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A b s t r a c t .  We consider estimation of a location vector for particular sub- 
classes of spherically symmetric distributions in the presence of a known or 
unknown scale parameter. Specifically, for these spherically symmetric distri- 
butions we obtain slightly more general conditions and larger classes of estima- 
tors than Brandwein and Strawderman (1991, Ann. Statist., 19, 1639 1650) 
under which estimators of the form X + a t (X )  dominate X for quadratic loss, 
concave functions of quadratic loss and general quadratic loss. 
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1. Introduction 

We consider est imation of a p-dimensional location paramete r  of a spheri- 
cally symmetr ic  (s.s.) distribution. Specifically, let X ~ f ( l l x  - 0112) and consider 
es t imat ion of 0 with loss function L(O, 5) = 115 - 0112. Stein (19Sl) derived an 
expression for the risk of est imators  of the form X + a g ( X  ) using integrat ion by 
par ts  when X has a normal  distribution. He also gives conditions under  which 
X + a t ( X )  dominates  X,  the best equivariant est imator.  Chou and St rawderman 
(1990) derive a similar result for a mixture  of normal  distributions.  Brandwein 
and St rawderman (1991) using the divergence theorem and (essentially) super- 
harmonic i ty  of IIgll 2 give conditions on a and g(') for dominance when f ( . )  is a n  

arb i t ra ry  spherically symmetr ic  distribution.  
Ralescu et al. (1992) using integrat ion by parts  in case of a general spherically 

symmetr ic  distr ibution gave necessary and sufficient conditions on the constant  a 
for X + a g ( X )  to improve on X for the case where d ivg(X ) _< 0 for all X.  
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Berger (1975), Bock (1985), Akai (1986), Cellier et al. (1989), and others have 
used the integration by parts technique, first introduced by Stein (1973), in the 
spherically symmetric  case. 

In this paper, we use the techniques in Ralescu et al. (1992) to show tha t  the 
bounds on the constant  a given in Brandwein and Strawderman (1991) may be 
improved in certain cases. 

In particular, if q(t) = f ~  f ( u ) d u / f ( t )  is either monotone increasing or mono- 
tone decreasing, the bound on a may be increased over tha t  in Brandwein and 
Strawderman (1991). The result reduces to results of Bock (1985) if X + a t ( X )  
is taken to be a James-Stein type estimator. 

Additionally, if f ( . )  is a spherically symmetric  unimodal  (s.s.u.) distribution 
(i.e., f ( t )  is nonincreasing in t), then the upper bound on the constant  a may also 
be enlarged. Here, our result for the James-Stein estimator reduces to tha t  in 
Brandwein and Strawderman (1978). 

Another subclass of spherically symmetric  distributions for which al ternate 
bounds on the constant  a are found is the class of distributions controlled by a 
s.s.u, distribution. Specifically, we say f( . )  is controlled by ( f l ( ' ) , m )  if f l ( t )  < 
f ( t )  <_ rnf l ( t )  for all t > 0 where f l ( t )  is nonincreasing in t. 

Sections 2 and 3 are devoted to the above developments. 
In Section 4, we obtain analogous results for loss functions which are nonde- 

creasing concave functions of - 0112 and for general quadratic loss, L(g, 0) = 
(5 - O)'D(5 - O) where D is positive definite. In Section 5, results for est imating 
0 in the presence of an unknown scale parameter  are given. 

The following gives the flavor of results in the paper: Let x ~ / ( l l z  - 0112), 
p _> 3 and the loss be L(& 0) = - 0112 .  Let 

(1.1) 

be an estimator of 0 such tha t  
(a) divg(X) _< h(X)  where h(.) is such tha t  Eoh(W) is nondecreasing in R 

and Eo[R2h(W)] is nonincreasing in R if W ~ Uniform{llW - 0112 = F~2}. 
(b) llgll 2 + 2h _< 0. 
Then, provided EolIXII 2 and Eo(1/IIXll 2) < o% 5a,g(X) beats X if any of the 

following hold. 
A. 0 < a < 1/pEo(1/ l lXl l  2) for any f(-). 

B. q(t) = f t  f ( u ) d u / f ( t )  is nonincreasing and 0 < a _< E0(llXll2)/p. 
C. q(~) is nondecreasing and 0 < a < 1 

- -  ( p - - 2 ) E o ( 1 / l [ X l l 2 )  " 

D. f( . )  is s.s.u, and 0 < a < P 
- -  ( p ~ - - 4 ) E o ( 1 / l [ X [ [ 2 )  " 

E. The pair ( f l ( t ) ,  rn) controls f ( l l z  - 0H 2) and 0 < a < P 
- -  (p2_4)m2Eo(1/ltXl[2) • 

2. Generalized stein estimators for certain spherically symmetric distributions 

Consider throughout  this paper a p x 1, p _> 3, random vector X - EX1, x 2 , .  • . ,  
xp]' having a density fo(x) = ffllx-OII2), 0 = (01,02, . . . ,  Op)', which is continuous 
a.e. with respect to Lebesgue measure. We will denote this by X ~ s.s.d.(0) from 
this point on. Wi th  respect to quadratic loss, I1~ -0112, we investigate conditions 
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on a and 9 under which estimators of the form ~a,g(X) (1.1) will dominate X (see 
Stein (1981)). 

Brandwein and Strawderman (1991) found conditions under which ~ ,g (X)  
dominates X for any spherically symmetric  distribution. In this section, we look 
at particular subclasses of spherically symmetric distributions and under slightly 
more general conditions show tha t  ~a(X) improves on X and is thus minimax for 
a larger range of values of a. 

Using integration by parts, Ralescu et al. (1992), in Lemma 2.1, establish 
necessary and sufficient conditions for the generalized Stein est imator to dominate 
X.  We will use this lemma to establish our minimax results. We restate this 
lemma for completeness. We assume throughout  this section tha t  Eo(1/IIXII 2) 
and Eo(IIXII 2) exist and are finite. 

LEMMA 2.1. Let X ~ s.s.d.(O), then for p >_ 3, provided the divergence of g 
is nonpositive, the risk of ~a,g(X) dominates (is less than or equal to, for all O) 
the risk of X with respect to quadratic loss if  and only if  O < a <_ inf0 {f(O) where 

(2.1) 
f -(divg(x))(fll~_oll~ f ( t )d t )dx  

Cf(O) = f iig(x)llif(ll x _ Oll2)d x 

Let 

(2.2) q(t) = f ( u ) d u / f ( t )  .[o7" f ( t )  > O. 

In Theorem 2.1, we will first consider s.s. distributions for which q(t) is non- 
increasing in t and in Theorem 2.2, we consider distributions for which q(t) is 
nondecreasing. In both cases we will get a larger bound on a than the Brandwein- 
Strawderman general s.s. bound, 1/pEo(1/l]Xl]2). These improvements are similar 
in spirit to the results of Bock (1985) for the James-Stein estimator. 

THEOREM 2.1. If  X ~ s.s.d.(O), then with respect to quadratic loss, 6~,g(X) 
dominates X provided: 

(i) q(t) is nonincreasin 9 in t, 
(ii) - d i v g  >_ - h  where h is such that Eo[h(W)] is nondecreasing in t~, when 

w ~ { l l W - O l l  ~ = R 2 } ,  
(iii) Ilgll 2 + 2h _< 0, and 
(iv) 0 < a <_ Eo=o(lIxI]2)/p. 

PaOOF. If we condition on IIX - 011 = R, then the numerator  of ~f(O), de- 
fined by (2.1), equals Eo[-divg(X)q( l lX  - 0112)]. 

(2.3) Eo{-divg(X)q( l lX  - 0112)] = EfR{q(R~)Eo[-divg(X) I IIx - 011 = R]I 

> E/R[q (R2)Eo[ -h (X) I I ]x  - 01] = R]], 

by condition (ii). 
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Condition (i) implies 

(2.4) EfR[q(R2)Eo[-h(X) I IIX - 011 = R]] ~ E f ~ [ q < R S ] E o f - h < X ) ] .  

Now, 

( 2 . 5 )  E/R[q(R2)] = /q(r2)fR(r)dr = /cq(r2) r;-1 f(r2)dr 

where fR(r) is the density of R and c = 1 / f ~  r p X f(r2)dr.  
Using integration by parts, it is straightforward to show ErR [q(R2)] = (2/p) • 

E0[llXll2]. Thus, (2.3) and (2.4) and condition (iii) imply 

~ f ( o )  > ~ / a r~, ~, ~ r ~ a~,2,p,Eo~,,X,,~jEo_h,X,~ > Eo[llXll2]/p • 

- E o [ i b ( X ) l 1 2 3  - 
[] 

Remark 2.1. It is welI known that  if /~ is superharmonic (V2k(x) = 
~(O/Ox~)k(x)  _< 0) and W ~ U{[IW - 0112 = R2}, then Eo{k(W)}  is nonin- 
creasing in R. Thus, if k - h  is superharmonic,  then condition (if) of Theorem 
2.1 is satisfied. 

THEOREM 2.2. Suppose X ~ s.s.d.(O) and assume that 
(i) q(t) is nondecreasin9 in t, 

(if) - d i v g  >_ - h  where h is such that Eo[R2h(W)] is nonincreasin9 in t~, 
~ h ~  W ~ U { l l W  - Olr 2 = R 2 } ,  

(iii) Ilgll 2 + 2h _< 0, and 
(iv) 0 < a <_ 1 / ( p  - 2)Eo(1/llxl12). 
Then ~a,g(X) has" (uniformly) smaller risk than X .  

pROOF. The numerator  of ~f(O), defined by (2.1), equals 

(2.6) Eo{-divg(X)q([lX - 0112)] EfR[q(R2)Eo{-divg(X) I IIx - 011 = R]]. 

If G(R) = Eo[-d ivg(X  ) I IIX - 011 : R] and fR(r) is the density of R as defined 
by (2.5), then (2.6) becomes 

(2.7) ~0 ~ Eo[-divg(X)q([lX - 0112)] = (erp-af(r2))[rZG(r)]q(r2)dr. 

Let pR(r) = c<-af(r2)/eo(I]xH -2) be another  density of R and G*(R) = 
R2G(R). Then (2.7) is equivalent to Eo(llNll-2)E~[q(R2)G*(R)]. Thus, (2.6), 
(2.7), and assumption (if) imply 

(2.8) numerator  of ( / (0)  k Zo<llX 11-2)Z~ [q(R2)c ~ (~)], 
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where G**(R) = E[R2(-h(X))  I]IX - 011 = R] and by assumption (ii), G**(R) is 
nondecreasing in R. Since by assumption (i), q(R 2) is nondecreasing in R as well, 
We h a v e  

(2.9) numerator ~f (0) > E0 (IIx II-~)E~ [q(R~)]E~ [O** (R)]. 

Now, by (2.2) 

(2.10) 
E~R(q(R2)) = f ~  q(r2)erp-a f(r2)dr 

E0(llXl1-2) 

/0 (F E0(llxl1-2) 
f (u )du)  rP-3dr. 

By integration by parts  and since f o c r P - l f ( r 2 ) d r  
2 Finally, by assumption (iii), (p-2)Eo(llxii-2)" 

= 1, E , . ( q ( R ~ ) )  

(2.11) E ~ ( O * * ( R ) )  > (1/2)E~.[Rilig(X)II 2 i ilX - 011 = ~] 

(1/2)zo [llg(X)II ~] 
z0[llxll -~] 

Clearly then, (2.9). (2.10) and (2.11) together imply that  ~f(0) > 1 
, _ (p_2)Eo(1/llXll2) - 

[] 

Remark 2.2. Clearly, in the context of Stein estimation, spherically sym- 
metric functions play a central role. In the case h is such a s.s. function (i.e. 
h ( W )  = h l ( l lWlI2) ) ,  it is of interest to characterize the h's for which (ii) of Theo- 
rem 2.2 is satisfied. The following result (presented without  proof) gives sufficient 
conditions for the validity of (ii) when k = - h i .  

PROPOSITION 2.1. Let k(t) be a non-negative function o f t  such that k(t) is 
noninereasing in ~ and tk(t) is nondeereasing in t for t > O. [ f W  ~ ~{l lw-0II  2 -- 
R 2} then, i fp  k 4, Eo{R2k(W)} is nondecreasing in R. 

Example 2.1. Consider the James-Stein estimator,  (~a(X)  = X 

+ ~(-b/ l lXll2)x,  so 9(x)  = (-b/liXll2)X. 
(1) - d i v g  = (p - 2)b/llXll 2 = k( l lx l l2 ) .  Clearly k(t) = b(p - 2) / t  satisfies the 

assumptions of Proposi t ion 2.1, so let - h  = k. 
(2) IIg[12 + 2h -- b2/liXll 2 -  2 ( p -  2)b/liXll 2 _< 0, if 0 _< b _< 2 ( p -  2). So, 

if X ~ s.s.d.(0) with q(t) noninereasing, by Theorem 2.1 and Remark  2.1, 6 , (X)  

dominates X for 0 < ab _< (2(p 2)/p)Zo(IrXll 2) provided p > 4. If X ~ s.s.d.(0) 
with q(t) nondecreasing, by Theorem 2.2 and Remark  2.2, 6~,g(X) dominates X 

for 0 < ab <_ 2/Zo(1/llX[12). These bounds  coincide with those of Bock (1985). 

Note. When 6a,a(X) (1.1) is the James-Stein estimator, ~/(0) = (2/b) • 
(1/E0([IXll-2)) by integration by parts. 
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Since 0 < b < 2 ( p -  2), ~f(0) > 1 So, for the class ~Pl = { f  " - - (p-2)Eo( l lX l l  2). 
qf(t) is nondecreasing on (t : f ( t )  > 0)}, we obtain the best bound in Theorem 
2.2, when 6~(X) is the James-Stein estimator. 

_Note. For any 0, we can restrict our a t tent ion to 0 = [ll011,0, 0,. ,0] and 

for 6~,g(X), the James-Stein estimator, lim0~oo ~f(0) = (2(p - 2)/bp)Eo(llXll 2) >_ 
E0(llxllN)/p. So, for the class ~r2 = { / :  qf(t) is nonincreasing on (t" f(t) > 0)}, 

we obtain the best bound in Theorem 2.1 when 6a(X) = X + a(-b/llxllN)x. 

Even for h, nonspherically symmetric,  there are simple conditions under which 
the assumptions of Theorems 2.1 and 2.2 will be satisfied. 

Remark 2.3. If k is homogeneous of degree - 2  (i.e., /{(W) = (1/s2)k(W/s)), 
then for W ~ b/{llW - 0112 = R2}, E0[RNk(W)] is nondecreasing in R and letting 
k = - h ,  condition (ii) of Theorem 2.2 is satisfied. 

Note. If g : R p --+ /{P is homogeneous of degree - 1 ,  then all derivatives 
Og/cOzi and thus div9 will be homogeneous of degree -2 .  

Example 2.2. "Limited Translation Rule" for special spherically symmetric  
distributions. 

Suppose we consider the "limited translation" rule based on order statistics 
given by Stein (1981) for X ~ s.s.(0) and q(t) nonincreasing or nondecreasing. For 
k a positive integer, let 6a,g(X) (1.1) be defined by 

-bXi  if IXil < z<~) 
gi(x) = E ( x ~  A z(\))' 

- b  Z(~)sgnX/, if IX~l > z(~) 
E(xy a zi\ )) 

a n d  Z i  = IX~I, Z 0 )  < Z(2) < - . .  < Z(p) are  t h e  o r d e r  s ta t i s t i cs  a n d  c a d  = 

rain(c, d). For this estimator 
(1) g is homogeneous of degree - 1 ,  and 
(2) - d i v g  = (k -  2)b/2(Xg/~ Z~k))according to Stein (1981). So, i f - d i v g  -- 

- h ,  clearly - h  is superharmonie (if b > 0 and p >_ 4), and 
2 (3) Ilgll 2 + 2h = (b 2 - 2(k - 2 ) ) ( L / E ( X ~  A z(k)) ) _< 0 if 0 < b _< 2(k - 2). 

Therefore, for q(t) nonincreasing in t, by Theorem 2.1 and Remark 2.1, 6~,g(X) 
is minimax for 0 < ab <_ (2(k - 2)/p)Eo(l[xll2), provided p _> 4, and for q(t) 
nondecreasing in t, by Theorem 2.2 and Remark 2.2, 6a,g(X) is minimax for 0 < 

ab < 2(k-2) provided p > 4. 
- ( p _ N ) Z o ( l l / l l - = )  

Consider now the problem of est imating 0, the mean of a special class of 
spherically symmetric distributions, namely spherically symmetric  unimodal  dis- 
tr ibutions (i.e., X ~ s.s.u.(0)). A p × 1 random vector X is said to have a s.s.u. 
distribution about  0 if the density f(llz -0112) with respect to Lebesgue measure 
is a nonincreasing function. If X ~ s.s.u.(0), then X I R ~ b/{llX - 0112 _< }{2}. 



S H R I N K A G E  E S T I M A T I O N  O F  L O C A T I O N  P A R A M E T E R S  557 

If a p-dimensional random vector X has a uniform distr ibution on the ball 
IIX - 0112 _< R 2, with known radius R, then I (Hx - 0112) = (p/cnp)f( l l~ - 01[ ~ _< 
//2) where c is the proper constant  tha t  makes f ( l l x  - 0ll 2) a density. Thus, for 
x ~ u { l l x  - 0112 _< R2}, 

o c r  R 2 P 

/ _< R 2 ) &  for f(t)  > 0 = / = R - (2.12) q(t) 
Jt Jt 

which is a nonincreasing function of t. 
From this fact and the results of the proof of Theorems 2.1, by conditioning 

on the radius of the ball, in the following theorem we will find improved minimax 
est imators of the form &,~(X) (1.1) when X ~ s.s.u.(0). The bound  on a will be 
slightly bet ter  than the general spherically symmetr ic  bound found by Brandwein 
and St rawderman (1991). 

THEOREM 2.3. I f  the p × 1 random vector X = [ X 1 , X 2 , . . . , X p l  I has a 
s.s.u.(O) distribution and & , g ( X )  is defined by (1.1), then with respect to quadratic 
loss, & , g ( X )  dominates X provided: 

(i) - d i v g  > - h  where h is a funct ion such that if W ~ b / { I I W -  0112 = R2}, 
Zo[h(W)] is nondeereasing i~ n and zo[n~h(w)]  is nonincreasi~g in n, 

(ii) Ilgll 2 + 2h _< 0, and 
(iii) 0 < a < P 

- (p2_4)Eo(1/llxll2)" 

PROOF. If p ×  1 random vector Y ~ U{llY-0112 ~ n2}, then since by (2.12), 
q(t) is nonincreasing, and conditions (ii) and (iii) of Theorem 2.1 are sat isf ied,  
similarly as in the proof  of Theorem 2.1 

2 n2Eo[_h(y)].  (2.13) numerator ~f(O) > Eo[IIYII2]Zo[-h(Y)] - P + 2 

For X ~ s.s.u.(0), by (2.13) and since Y = X I R, 

(2.14) ~(o)  = E[Eo[-divg(X)q(l lX -011~) I nil 

> 

zo [llg(X)II ~3 
2 E[n~Eo[-h(X) I a]] 

- p + 2  Eo[llg(x)ll~l 
2 E[a~Bo,~(-h) l  

p +  2 eo[Hg(x)ll~l 

where 

(2.15) t o , .  = Eo[ -h (X)I  n ] -  p f -h (x )dx  
cRP ~l]x OII2<_R 2} 

n~ pp - lEo[ -h (X)  I IlK - o l /=  p]+.  
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Since by assumption (i), s 0 [ - h ( x )  I IIz - 011 = p] is nonincreasing in p, 

(2.16) Bo,R(-h) >_ E 0 [ - h ( X )  I IIX - 011 = •]. 

Thus, (2.14) and (2 .16) imply  

2 m[R~So[-h(X) [ l l X -  011 - R]] 
(2.17) ~f(O) >_ 

p + 2 Eo [llg(X)II 2] 

Now, by assumption (i) t{2Eo[-h(X) I [I X - 01l = R] is nondecreasing in R, and 
by assumption (ii) 

Q R 2 z 0 [ - h ( x )  I llX - 011 = R]] 
1 

- E(1/R2 ) [E(1/R2)]E[R2Eo[-h(X) I IIx - 011 = R]] 

1 1 
_> E ( 1 / R 2  ) Eo[-h(X)] >_ 2E(1//~2 ) Eo[llgCX)l12]. 

Hence, (2.17) becomes (~(0) _> 2 / ( ;  + 2 )E(1 /R2) .  But, E ( 1 / R  2) - ((p - 2 ) / ; )  • 
Eo(1/ l lx lr  2) when x ~ s.s.u.(0). Thus, ~/(0) _> ( p / ( p 2  _ 4 ) ) ( 1 / E o ( 1 / l l X l l 2 ) ) .  []  

Note. From Example 2.1, it is easy to show that  when 6a,g(X) is the James- 
Stein est imator and p _> 4, from Theorem 2.3, we will obtain the Brandwein- 
St rawderman (1978) bound (2p/(p + 2))(1/Eo(1/llXl12)) for s.s.u, distributions. 

Remark 2.4. For k(W) = h( l lWl l  2) = - h ( w )  we can apply the following 
proposit ion along with Remark  2.2 to verify Condition (i) of Theorem 2.3. 

PROPOSITION 2.2. Let w ~ U{llW - 0112 = R 2} and define F(R) = Eokl . 
(llWll~). ~f 

d i 
(2.18) t p i / 2~k l  (t) is noninereasing in t for i = O, I; 

then F(R) is nonincreasing in R. 

Clearly, there exist functions kl satisfying (2.18) and such that  kl (lIWll 2 ) is not 
superharmonic.  For such kl, if tk~(t) is nondecreasing, condition (i) of Theorem 
2.3 will be satisfied. 

Note. If kl is twice differentiable and satisfies (2.18), then kl is superhar- 
monic. 

If h is not spherically symmetric,  we can apply the following remark to find 
improved minimax estimates using Theorem 2.3. 

Remark 2.5. If k is superharmonic and homogeneous of degree - 2  (i.e. 
k(W) = ~ k ( W )  and W ~ / z { l I w  - 0112 = / ? 2 }  then Eok(W) is nondecreasing in 
R and R~Eok(W) is nondeereasing in R. 
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By restricting our at tent ion to special classes of spherically symmetric  distri- 
butions in Theorems 2.1, 2.2 and 2.3, we were able to find better  minimax estima- 
tors than  the ones for the general s.s. case found by Brandwein and Strawderman 
(1991). 

Ralescu et al. (1991) define another special s.s. distribution, namely a "con- 
trolled" spherically symmetric  unimodal  (s.s.u.) distribution as follows: 

DEFINITION. We say tha t  X has a controlled s.s.u, density f ( l l x -  01[ 2) if 
there exists a pair ( f l ( ' )  .~,m > 0) such tha t  for all t > 0, fl(~) _< f ( t )  < m f i ( t ) .  

For f ,  s.s.u, controlled, the following theorem finds an improved bound for a, 
than  the general spherically symmetric  case domination bound found in Brandwein 
and Strawderman (1991). 

THEOREM 2.4. Let X be a p-dimensional observation from a controlled s.s.u. 
density f(Hx -0112), where ( f l ( t ) ,m) is a pair controllin 9 f .  Then ~a,g(X) (1.1) 
has smaller risk than X with respect to quadratic loss provided conditions (i) and 
(ii) in Theorem 2.3 hold and 

P 0 < a <  
- ( ; 2  _ 4 ) m 2 E 0 ( [ l X l ]  2 ) .  

PROOF. From (2.1) and definition of s.s.u, controlled 

( 2 . 1 9 )  ~ s ( 0 )  = 

> 

f-divg(x)(~l~_oll2 f(t)dt)dx 

f [[9(x)[12f([[ x - Ol[2)dx 

1 f - d i v g ( x )  fll~_0112 fl(~)dt)dx 

m f IIg(x)ll2f~(ll x_0lli)dx 

where •(t)  : f l ( t ) /c  and c = f fl(llxll2)dx <_ f f(llxll2)dx 1. Now, if Y = 

(Y1,Y2,... ,Yp) ~ fl( l[y - 0112), then Y ~ s.s.u.(0) and (2.19) and Theorem 2.3 
together imply 

p p f f l ( [ [ x  - O[]2)dx 
~f(O) > m(pff~ - 4) 1/E°(1/HZ][2)  = m ( p  2 - 4) f (1/]]x][2)fl(Hx _ O][2)dx 

1 p ~). 
-> ~ (p~ : 4) 1 /Eo(1 /HxH [] 

Remark 2.6. (Robustness) A strong motivation for the interest in s.s.d.'s de- 
rives from the desire to broaden the scope of the linear regression model X = AO+c 
to allow for more robustness in the t rea tment  of the random error e. For this model, 
it was tradit ionally assumed in the li terature tha t  e is normally distributed. How- 
ever, very often this normali ty assumption has been criticized as being too restric- 
tive since one of the main concerns of the statistician is related to his uncertainty 
about  the true functional form of the distribution. It can be argued that ,  since in 
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practice it is rare that the actual form of the distribution of c is known, instead 
of the normality assumption a much weaker assumption of spherical symmetry 
is considered more plausible. By appropriate transformations it can be assumed 
that  X = 0 + e and the distribution of X has a s.s. density. In this context one 
needs to cope with the degree of uncertainty associated with the lack of advanced 
knowledge of f and an important aspect is the robustness of the Stein effect (see 
Cellier et al. (1989)) i.e. the domination of the lse by shrinkage estimators uni- 
formly over a class of s.s.d.'s. Here our aim is to use our theorems and establish 
that, for a given class 5 of s.s.d.'s there exists a0 > 0 such that for all a E (0, a0] 
and all g E ~ (= a class of "shrinkers") the usual lse X can be dominated by 
(~a,g no matter which s.s.d, in the class 5 is sampled. The fact that  one does not 
have to specify precisely the distribution of the error but only to assume that  it 
belongs to a certain class of s.s.d.'s (thus removing the much restrictive normality 
assumptions) has deep practical consequences allowing the experimenter a wider 
degree of flexibility. Before we present our examples, it is noteworthy that from 
condition (H4) in Cellier et al. ((1989), p. 48) there is a restriction on the s.s.d.'s 
to which their Proposition 5.2 applies. In fact, their condition implies that  X is 
sampled from a class of s.s.d.'s which have tails that are flatter than the normal 
(see also Berger (1975)). 

Our examples below provide a step in the robustness directed at generalized 
Stein estimators. 

Example 2.3. 

G = 

and for k > 0 

Let 

g= IIg[I 2 + 2divg _< 0 and (3) h 

(1) -Iig112/2 __< - h  < divg, and ] 
with (2) Eo[h(W)] is nondecreasing in R 

w h e n  W ~  {IIW - 0112 = 

{ /0 } •k = f :  qf(') is ; and rp+lf(r2)dr  > k > 0 . 

Then by Theorem 2.1, (3) ao(= ck/p) > 0 s.t.(V)a c (0, a0] and (V)g E G, (~a,g 
dominates X uniformly over ~ck. 

Note. Some simple conditions which insure the monotonicity of qf(.) in 5k 
are given in Bock ((1985), Lemma 3). 

It is worth mentioning that 5k contains all s.s. uniform on balls with radii 
bounded from below by a level 7 = 7k > 0. Therefore Proposition 5.2 in Cellier 
et al. (1989) cannot be applied to show dominance in this case. 

Example 2.4. Let a(-) be a nondecreasing function and for m > O, set 
5(~,,~) = {all f = s.s. unimodal controlled by (a, m)}. Set 61 = {9 E ~ : the h- 
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function associated with 9 satisfies also condition (3) R2E[h(W)] is nonincreas- 
ing when W ~ b / { / [ W -  0112 = R2}}. Then there exists ao > 0 such that 
(V)a E (0, ao] and (V)g E G, /5~,g dominates X uniformly over 5c(~,,~). Indeed, 
according to the proof of Theorem 2.3 and in view of Lemma 2.1 it is enough to 

v info ~ ( 0 )  > 0. take a0 - ,~(p~-4) 

Many other examples along similar lines could be considered including the class 
of s.s.d.'s with compact support 5c<,¢~,d = {f  : Cl[{f(t)<_d} <_ f( t )  <_ c2I{f(t)<_d}} 
where IA denotes the indicator function and Cl, c2, d > 0. For the sake of brevity 
we omit the details. 

3. Improved estimators for spherically symmetric distributions via integration by parts 
technique 

Consider a p x 1 random vector X = ( X 1 ,  X 2 , . . .  , Xp) l having a p-dimensional 
s.s.d. (0). We seek general conditions for ~ ,g(X)  (1.1) to be minimax. Our result 
is essentially that of Brandwein and Strawderman (1991), although there are some 
interesting remarks concerning the specific conditions which lead to some special 
examples. 

THEOREM 3.1. If  the p × 1 random vector X ~ s.s.d.(O) then with respect to 
quadratic loss, ~ ,g (X)  (1.1) has smaller risk than X provided: 

(i) - d i r t  >_ - h  where h is a function such that if W ~ bl{lIW - 0112 = R2}, 
Eo[h(W)] is ~ondeereasing in • and Eo[R2h(W)I is ~o~i~ereasing in R, 

(ii) Ilgll 2 + 2h _< 0, and 
(iii) 0 < a < 1 and E0(1/llXll 2) exists and is ~nite. 

- p E o ( 1 / l l X i i 2 ) ,  

PROOF. The numerator of ~f(O), defined by (2.1), equals 

( -d ivg(x ) )dx)  r f(r2)dr 

by change of variables 

( - h ( x ) ) d x )  r f(r2)dr 

by assumption (i). 

If fR(r) is the density of/~ = IIx - 011 as defined in (2.5), then by (3.1), 

(3.2) numerator of Q(O) >_ P r2Bo,~(-h)fR(r)dr 

where 

(3.3) Bo,,1(-h) = p [ -h(x)dx. 
crP J[[z_O[12<_r2 
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By (2.16), Bo,~(-h)  >_ E o [ - h ( X )  I IIx - 0[I = ~]. This together with (3.2) implies 

(3.4) 
2 f o  ~=Eo [ -h (x )  I I Ix - 011 = r]f~<~)d~ 

~s(0) > p 
- z0[Hg(X) ll ~] 

2 z±R(~) z:~[R2E°U-h(x) ll[x-°ll 
pz fR  (1/~=)  E0 [llg(X)II ~] 

= R]] 

By assumption (i), [R2Eo[-h (X)  I IIx - 011 : ~]] is nondecreasing in R and 1 / R  2 
is nonincreasing in R. Therefore, these facts together with assumption (ii) imply 
(3.2) 

S,~ [~] EfR[R2ZO[--h(X) III x -  Oil = R]] _> Zo[-h(/)] _> ~Eo[llg(X)ll2]. 

Hence, by (3.4) and (3.5), ~f(O) > 1 
- p E o ( 1 / l l X I I  ~) 

and so info~f(O) > 1 
- pzo(1/llXll2) - [] 

Note tha t  the conditions in Theorem 3.1 are for uniform distributions on a 
shell of a sphere and those in Brandwein and Strawderman (1991) relate to uniform 
distributions on a ball. In many of the examples in Brandwein and Strawderman 
(1991), it was necessary to show the unimodal i ty  of h and apply Anderson's theo- 
rein to show Eo [R2h(W)] is nonincreasing in R for W uniform on the ball of radius 
R. By having conditions on the shell, the integration by parts technique bypasses 
the unimodali ty requirement. 

The remarks and examples in Section 2 can also be applied to Theorem 3.1 
and the bounds adjusted accordingly. 

4. Minimax estimators for other loss functions 

Consider X a p × 1 random vector having a s.s.d.(0) or another one of the 
special s.s. distributions in Section 2. Wi th  respect to quadratic loss, for p _> 3, 
5~,g(X) (1.1) is better, than  X under certain conditions s tated in the theorems of 
Sections 2 and 3. 

Let us now consider generalizing these results for quadrat ic  loss to concave 
loss functions of quadratic loss and general quadratic loss. 

Specifically, consider the nonquadrat ic  loss of the form 

(4.1) L(5, 0) = z(ll5 - 0112) 

where g(.) is a nondecreasing concave function and 

(4.2) L(6, O) : (5 - O)'D(5 - O) 

where D is a given p x p positive definite matrix. 

THEOREM 4.1. Let the p× 1 random vector X have a p-dimensional, s.s.d.( O) 
a~d the loss be eo~ave  Zoss, e(EIX- 01[~), give~ by (4.1). The~, ~ ,~ (X)  (1.1) is 
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better than X provided conditions (i)-(ii) of Theorem 3.1 are satisfied and 0 < a <_ 

(1/p) ( Eoe (llXl12) / Eo( e (llXl12) /lIX112) ). 

PaOOF. Since g(.) is a nondecreasing concave function, gt(t) is nonnegative 
and nonincreasing, so et'(t) <_ o. Moreover, for any points s and t, g(s) < g(t) + 
e '( t ) (s  - t). If A~ .~ (X)  = I [ X -  0112 - [ I~(X)  - 0112 , then 

(4.3) e( l lX - 0112 - A ~ , ~ ( X ) )  <e(llX-0112)+eqlIX-OIli)(-A~a,~(Xll. 

Hence, 

(4.4) R(60, 0) - R(~=,g, 0) > E0(g'( l lX - 0112)A~= ( x ) )  

= [fe(llx-OII2)f(llx-OIl~)dx] Es*A6o,~(X), 

where 

(4.5) f* ( l lx  - 0112) = g'([I z - O[[2)f(l[z - 0[I 2) 

f e'(l[z - o][2)f([[x - O[[2)dx 

is a density since e'(]lz - 0112) is nonnegative. 
Wi th  respect  to this density, X has a s.s. distr ibution and from the results of 

Theorem 3.1, E I .  A6~.g(X) > 0 for 0 < a < ( 1 / p ) ( 1 / E I . ( 1 / [ I X - 0 t [ 2 ) )  = (2 /p ) .  

(Eoe ' ( l l x l l2 ) /Eo(e ' ( l l x l l2 ) / l l x l [2) )  and so by (4.4), R(6o,O) - R(6~,9,0 ) > 0 for 
these values of a as well. [] 

Define 

(4.6) qe(t) = f t ~  g ' ( u ) f ( u ) d u  
g ' ( t ) f ( t )  ' for f ( t )  > O. 

When  e(][6 - 0112) is quadrat ic  loss, e'(t) = 1, and qe(t) coincides with q(t) defined 
by (2.2). 

In the following theorems, we consider spherically symmetr ic  distr ibutions for 
which qe(t) is nonincreasing and qe(t) is nondecreasing when est imating 0 with 
respect to concave loss functions of quadrat ic  loss. Since the proofs following 
directly from the proofs of Theorems 2.1, 2.2 and 4.1, we omit them. 

THEOr~EM 4.2. I f  the p × 1 random vector X ~ s.s.d.(O), then with respect 
to loss (4.1), 5a,g(X) dominates  X provided qe(t) is nonincreasing, conditions (ii) 
and (iii) of Theorem 2.1 hold, and 

0 < a <_ 1 Eo(g'(][X[[2)[IX]I 2) 

P Eo(e'(IIX112)) 
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THEOREM 4.3. Suppose the p × 1, p >_ 3, random vector X ~ s.s.d.(O) and 
qe(t) defined by (4.6) is nondecreasing. I f  assumptions (ii) and (iii) of Theorem 
2.2 hold, then for 

1 z0e(llXll  2) 
O < a <  - -  

- (p - 2) Z o ( e , ( l l x l l ~ ) / l l x l l ~ )  ' 

e~,g(X) (1.1) has (uniformly) smaller risk than X .  

Remark 4.1. If the p x 1 random vector X ~ s.s.u.(0) under the same con- 
ditions as in Theorem 2.3, (~,g(X) (1.1) is bet ter  than  X with respect to concave 
loss (4.1) for 

p z0e(/IXll  2) 
O < a <  

- (p2 _ 4) E o ( e ( l l X l l 2 ) / l l X l l 2 )  

This follows directly from (4.4) since e ( l l X -  0112) is concave loss, density 
f*(llx - 0112) defined by (4.5) is nonincreasing and so the random variable X has 
a s.s.u, distribution. 

Consider now the problem of est imating 0 with respect to general quadratic 
loss given by (4.2). Wi th  respect to this loss we can restate Lemma 2.1 as follows. 

LEMMA 4.1. Let the p x 1 random vector X have a spherically symmetric 
distribution about 0 with density f ( l l x -  0112) with respect to Lebesgue measure. 
Then, provided divergence of Dg is nonpositive, the risk of the estimator E~,g(X) 
(1.1) dominates the risk of So(X) with respect to general quadratic loss (4.2) if  and 
only if 0 < a <_ inf0 ~f,D (0) where 

~f ,~ (o )  = 
f -(divDg(x))(~l~_oll~ f ( t )d t )dx  

f g ' ( x ) D g ( x ) f ( l l x  - 0112)dx 

Thus, in Theorems 2.1, 2.2, 2.3, 2.4 and 3.1, if we change the conditions that 
- d i v g  >_ - h  to - d i v D g  >_ - h  and 119112 + 2h <_ 0 to g'Dg + 2h <_ O, we will obtain 
the same improved minimax estimators with respect to general quadratic loss. 

5. Minimax estimators for spherically symmetric distributions with an unknown scale 

Suppose the p x 1 random vector X has a density (1/crP)f(llx- 0112/~ 2) where 
is unknown, and consider the random variable V, with density (1/o-2)f(v/cr2), 

independent of X.  Consider first est imating 0 with respect to scale quadratic loss 

(5.1) L(< 0) = I1~ - 0112/~2. 

It is straightforward to show tha t  Lemma 2.1 holds for estimators E~,v,g(X) = 
X + aVg(X) ,  provided 0 < a _< inf0Q(0) where ~}(0) = (E~=IV/E~=IV2)~f(O) 
and ~f(O) is defined by (2.1). 

The results of Sections 2, 3 and 4 need only be modified for the unknown 
variance case by multiplying the upper bounds of a by E~=IV/E~=IV 2. Thus we 
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have improved minimax estimators for all s.s. distributions and for some special 
ones with respect to scale quadratic loss, concave loss functions of scale quadratic 
loss and general scaled quadratic loss when the variance is unknown. Because of 
Lemma 2.1 and integration by parts, this is a straightforward extension of the 
known variance case. 
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