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Abstract

The Gauss-Codazzi-Ricci equations governing the local isometric embedding of Riemannian
spaces V,, C Vy (N =n + p, p > 0) are interrelated by the Bianchi identities in V}, and V.
This leads to redundancies which permit great simplification in the embedding problem, i.e.,
allows a neglect of part of the equations. By transcription, to the case of semi-Riemannian
spaces, of a result of R. Blum we obtain a number of theorems and corollaries expressing for
V,, C Vv this interdependency of the Gauss-Codazzi-Ricci equations. They form a general-
ization of previous results and are felt to be useful for the study of the geometrical proper-
ties of space-time and its three-dimensional space sections.

8(1): Introduction

Recently, in this journal, Y. K. Gupta and P. Goel [1] have given a class-2
analog and a class-p generalization (suggested by Barnes) of T. Y. Thomas’s
theorem [2] concerning an interrelation of the equations that govern the local
isometric embedding of a Riemannian space V,, in a flat space Ey (N =n +p,

p >0). In this note, I would like to communicate a more general result essen-
tially due to R. Blum [3]-[5], which was established a long time ago but seems
to be virtually unknown to relativists and differential geometers.!

Consider a Riemannian space ¥}, locally, as a subspace of a V. If y4 (4 =
1,2,...,N)are coordinates of a chart in the atlas covering Vy and x* (¢ = 1,

! For example, in the book of Kobayashi and Nomizu [6] in which the problem of local
isometric embedding is treated, Blum’s result is not mentioned.
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2, ..., n)coordinates in V,, the local isometric embedding of V,, C Vy is de-
scribed by
y4 =y4 ) (1.1)
ap =84y ,a¥B g 1.2)

where g5 and g4 5 are the components of the metric tensors of V,, and Vy, re-
spectively. If, at any point of ¥,, C Viy an N-leg {34 ,In/4} is affixed with
yA tangent to V,, and /4 (j=1,2,...,p=N- n) normal to ¥, a kind of
generalized Frenet equations can be derived [7]%

y = 2 ebhgnt? - Tac?y®..3C 5 (1.3a)
i
ni4 = bl g7y + Z exsiin® - TepdyC ' (1.3b)
where
EAanAnkB = e’S’k (143)
EapnyB., =0 (1.4b)

with sign factors (¢;)* = (eH?2=1.

The p = N - n symmetric bilinear forms b7, he = b and (%) vectors s = -s/!
defined by (1.3a) and (1.3b) are called second fundamental forms and torsion
vectors of V,, C V., [8]. The integrability conditions of equations (1.3a) and
(1.3b) form a mixed system of algebraical and differential equations, the Gauss-
Codazzi-Ricci equations™:

0=Gagys =Rapys - > ejb{x['ybé]ﬁ - RABCDyA;ayB;ByC;'ny;B (1.5)
i
; ki s .
0=Clg, =bhigy - 2 exblissy] - Rapcoy ™ aniBy€ sy ®.y (1.6)
k
0=KJs =s{pp + Z eks[asﬁl +8%bjabhyy + Rapcpn™n’PyC o »P 4 (L7

2We use the summation convention for indices A and . A comma denotes partial deriva-
tives, a semicolon covariant derivatives with respect to gag, While double verticals stand
for covariant derivatives with respect tog45. Ty BC and R gop are the Christoffel sym-
bol and Riemannian curvature tensor of ¥ taken on the subspace V.
The antisymmetrization bracket is defined by A[o;5] = Ag; ~ Ag;o While Aagy) = Aggy +

Ayap* Agya
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With Blum [3, 4] we call Gogy5, C{ZM, and K Zﬁ the Gauss, Codazzi, and Ricci
tensors, respectively.
The Gauss-Codazzi-Ricci equations are linked by the Bianchi identities in

V,:

RC!B(’)/S;E) =0 (18)

and in Vi :
R 4p(cpiE) =0 (1.9)

Equations (1.8) and (1.9) lead to a redundancy permitting, under certain condi-
tions on the b{xﬁ, a great deal of reduction of the Gauss-Codazzi-Ricci equations.
In many cases, the problem of local isometric embedding then is transformed
into a purely algebraical one. In Section 2, Blum’s result concerning the inter-
dependency of the Gauss-Codazzi-Ricci equations is described and a sketch of
the proof for the case of semi-Riemannian spaces given. In Section 3, applica-
tions of the general theorem are derived, one of which contains, as a special sub-
case, the results of Gupta and Goel [1] and of Barnes (see footnote in {1]).

8(2): Theorem of Blum

By repeated use of (1.5), (1.6), and (1.7) a straightforward calculation leads
to the following expressions:

Rapcoy®;ayBeyC.37%6)e = Rapepyey ™0y .6y CyyPs vE
. . . kj
- Zejb]om[ﬁcfiﬁ +bhiys51 - %ekbglvsﬁl]
j
- r o . k"
t Ze]-bﬁf ~Cluys +Dopyss) =~ 22 ekbg[vsﬁll
j | x

r -

. _ _ o
" 2 ¢bhe|~Chag *+ Dhjaspy - % exbblasg]
] e .
i [ J i k kf‘

+ 2 eibhe -Clop + Bhiacs) — X exbiasg)
j k J

@2.1)
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and

jB,,C
ozn]

(R 4pcoy™, 806 =Rancoiey® a2y € sy P o ¥% e

+ 3" exR apepn’®n*Cy4.,y ;[’yblﬁglr5
k

. . k i
et KB oo - 3 5T
k q

vak[ﬁb'y]u] + b](;&goy [Gavﬁy ~ Ravgy
+2 ekb’ocz[ﬁbl;]V] + 3 enss! [_Cgﬂv + blocclﬁ;vl
k k

- 3 5T, a] 2.2)

q

Application of (1.8), (1.9) and the Ricci identity for b7, Lvgi[y;81 together with
(2.1), (2.2) gives the following system of derived Gauss and Codazzi tensors:

Gagiys:er = 2 €/(Chiysbhyg = Chiysbhya) (23)
i
and
Chigy:er = Gty by - Z ex (5K Rk - Chigyss) (2.4)
Fore,=e,=""-=e, =1,i.e., an ordinary Riemannian space equations 2.3),

(2.4) are due to Blum [5].
If the Gauss equation (1. 5) is satisfied by a set of baﬁ, equation (2.3)is a
linear system for the p - n(n*- 1)/3 unknowns Cam

P
.Z Clou MR (2.5)

where

Mﬁkﬁ‘%e = %elb‘lﬂa Ipi

otgda)
(no summation on j) is a matrix with 3 ("3*)(%) rows and 1pn(n® - 1) columns.
If the Gauss and Codazzi equations (1.5) and (1.6) are satisfied by a set of

b{;ﬁ and szﬂ equation (2.4) is a linear system for the (5) - (3) unknowns K Zﬁ

D .
0= S KENEEYs (2.6)
k=1
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(j=1’2""’p)

where
NERYs = he*bligdy 53]
(no summation over k) is a matrix with £p("3")("3') rows and (%) - (%) columns.
By counting independent components of all tensors occurring, Blum arrived
at the following result:

Theorem. If the Gauss equation (1.5) is satisfied by a set of bl %, for which
the ranks of matrices M and N of (2.5) and (2.6) have maximum value, then
(Nfor0<p=N-n< 8n(n 2) all Codazzi and Ricci equations are con-
sequences of the Gauss equations; (2) for $n(n - 2) <p <(})a system of
Ln(m®- 1)[p - §n(n - 2)] equations of (1.6) are independent. The re-
mainder of the Codazzi equations and all Ricci equations are a consequence

of the independent system and of the Gauss equations.

For the case of M, N having less than maximal value we refer to Blum’s paper
[5].

In the case of space-time V,, in which we are most interested, the dimen-
sions of M and NV are formidable. For class p (1 <p <6) M is a 20X20 p matrix
while N is a 15pX3p(p - 1) matrix. Thus, in the form given above, Blum’s result
is of no direct calculational use. It seems desirable to replace the assumptions
concerning the ranks of M and N by conditions on baﬁ, directly (which them-
selves hopefully may be connected to properties of curvature invariants). A step
in this direction is taken in the next section.

8(3): Applications

As a first consequence of the system (2.3), (2.4) more suited to direct ap-
plication the following theorem is proved:

Theorem 1. Let rank r 2 4 of one of the p second fundamental forms
baﬁ of ¥,, C Vy,e.g., rank baﬁ 2 4. Then, the Codazzi equation C&M 0
and Ricci equations Koli =0(j'=2,3,...,p)follow from the Gauss equa-
tion, the remaining Codazzi equatlons Cam =0(j'=2,3,...,p),and re-
maining Ricci equations K4/5 = 0.

Proof. By assumption (2.3) reduced to
0= Catysbérs ~ Chiysbora (3.1)

For rank b4 =4, by a tedious calculation involving contractions with the in-
verse of a 4X4 submatrix of b,g with nonvanishing determinant, from (3.1) we
derive

Clgy =0 (3.2)
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By the assumptions of Theorem 1 and by (3.2), equation (2.4) reduces to
0=byekYsy ('=2,3,....p) (3.3)

while, for j = 1, equation (2.4) shrinks to
0= exbk Kk}, (EX))
k

Now, if rank b} = 3, (3.3) leads to
K =0 (3.5)

Equation (3.4) then is satisfied identically. For a local isometric embedding into
flat space, of class one, the result of Thomas [2] follows from Theorem 1; for
arbitrary class the generalization suggested by A. Barnes [1] obtains.

Equation (3.5) may be derived under a different assumption.

Theorem 2. Let rank r > 3 of one of the p second fundamental forms of
V, C Vy,eg., rank bjg > 3. Then the Ricci equations K” =0(j'=2,3,

., p) follow from the Gauss equation (1.7), the Codazzi equations Q1 .6),
and the remaining Ricci equations.

Proof. The only equation of the system (2.3) and (2.4) not yet satisfied by
the assumption of Theorem 2 is (3. 3). However, for rank by = 3, equation
(3.3) implies Kojg U= 0. For spaces with embedding class p = 2 the following con-
clusion from Theorems 1 and 2 may be drawn:

Corollary 1. Let rank r 2 3 of one of the two fundamental forms, e.g.,

rank byg = 3. Then the Ricci equations follow from the Gauss equation
and the Codazzi equations.

Corollary 2. Let rank r 2 4 of one of the two fundamental forms, e.g.,

bis = 4. Then, in addition to the Ricci equations, the Codazzi equation
Cipy = O follows from the Gauss equation and the remaining Codazzi
equation Cgy = 0. :

For ordinary Riemannian spaces embedded in Euclidean space V;, C £+, both
corollaries were proven by Verbizkii [9] . Gupta and Goel derived Corollary 2
{i}.

If, for class two, none of the fundamental forms reaches rank 3, the follow-
ing result may be obtained:

Corollary 3. Letn >3 and rank bl <2, rank bl <2.1f by + Abjgisa
regular pencil or a singular pencil of rank 3, then the Ricci equations fol-
low from the Gauss and Codazzi equations.
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Proof. By assumption, equations (2.3) and (2.4) reduce to
0="by K %

(3.6)
0= bk

(3.6) admits nontrivial solutions only if rank bgg <2, rank bz <2. A detailed
analysis then shows that, in this case, béﬁ +Ab}p forms a singular pencil of rank
<2.

It is hoped that the results presented here may be useful (1) for the study of
the geometrical properties of space-times ¥, regarded, locally, as subspaces of a
flat space or a space of constant curvature of higher dimension; (2) for the study
of the geometry of time- or spacelike sections of space-time itself (V5 C V).
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