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A b s t r a c t  

The Gauss-Codazzi-Ricci equations governing the local isometric embedding of Riemannian 
spaces V n c V N (N = n + p, p > 0) are interrelated by the Bianchi identities in V n and V N. 
This leads to redundancies which permit great simplification in the embedding problem, i.e., 
allows a neglect of part of the equations. By transcription, to the case of semi-Riemannian 
spaces, of a result of R. Blum we obtain a number of theorems and corollaries expressing for 
V n c V N this interdependency of the Gauss-Codazzi-Ricci equations. They form a general- 
ization of previous results and are felt to be useful for the study of the geometrical proper- 
ties of space-time and its three-dimensional space sections. 

w I n t r o d u c t i o n  

Recent ly ,  in this joarnat ,  Y. K. Gupta  and P. Goel  [1 ] have given a class-2 

analog and a class-p general izat ion (suggested by Barnes) o f  T. Y. Thomas ' s  

t heo rem [2] concerning an in terre la t ion o f  the equat ions  that  govern the local 

i sometr ic  embedd ing  o f  a Riemannian space V n in a f lat  space E N  ( N  = n + p ,  

p > 0). In this note ,  I would  like to  communica t e  a more  general result  essen- 

tially due to R. Blum [ 3 ] - [ 5 ] ,  which was established a long t ime ago but  seems 

to be vir tually unk nown  to  relativists and different ial  geometers .  1 

Consider a Riemannian  space Vn, local ly,  as a subspace o f  a VN. I f y  A (A = 

1, 2 , . . . ,  N )  are coordinates  o f  a chart  in the atlas covering VN and x ~ (~ = 1, 

1 For example, in the book of Kobayashi and Nomizu [6] in which the problem of local 
isometric embedding is treated, Blum's result is not mentioned. 
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2 , . . . ,  n) coordinates in V n the local isometric embedding of  V n c VN is de- 
scribed by 

y A  = y A ( x a  ) (1.1) 

gc~3 = g, A B y A , ~ y B , #  (1.2) 

where g~t~ and ~AB are the components of  the metric tensors of  V n and VN, re- 
spectively. If, at any point of  V n C V N anN-leg {yA,c~lniA ) is affixed with 
y A , e  tangent to V n and n ]A (]  = 1, 2 . . . . .  p = N -  n) normal to V n a kind of  
generalized Frenet equations can be derived [7] 2: 

yA;~;# = ~ ejb/ #niA _ rBcAyB;~yC;# (1.3a) 
] 

where 

n/A;c~ ---b/oa6~176 ;K + ~ ek sk]nkA - FcDAyC;an]D 
k 

(1.3b) 

g, ABnJAn kB = e]6 ]k (1.4a) 

gABn]AyB;a = 0 (1.4b) 

with sign factors (ei) z = (el) 2 = I. 
The p = N - n symmetric bilinear forms b~# = b/~a and (P) vectors s~' = -s~  

defined by (1.3a) and (1.3b) are called second fundamental forms and torsion 
vectors of  Vn C V n +p [8]. The integrability conditions of  equations (1.3a) and 
(1.3b) form a mixed system of  algebraical and differential equations, the Gauss- 
Codazzi-Ricci equations3: 

�9 ' - A B C D 
0 = Gc~7~ :=R~t~78 - ~ eibl~ITb~]3- RABCDY ;~Y ;~Y ;,yY ;~ 

] 
0.5) 

0--  := b;t3;   Z ~ - ekVa[fl~7] - RABcDyA,anIByC;~yD;7  
k 

(1.6) 

0 = K~'t~ := ii + E ~ o k i ~ k ]  i~v i ] - " sI~;3] =goI~t~] + g bal,~b#] v + RABcDn~An/ByC y D  (1.7) 
k 

2We use the summation convention for indices A and a. A comma denotes partial deriva- 
tives, a semicolon covariant derivatives with respect to ga#., while double verticals stand 
for covariant derivatives with respect to gAB" FAB C and )~ABc D are the Christoffel sym- 
bol and Riemannian curvature tensor of V N taken on the subspace V n. 

3 The antisymmetrization bracket is defined byA [a ;3] = Aot ;3 - A 3;a while A(a37 ) = Aa37 + 
ATe~ + A#,ra. 
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] i] the Gauss, Codazzi, and Ricci With Blum [3, 4] we call G~t3~6, C~t3 v, and Ka~ 
tensors, respectively. 

The Gauss-Codazzi-Ricci equations are linked by the Bianchi identities in 
r~: 

Rat3<.y~;e) = 0 (1.8) 

and in VN: 

RAB(CDq[E) = 0 (1.9) 

Equations (1.8) and (1.9)lead to a redundancy permitting, under certain condi- 
tions on the b~t ~, a great deal of reduction of the Gauss-Codazzi-Ricci equations. 
In many cases, the problem of local isometric embedding then is transformed 
into a purely algebraical one. In Section 2, Blum's result concerning the inter- 
dependency of the Gauss-Codazzi-Ricci equations is described and a sketch of 
the proof for the case of semi-Riemannian spaces given. In Section 3, applica- 
tions of the general theorem are derived, one of which contains, as a special sub- 
case, the results of Gupta and Goel [1] and of Barnes (see footnote in [1]). 

w Theorem o f  Blum 

By repeated use of ,(1.5), (1.6), and (1.7) a straightforward calculation leads 
to the following expressions: 

( ~  y A  B C D ~ _ -  A B C D E 
ABCD ;c~Y ;flY ;,),Y ; 6 ) ; e - R A B c D I I E Y  ;ceY ;r ;'rY ;BY ;e 

+ ~_, e]b~e C~.r~ + b/ai.r;~] - ~ ekOc~[.rs6] 
j k 

- ~_,ejb~e Cl~c~# +b~[~;j3] - y"  ekb~laSl3 ] 
j k 

+ ~ e ] b ~  ~ + b~,[~,~ 1 - ~ ekb~[~s~] 
j k 

(2.1) 
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and 

- -  A j B  C D _ - A ] B  C D E 
( R A B c D Y  ;~n Y ;flY ; 7 ) ; 5 - R A B c D I I E Y  ;an  Y ;~Y ;~,Y ;e 

+ Z -- jB kC A D k ekRABcDn n Y ;o~Y ;[-rbfl]5 
k 

K qk q] k k / _  s~;~/l _ ~ st~s~l + ~ ekbo~6 t~'r 
k q 

- gUVbku[flb~lv ] + bia6g~ [Gavflv - Rc~v&I 

k k ] [ + y" ekba[r v + y" eks~j k C~.y + bMfl;~, 1 
/r k 

qk, q ] Z sI ~ (2.2) 
q J 

Application of  (1.8), (1.9) and the Ricci identity for b~fl;[~,~l together with 
(2.1), (2.2) gives the following system of  derived Gauss and Codazzi tensors: 

i 
(2.3) 

and 

__C/~(/3.,.,;5 ) o ] _ rt.k te-kJ ~k kj~ = G ~(~3,:,be)a ~ e/,: tua(/3,xy,5)  - (...oeq37S5) ] 
k 

(2.4) 

For el = e2 . . . . .  ep = 1, i.e., an ordinary Riemannian space equations (2.3), 
(2.4) are due to Blum [5]. 

If the Gauss equation (1.5) is satisfied by a set of b~fl, equation (2.3) is a 
linear system for the p "n(n ~ - 1)/3 unknowns C ~ v :  

P 
0 = ~_, t"/ ~/rl~uv (2.5) ~ K # v " *  c~/3"y 6 e 

j= l  

where 

MiK#u := • 6K 
c~O"{6e 2 (T 8 e)[t~ a ]  

(no summation on j )  is a matrix with ~.1 gn+l~tn~2 ~t3j rows and ~pn(n z - 1) columns�9 
If the Gauss and Codazzi equations (1.5) and (1.6) are satisfied by a set of  

b ~  and s~'~ equation (2.4)is  a linear system for the (P2)" ( I )  unknowns KO'~: 

p 
v-" v-k/ ArkUv (2�9 0 = ~ *~.uv~V~33,5 

k = l  



( j = l , 2 , . . . , p )  
where 
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N k t t ~ ,  1 . k  z.tc ~[p~p] 

(no summation over k) is a matrix with 1 n+l n-l-, gP( 2 ) ( = ) rows and (P)" (~) columns�9 
By counting independent components of all tensors occurring, Blum arrived 

at the following result: 

Theorem." If the Gauss equation (1.5) is satisfied by a set of b ~  for which 
the ranks of matrices M and N of (2.5) and (2.6) have maximum value, then 
(1) for 0 <~p = N -  n <- ~n(n  - 2) all Codazzi and Ricci equations are con- 
sequences of the Gauss equations; (2) for ~n(n  - 2) < p <~ (~) a system of 
1 2 ~n(n  of (1.6) are independent, The re- -~n(n - 1) [p -  - 2)] equations 
mainder of the Codazzi equations and all Ricci equations are a consequence 
of the independent system and of the Gauss equations. 

For the case of M, N having less than maximal value we refer to Blum's paper 

[51. 
In the case of space-time 114, in which we are most interested, the dimen- 

sions of M and N are formidable. For class p (1 ~<p ~< 6)M is a 20• p matrix 
while Nis  a 15p•  - 1)matrix. Thus, in the form given above, Blum's result 
is of no direct calculational use. It seems desirable to replace the assumptions 
concerning the ranks of M and N by conditions on b ~ ,  directly (which them- 
selves hopefully may be connected to properties of curvature invariants). A step 
in this direction is taken in the next section. 

w Applicat ions 

As a first consequence of the system (2.3), (2.4)more suited to direct ap- 
plication the following theorem is proved: 

Theorem 1. Let rank r ~> 4 of one of the p second fundamental forms 
bJ~ of V n C VN, e.g., rank b ~ / >  4. Then, the Codazzi equation C ~ ,  = 0 

�9 �9 �9 1 ]*'  'r and Riccl equations K~t 3 = 0 (1 = 2, 3 , . . . , . ,  p) follow from the Gauss equa- 
tion the remaining Codazzi equations C~s~, = 0 (]'  = 2, 3 . . . . .  p), and re- 

i I , ,  ~ !  
maining Ricci equations K ~lt~ = 0. 

Proof. By assumption (2.3) reduced to 

0 = - ( 3 . 1 )  

For rank b~t 3 ~> 4, by a tedious calculation involving contractions with the in- 
verse of a 4X4 submatrix of b ~  with nonvanishing determinant, from (3.1) we 
derive 

= 0 (3.2) 
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By the assumptions of Theorem 1 and by (3.2), equation (2.4) reduces to 

I l j '  0 = b~(f~K.,/a) ( j '  = 2, 3 . . . .  , p )  (3.3) 

while, for ] = 1, equation (2.4) shrinks to 

0 -- Z ~ z.k v k l  

k 

(3.4) 

Now, if rank b~/~ ~> 3, (3.3) leads to 

Kl1~ = 0 (3.5) 

Equation (3.4) then is satisfied identically. For a local isometric embedding into 
fiat space, of class one, the result of Thomas [2] follows from Theorem 1 ; for 
arbitrary class the generalization suggested by A. Barnes [ 1 ] obtains. 

Equation (3.5) may be derived under a different assumption. 

Theorem 2. Let rank r ~> 3 of one of the p second fundamental forms of 
, i  

V n C VN, e.g., rank b ~ / >  3. Then the Ricci equations K~I~ = 0 (j '  = 2, 3, 
. . . .  p) follow from the Gauss equation (1.7), the Codazzi equations (1.6), 
and the remaining Ricci equations. 

Proof. The only equation of the system (2.3) and (2.4) not yet satisfied by 
1 the assumption of Theorem 2 is (3.3). However, for rank bah ~> 3, equation 

(3.3) implies K~i~ = 0. For spaces with embedding class p = 2 the foUowing con- 
clusion from Theorems 1 and 2 may be drawn: 

Corollary 1. Let rank r/> 3 of one of the two fundamental forms, e.g., 
rank b ~ / >  3. Then the Ricci equations follow from the Gauss equation 
and the Codazzi equations. 
Corollary 2. Let rankr~>4 of one of the two fundamental forms, e.g., 
b~# >~ 4. Then, in addition to the Ricci equations, the Codazzi equation 
C~t~ v = 0 follows from the Gauss equation and the remaining Codazzi 
equation z Cat3y = 0. 

For ordinary Riemannian spaces embedded in Euclidean space V n C En+2 both 
corollaries were proven by Verbizkii [9]. Gupta and God derived Corollary 2 

[11. 
If, for class two, none of the fundamental forms reaches rank 3, the follow- 

ing result may be obtained: 

Corollary 3. Let n ~> 3 and rank b~e ~< 2, rank b~ e ~< 2. If b ~  + Xb~ e is a 
regular pencil or a singular pencil of rank 3, then the Ricci equations fol- 
low from the Gauss and Codazzi equations. 
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Proof. By assumption, equations (2.3) and (2.4) reduce to 

0 ~ K1 /,712 

"a<#~7~> (3.6) 
0 / .2 g,,'12 = u a ( ~  ) 

(3.6) admits nontrivial solutions only if rank b~6 ~ 2, rank b ~  ~ 2. A detailed 
analysis then shows tha% in this case, b ~  + k b ~  forms a singular pencil of  rank 
~2 .  

It is hoped that the results presented here may be useful (1) for the study of  
the geometrical properties of  space-times V4 regarded, locally, as subspaces of a 
flat space or a space of  constant curvature of  higher dimension; (2) for the study 
of the geometry of time- or spacelike sections of  space-time itself (V3 C 1/4). 
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