 

15 

sections for detecting a single discordant outlier and outlier pair. Also, the index 
plot of the diagnostic statistic Ti  is showen in Fig. 1. 

For detecting a single discordant outlier, it is clear that  the individuals 24 
and 15 stand out according to the values of Ti in Table 1 and Fig. 1. It seems 
that  the individual 24 is a discordant outlier. In fact, since the right hand side of 
inequality (3.12) at level a = 0.01 is 1 + r n C ~ / ( n  - r - p) = 1.5505, there is only 
the individual 24 such that  T24 = 1.9197 > 1.5505. Therefore, the 24th individual 
can be declared as a discordant outlier at level a = 0.01. The statuses of the 
15th and 21th individuals, however, are more questionable and should be treated 
cautiously. 

Since T24 = 1.9197 and T15 = 1.4433 are the largest two values of the diag- 
nostic statistic Ti, it seems that  the individual pair (15, 24) should be a discordant 
outlier pair. But the numerical results given in Table 1 show that  the maximum of 
T i , j ' s  value for the individual pair (i, j) is achieved at (20, 24) with T20,24 = 2.6654. 
Noticing that  the critical value of Ti , j  at level a = 0.01 in (3.14) for detecting out- 
lier pair is (1 + r n C ~ * / ( n  - r - p - 2)) 2 = 1.9689, which is smaller than the values 
of Ti , j  listed in Table 1, we can conclude that  the individual pair (20, 24) is a most 
discordant outlier pair. Of course the discordance of the individual pair (15, 24) 
should be noticed and treated carefully. 

4.2 M o u s e  da ta  

The data set was analyzed by Rao (1984, 1987) and later by Lee (1988, 1991). 
It consists of weights of 13 male mice measured at intervals of 3 days from birth to 
weaning. For this data set, following Rao (1984), a second-degree polynomial in 
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time for the growth function was assumed and hence the design matrices X and 
Z take the following forms 

X = 1 2 3 4 5 6 
1 4 9 16 25 36 49 

and Z = 1 ~ respectively. Some numerical results of the diagnostic statistics for 13, 
detecting a single outlier and outlier pair are presented in Table 2 and Fig. 2, 
respectively. 

Table 2. Diagnostic statistic for mouse data. 

Individual No. Pii Ti Individual-pair No. Ti,j 
13 0.0769 5.8416 (11,13) 24.1923 

11 0.0769 4.2393 (5,13) 16.9751 

5 0.0769 1.9629 (6,13) 13.0252 

10 0.0769 1.9183 (2,13) 12.8205 

1 0.0769 1.8424 (10,13) 12.7596 

For detecting a single discordant outlier, the numerical values of Ti in Table 2 
imply that the 13th and 11th individuals stand out. At level a = 0.1, the critical 
value of Ti given in (3.12) is 1 + mC[~/(n - r - p) = 3.1720. From the values of 
Ti in Table 2, it is obvious that T13 = 5.8416 > T l l  = 4.2393 > 3.1720. In other 
words, there are two individuals, No. 13 and No. 11, such that their T's values are 
greater than the critical value. Therefore, the 13th individual can be declared as a 
most discordant outlier at the 10 per cent level. The status of the 11th individual, 
however, is more questionable and should be investigated cautiously. 

On the outlier pair problem, we calculate the values of Ti,j and list the largest 
five ones of Ti,j (1 _< i , j  <_ 13) in decreasing order in Table 2. At level ct = 0.10, the 
critical value of T~,j given in (3.14) is (1 +mC~*/(n - r  - p -  2)) 2 = 16.4025, which 
is smaller than the largest two values of Ti j ,  Tl1,13 -- 24.1923 and T5,13 = 16.9751 
but greater than the others. This fact implies that the (11, 13)-th individual pair 
can be declared as a most discordant outlier pair at the 10 per cent level. In 
addition, the status of the individual pair (5, 13) should be investigated carefully. 

4.3 Concluding remarks 
(a) The magnitude of the diagnostic statistic Ti, j in detecting a discordant 

outlier pair does not completely depend upon the values of Ti and Tj. For example, 
the large values of Ti and Tj do not necessarily guarantee to induce large value of 
Ti,j. The results for the Dental Data set illustrate this point well. In this case, the 
largest two values of Ti a r e  T24 a n d  T15, but the largest value of Ti,j is achieved 
at the individual pair (20, 24). 

(b) The diagnostic statistics presented in this paper are based on an assump- 
tion that the number k of possible outliers is given in advance. In practice, however, 
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the number k is usually unknown and the diagnostic measurements suffer from the 
so-called masking and swamping effects. Fortunately, some methodologies based 
on robust statistics have been proposed recently to solve these problems (see, e.g., 
Rousseeuw and van Zomeren (1990)), and the masking and swamping effects in a 
GCM can be partially treated by those methods. 
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