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A b s t r a c t .  In this paper a mixture model involving the inverse Gaussian dis- 
tribution and its length biased version is studied from a Bayesian view-point. 
Using proper priors, the Bayes estimates of the parameters of the model are 
derived and the results are applied on the aircraft data of Proschan (1963, 
Technometrics, 5,375-383). The posterior distributions of the parameters are 
expressed in terms of the confluent-hypergeometric function and the modified 
Bessel function of the third kind. The integral involved in the expression of the 
estimate of the mean is evaluated by numerical techniques. 
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1. Introduction 

The inverse Gaussian distribution (IG) is a positively skewed distribution that 
provides an interesting and useful alternative in reliability studies, to the Weibull, 
lognormal, gamma and other similar distributions. For various applications of the 
IG, the reader is referred to a book by Chhikara and Folks (1989). Recently a 
length biased inverse Gaussian distribution (LBIG) has been studied by Akman 
and Gupta (1992) and Gupta and Akman (1995a). Applications of the length 
biased distributions have been made in biomedical areas such as family history and 
disease, early detection of disease, survival and intermediate events and latency 
periods of AIDS due to blood transfusion. Some applications of length biased 
sampling in life length studies are described in Bluementhal (1967) and Schaeffer 
(1972). A review of length biased distributions and its applications is contained 
in G u p t a  and  Ki rman i  (1990). 

This  pape r  deals wi th  a r a n d o m  variable Xp whose dis t r ibut ion is a mix tu re  
of IG  and L B I G  as follows. 

Let  the  p d f  of Xp be 

(1.1) f a x )  = ( 1 -  ; ) f x ( x )  + pf (x), o <_ p < 1 
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where 

fx(~) = { (a/2~x~)~/~ e x p { - a ( ~  - ~ ) V 2 ~ % } ,  x > o, a > o, ~ > o 

[ O; otherwise 

and 
f~:(x) = x f x ( x ) / p ,  where 0 < # = E ( X )  < oc; 

see Jorgensen et aI. (1991). 
The model (1.1) represents a rich family of distributions for different values 

1 yields o fp .  Apart from the special cases, p = 0 a n d p  = 1 the case p = 
Birnbaum and Saunder's (1969) model which was derived from a model of fatigue 
crack growth. We shall call it a mixture inverse Gaussian distribution (MIG). The 
MIG has been investigated by Gupta and Akman (1995b) from the view point of 
reliability. More specifically, they examined the nature of its failure rate and mean 
residual life function. They also studied the maximum likelihood estimation of the 
parameters and that of the reliability function. 

Presently we consider the Bayes estimation of the parameters of the MIG. A 
Bayesian analysis of the IG was presented by Banerjee and Bhattacharyya (1976, 
1979) using both improper and proper priors for (¢,),) where ¢ = 1/p. In their 
approach it turned out that the posterior mean of 1 /¢  does not exist and, therefore, 
the Bayes estimate of p could not be obtained. To overcome this difficulty, Betro 
and Rotondi (1991) presented Bayesian results for the IG by considering proper 
priors which enabled them to derive Bayes estimates for p. The Bayes estimation 
of the reliability for the IG and Birnbaum-Saunder's model has been studied by 
Padgett (1981, 1982). 

We reparameterize the model (1.1) by defining ¢ = A/# and derive the Bayes 
estimates of all the three parameters #, ¢ and p, by taking proper priors, as has 
been done by Betro and Rotandi (1991) for IG. The posterior distributions of the 
parameters are expressed in terms of the confluent hypergeometric function and the 
modified Bessel function of the third kind. The integral involved in the expression 
of the estimate of p is evaluated using (i) Monte-Carlo integration and (ii) iteration 
technique. In addition, another method, which uses Lindley's approximation, of 
obtaining Bayes estimates of p is presented. Finally, the aircraft data of Proschan 
(1963) was used to evaluate the Bayes estimates of the parameters. 

2. Bayes estimation 

The model (1.1) can be written as 

(2.1) / (x  ] ~,,X,p) = (,x/2~x3) 1/2 e x p { - ~ ( x  - ~ ) 2 / 2 ~ x } ( 1  - p + p ~ / ~ ) ,  

x > O, A,# > O. 

It is convenient to rewrite (2.1) as 

( ¢ p ~ l / Z  



MIXTURE INVERSE GAUSSIAN MODEL 495 

where ¢ = ~. ~ Given a random sample x = { X l , . .  . ,  x ,}  from (2•2), the likelihood 
can be written as 

(2.a) L(#, ¢,p  [ x) = (27r) -n/2 1-I X~3/2¢n/2ltn/2en¢ exp +/*2 

i=l 
n 

• 1 - I ( 1  - p+ PXi/P) 
i=1 

n where 2 = k ~ i = l  xi 1. Assume that a prior information about p, ¢ and p is sum- 
n 

marized in their joint density rr(p, ¢,p) = rc(p I ¢)Tr(¢)rr(p) where the conditional 
density of p given ¢ is given by an IG density 

The marginal density of ¢ is given by a Gamma density 

(2•5) 7r(*) = ~ ( ~ , - 1 ¢ - - a ¢ ,  ~ > 0, a > 0, 

and the marginal density of p is given by a Beta density 

v~-~(1 _ v)e-1 
(2.6) ~-(p) = , ~ > o , /3  > o. 

B(~,/~) 

Then the posterior distribution of (p, ¢,p) has the density function, 

n 

• I-I(1--P + pXi/l't)Pn(a-1)(1- v)n(3-1) 
i=1 

where C is the normalizing constant, u = n + 2 %  Ul = n~+wr/,  u2 = n + w - a  and 
ua = n2 + co/r]. Note that the domain of u2 is all real numbers, while the domains 
of/2, /'/1 and u3 are all positive real numbers• The density function in, (2.7) can be 
rewritten as 

(2.S) = ~ ( . , ¢ , p  I x) 

= ¢(~-1)/2 exp { - ¢  ( ~  

• pna-~+k(1 _ p)ne-k 
k=0 

where, 

n 

S 0 : 1 ,  s l = E x i ,  s 2 = E x ~ x j ,  $ 3 :  E XiXjXk, . . . ,  S n : H X  i. 
i i<j i<j<k i=1 
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Integrating (2.8) with respect to #, 

n 

f ~d# = E 2¢(u-1)/2SkPna-n+k(l -- P)nfl-keCU2 (ul/u3)(n-1-2k)/4 
k=0 

• K(~_x)/2_k ( ¢ ~ ) ,  

where Ul, u3 > 0 and Kx denotes the modified Bessel function of the third kind 
with index A. Similarly 

(2.9) //" 7vdpd¢ 
n 

= Z 2Skpna-n+k(1 -- P)nl3-k(lyl/l/3)(n-l-2k)/4 
k=O 

~/~(2~) (n_ l ) /2_k  r (P q-2 n k F ~ + k + l  

/y ( ~/-~(-~ -- 112) (u+n)/2-k F (~ + 1) 

. F  (/.,'--~n ~ , n  /ff -- ~ V / ~ - - / / 2 )  2 ~ - k; ~ + 1; ~ ~  , 

where --fi-"+l > ]~_~-1 _ kl; for all k = 0 , . . .  ,n, ~ - "2 > 0 and F(a, b; c; d) is the 
confluent hypergeometric function, see Gradshteyn and Ryzhik (1980). Finally, 

1 // /7rd#dOdp (2.10) ~ = 

= ~ 2v~sk(~l/~3) ("-1-2k//4 (2 Uv/pS-~)(n-n/2-k 
(ug-"-i~- ~2)(~+n)/2-k 

k=0 

/1 

• F n - k , - ~ - k ; ~ + l ;  ux/~_u2 ./ 

• B ( n ~ -  n + k + 1, n / 3 -  k + 1) 
1 1 

with c ~ > 1 - -  and / 3 > 1 - - .  
n n 

Bayesian estimation of #, ¢ and p is easily achieved by evaluating the posterior 
marginal of #, ¢ and p, namely 

(2.11) 7r(p [ x ) = C .  ~ 2Skp~-~+k(1 -p)nfl-k(Pl/L'3)(n-l-2k)/4 
k=0 

/] ( YV/-~-~- 112) (u+n)/2-k r (~ ~- 1) 
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"F( u+n2 n u - ~ Z _ u z ~  
k , ~ - k ; ~ + l ;  U v / ~  _ .2 / .  

Thus the Bayes estimate of p can be obtained from (2.11) as 

(2.12)  
1 

= F,(p) = fo v ~ ( p l x ) a p  
n 

= C E 2V/~Sk(lll/P3)(n--l--2k)/k 
k=0 

"F( u+n2 

( - , / K ~  - -2) ( '+n) /2-k 

// 

k , ~ - k ; ~ + l ,  ~x/-Ki-~ - r'2 J 

• B ( n a -  n + k + 2, n i l -  k + 1), 

where c~ > 1 - 2/n and fl > 1 - 1/n. Similarly, 

~(¢ I x) = c.ff~dt~dp (2.13) 

n 

and 

(2.14) 

= C E 2¢(u-1)/2SkeCU2 ( 1 1 1 / ! 2 3 ) ( n - l - 2 k ) / 4 K ( n - 1 ) / 2 - k ( ¢ ~ )  
k=O 

• B ( n o ~ -  n + k + 1, n i l -  k + 1) 

$ = E(¢) : f ¢~(¢1 =)de 
n 

: c ~ 2 & ( ~ l / ~ , a ) ( n - l - ~ k ) / 4 B ( ~  - ~ + k + 1, ~ - k + 1) 
k=0 

X / , ~ ( 2 ~ ) ( n _ l _ 2 k ) / 2  F ( U - ~ n + l - h )  F ( u 2 ~ n + 2 + h )  

// ( ~ -  ~2) ~÷n)/2÷l-k r (~ + 2) 

( -; - F  u n + l - k , ~ - k ; ~ + 2 ;  ~ 2 7 - u ~  , 

where ~+3 ~ -  > I - ~  - kl, k = o , 1 , . . .  , ~  and ~ -  ~,2 > 0. ~n the  s~me way  

(2.15) ~(~l~)=c 
Pl  / -~ (r,-kl)/2 

5 u2 + ~35) 
n 

" E I~(n-3-2k)/2SkB(n°z -- n + k + 1, nfl -- k + 1),  

k=O 
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1 a n d / 3 > 1 -  1 Thus where a > 1 - Z ~. 

(2.16) : E(,) 

= C2(V+l)/2ItL E r SkB(na - 
k=0 

n + k  + l, n 3 - k  + l), 

where 

(2.17) fo ~ #(~-1)/2-k+(.+1)/2 I# = (/Jl -- 2/22P @ /23p2) (v+1)/2 dlA. 

The integral I ,  is evaluated by (i) Monte-Carlo integration and (ii) i teration 
technique described in the appendix. A comparison between the two computa-  
tional techniques is also discussed in the Appendix.  

Another  method  of obtaining a Bayes est imate of #, which uses Lindley's 
approximation, can be used as described below. 

Let L(O) = in f(x], x 2 , . . . ,  xn I 0) = In l-Iin__] ~(xi I 0) denote the log of the 
likelihood function and p(O) = in g(O) denote the log of the prior density. Let u(O) 
be an arbi t rary function of 0. Then a Bayes est imate of u(O) involves the ratio of 
integrals of the form 

(2.18) I(xl, x2, . . . ,  x~) = f u(O)cC(°)+P(°)dO 
f eC(°)+P(°)dO 

Here 0 may be vector valued. 
Lindley approximation. Suppose n is sufficiently large so that  L(O) defined 

above concentrates around a unique maximum likelihood est imator 0 = 0(Xx, x2, 
. . . , x ~ )  for 0 = (0i), p × 1, 0 = (0i). Then I(-) defined in (2.18) is expressible 
approximately as 

(2.19) 

+ 
i = 1  j=l  0=0 

o (o) on(o) 
+ { --50T o=o} L oo5 O=gJJ 

/ = l j = 1 k = 1  /=100iOOjOO1 0=0 

where 5ij denotes the (i,j) element of E K (Gij), for ~ - 1  = ~ = (~ij) and 
i i j  02L(O) 

- -  o0~a0j 10=~. For details, see Lindley (1980) and Press (1989). In our case, 

for computat ional  convenience, we shall assume p = 0 and so 0 = (#, ¢), u(0) = # 
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and t} = (X, XV) where V = ~ L I ( ~  - i)~ . Also 

(2 .2o/  L(o)  = - -~ in 2~  _ _32 in ~ 
2 \ i = 1  / 

+ 2 1 n ¢ +  ~ l n p + n ¢ -  + # 2  

and 

(2.21) \ 2~ / + ¢~ - ~ l n ,  - T + 

+ 7 1 n a - l n F ( 7 )  + ( 7 -  1) 1 n ¢ -  a¢. 

These will yield 

o p ( o )  A 
I(Xl ,  X2 , . . . ,  Xn) = ~t ~- p(0)#11 -I- - ~ 0 " 1 2  

103L(0)^2 303L(0)# # 
-~- 2 ~ 3  0-11 -~ 2 ~ 11 12 

03L(O) 1 I 
-~#11#22 ~ + -]- . ( # 1 2 )  2 -~ 

0~20~--" ff L 

1 03L(0)# ^ 
2 0--~ 120"22~ 

where the derivatives are evaluated by substituting the maximum likelihood esti- 
mates for the parameters. 

3. Illustration 

Proschan (1963) gave the failure intervals for the air conditioning system of 
13 different aircrafts of the same type. In the following we use his data on only 
four aircraft numbers 7907, 7915, 7916, 8044. The data are as Table 1. 

Table I. 

AIRCRAFT 
# 

7907 194 15 41 29 33 181 

7915 359 9 12 270 603 3 104 2 438 

7916 50 254 5 283 35 12 
8044 487 18 100 7 97 5 85 91 43 230 3 130 
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The Bayes estimates of the above data sets are presented,in Table 2. 

Table 2. 

AIRCRAFT n ~ (~ 

# ITERATION MONTE-CARLO 

7907 6 (i) .18 .98 74.92 67.41 

(ii) .34 .71 81.43 70.09 

7915 9 (i) .79 .01 29.77 17.32 

(ii) .60 .00 39.69 21.49 

7916 6 (i) .68 .21 54.99 59.81 

(ii) .45 .19 71.13 90.94 

8044 12 (i) .54 .02 36.40 29.32 
(ii) .66 .02 25.71 14.17 

T h e  above  resul ts  are co r r e spond ing  to  

(i) a = 1, 7 = 2, w = 5, ~ =  5, a = 1 , / 3 =  1, 
(ii) a = 1, 7 = 2, w = 5, ~ = 5, a = 2 , /3  = 2. 

In  order  t o  ob t a in  Bayes  es t ima tes  using L ind ley ' s  app rox ima t ion ,  we a s sumed  

p k n o w n  for c o m p u t a t i o n a l  convenience.  T h e  m a x i m u m  l ikel ihood e s t ima to r s  
(MLE ' s )  of  # and  ¢, needed  in the  L ind ley ' s  a p p r o x i m a t i o n  have been  given in 

G u p t a  and  A k m a n  (1995b). Using these  M L E ' s ,  t he  Bayes  e s t ima tes  of  # are given 
in Table  3. 

Table 3. 

AIRCRAFT p = 0 p = 1/2 p = 1 
# 

7907 83.89 (82.17) 59,69 (54.17) 37.98 (35.71) 

7915 197.52 (200) 49.08 (41.45) 11.37 (8.59) 
7916 106.57 (106.5) 52,44 (43.40) 23.31 (17.68) 

8044 107.52 (108) 44.31 (39.95) 19.74 (14.78) 

The above results have been obtained by using the parameters of the priors 

as a = i, ~/= 2, w = 5, ~] = 5. The MLE's are given in parenthesis. 
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Appendix 

A.1 Monte- Carlo integration 
1 d y =  The integral (2.17) is taken first by using the subst i tu t ion y - x+l ,  

-y2dx  to convert the limits of integration to (0, 1). Then the integral is computed  
at 1000 uniform random variates over (0, 1). See Ross ((1990), p. 38) for details 
of the Monte-Carlo simulation technique. 

A.2 Iteration technique 
When  7 is an integer, then/2 is an integer too and I ,  can be expressed in an 

and 

I(7,/2) = f0 °° 
U 

(/21t 2 - 2/22t +/23) (~+1)/2 
1 

+ ~I(O,  O) 
/21(/2 -- 1)/2~ u-1) /2  

7 - 1  
/21(/2 - 1) {/211(7'/2) -- 2/221(7 -- 1,/2) + /2a i (7  - 2,/2)} 

+/22I (7 -1 , /2 )  if 3 ' > 1  
/21 

by which the i terat ion follows: 

i(7,  u) = /22 /2-  27 + 1 i ( 7 _ 1 , / 2 )  + /23(7 _~ i ( 7 _  if 7 > 1 ,  (A.I) 
/2"1 /2 -- 7 /21 (/2 7) 

and 

I(1,/2) =/21(/2- 1>~ ~+1)/2 + I(</2). 
In case d =/21/23 -/22 ¢ O, 1(0,/2) is obtained by i teration in/2 as follows: 

fo 1 (/21t 2 - 2/22t +/2a)( '+l) /2  dt 

1 
= - -{ I (0 , /2  - 2) - /21I(2,/2) + 2/22I(1,/2)} 

/23 

and by (A.1) 

1 
I(O,/2) - d(/2 - 1) {/21(/2 - 2)I(0, u - 2) +/22//2a (v-1)/2} if /2 > 2 

while by direct integration 

~ { - -  q- a r c t a n  ( - - )  } if  d > O  
v'd 2 d 

1(0,1) = 1 log 1 - - 2 x / ~  if d < 0 
/22+  

and 

dt 

if 7 = 1  

iterative way. 
Indeed, 
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l{v~/2 k u2 1 2) = 
u3 ) 

If d = 0, then 

±(0, u) - u(_u2) 

where the negative sign takes into account the fact that d -- 0 is possible only for 
strictly negative values of u2. 

A.3 Comparisons between the two methods and some comments 
1. The difference between two computation methods occurs because the 

Monte-Carlo method provides approximate results whereas exact results are ob- 
tained by the iteration methods. 

2. Iteration method requires more computation time (and repeated calcula- 
tions by the computer) while Monte-Carlo method simply evaluates the function 
at (sufficiently many) uniform random numbers which is quite routine. 

3. Iteration method is more accurate since M-C method is an approximation 
and its accuracy depends on the number of uniform random numbers at which the 
integral is evaluated. 

4. When p ¢ 0, the model differs substantially from the p = 0 (IG) case, 
since ~f(x) vanishes when p = 0. In case p ~ 0, Lindley's approximation will 
have several more derivatives than in the case p = 0 since, for p ~ 0, the model 
becomes (1 - p ) f ( x )  + p~f(x) which causes the difference in the approximation. 
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